sysctrl.c 14.1 KB
Newer Older
1 2 3 4 5 6
/*
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License version 2 as published
 *  by the Free Software Foundation.
 *
 *  Copyright (C) 2011-2012 John Crispin <blogic@openwrt.org>
7
 *  Copyright (C) 2013-2015 Lantiq Beteiligungs-GmbH & Co.KG
8 9 10 11 12
 */

#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
13
#include <linux/spinlock.h>
14 15 16 17 18 19 20 21 22
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>

#include <lantiq_soc.h>

#include "../clk.h"
#include "../prom.h"

23
/* clock control register for legacy */
24
#define CGU_IFCCR	0x0018
25
#define CGU_IFCCR_VR9	0x0024
26
/* system clock register for legacy */
27 28 29
#define CGU_SYS		0x0010
/* pci control register */
#define CGU_PCICR	0x0034
30
#define CGU_PCICR_VR9	0x0038
31 32
/* ephy configuration register */
#define CGU_EPHY	0x10
33 34

/* Legacy PMU register for ar9, ase, danube */
35 36 37 38 39 40 41 42 43 44 45 46 47
/* power control register */
#define PMU_PWDCR	0x1C
/* power status register */
#define PMU_PWDSR	0x20
/* power control register */
#define PMU_PWDCR1	0x24
/* power status register */
#define PMU_PWDSR1	0x28
/* power control register */
#define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
/* power status register */
#define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/* PMU register for ar10 and grx390 */

/* First register set */
#define PMU_CLK_SR	0x20 /* status */
#define PMU_CLK_CR_A	0x24 /* Enable */
#define PMU_CLK_CR_B	0x28 /* Disable */
/* Second register set */
#define PMU_CLK_SR1	0x30 /* status */
#define PMU_CLK_CR1_A	0x34 /* Enable */
#define PMU_CLK_CR1_B	0x38 /* Disable */
/* Third register set */
#define PMU_ANA_SR	0x40 /* status */
#define PMU_ANA_CR_A	0x44 /* Enable */
#define PMU_ANA_CR_B	0x48 /* Disable */

/* Status */
static u32 pmu_clk_sr[] = {
	PMU_CLK_SR,
	PMU_CLK_SR1,
	PMU_ANA_SR,
};

/* Enable */
static u32 pmu_clk_cr_a[] = {
	PMU_CLK_CR_A,
	PMU_CLK_CR1_A,
	PMU_ANA_CR_A,
};

/* Disable */
static u32 pmu_clk_cr_b[] = {
	PMU_CLK_CR_B,
	PMU_CLK_CR1_B,
	PMU_ANA_CR_B,
};

#define PWDCR_EN_XRX(x)		(pmu_clk_cr_a[(x)])
#define PWDCR_DIS_XRX(x)	(pmu_clk_cr_b[(x)])
#define PWDSR_XRX(x)		(pmu_clk_sr[(x)])

89 90
/* clock gates that we can en/disable */
#define PMU_USB0_P	BIT(0)
91
#define PMU_ASE_SDIO	BIT(2) /* ASE special */
92
#define PMU_PCI		BIT(4)
93
#define PMU_DMA		BIT(5)
94 95 96
#define PMU_USB0	BIT(6)
#define PMU_ASC0	BIT(7)
#define PMU_EPHY	BIT(7)	/* ase */
97
#define PMU_USIF	BIT(7) /* from vr9 until grx390 */
98 99 100 101
#define PMU_SPI		BIT(8)
#define PMU_DFE		BIT(9)
#define PMU_EBU		BIT(10)
#define PMU_STP		BIT(11)
102
#define PMU_GPT		BIT(12)
103
#define PMU_AHBS	BIT(13) /* vr9 */
104
#define PMU_FPI		BIT(14)
105
#define PMU_AHBM	BIT(15)
106
#define PMU_SDIO	BIT(16) /* danube, ar9, vr9 */
107 108 109 110 111 112 113 114 115
#define PMU_ASC1	BIT(17)
#define PMU_PPE_QSB	BIT(18)
#define PMU_PPE_SLL01	BIT(19)
#define PMU_PPE_TC	BIT(21)
#define PMU_PPE_EMA	BIT(22)
#define PMU_PPE_DPLUM	BIT(23)
#define PMU_PPE_DPLUS	BIT(24)
#define PMU_USB1_P	BIT(26)
#define PMU_USB1	BIT(27)
116
#define PMU_SWITCH	BIT(28)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#define PMU_PPE_TOP	BIT(29)
#define PMU_GPHY	BIT(30)
#define PMU_PCIE_CLK	BIT(31)

#define PMU1_PCIE_PHY	BIT(0)
#define PMU1_PCIE_CTL	BIT(1)
#define PMU1_PCIE_PDI	BIT(4)
#define PMU1_PCIE_MSI	BIT(5)

#define pmu_w32(x, y)	ltq_w32((x), pmu_membase + (y))
#define pmu_r32(x)	ltq_r32(pmu_membase + (x))

static void __iomem *pmu_membase;
void __iomem *ltq_cgu_membase;
void __iomem *ltq_ebu_membase;

133 134 135
static u32 ifccr = CGU_IFCCR;
static u32 pcicr = CGU_PCICR;

136 137
static DEFINE_SPINLOCK(g_pmu_lock);

138 139 140
/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_enable(unsigned int module)
{
141
	int retry = 1000000;
142

143
	spin_lock(&g_pmu_lock);
144
	pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
145 146
	do {} while (--retry && (pmu_r32(PMU_PWDSR) & module));
	spin_unlock(&g_pmu_lock);
147

148
	if (!retry)
149 150 151 152 153 154 155
		panic("activating PMU module failed!");
}
EXPORT_SYMBOL(ltq_pmu_enable);

/* legacy function kept alive to ease clkdev transition */
void ltq_pmu_disable(unsigned int module)
{
156 157 158
	int retry = 1000000;

	spin_lock(&g_pmu_lock);
159
	pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
160 161 162 163 164
	do {} while (--retry && (!(pmu_r32(PMU_PWDSR) & module)));
	spin_unlock(&g_pmu_lock);

	if (!retry)
		pr_warn("deactivating PMU module failed!");
165 166 167 168 169 170
}
EXPORT_SYMBOL(ltq_pmu_disable);

/* enable a hw clock */
static int cgu_enable(struct clk *clk)
{
171
	ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
172 173 174 175 176 177
	return 0;
}

/* disable a hw clock */
static void cgu_disable(struct clk *clk)
{
178
	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
179 180 181 182 183 184 185
}

/* enable a clock gate */
static int pmu_enable(struct clk *clk)
{
	int retry = 1000000;

186 187 188 189 190 191 192 193 194 195 196 197 198 199
	if (of_machine_is_compatible("lantiq,ar10")
	    || of_machine_is_compatible("lantiq,grx390")) {
		pmu_w32(clk->bits, PWDCR_EN_XRX(clk->module));
		do {} while (--retry &&
			     (!(pmu_r32(PWDSR_XRX(clk->module)) & clk->bits)));

	} else {
		spin_lock(&g_pmu_lock);
		pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
				PWDCR(clk->module));
		do {} while (--retry &&
			     (pmu_r32(PWDSR(clk->module)) & clk->bits));
		spin_unlock(&g_pmu_lock);
	}
200 201

	if (!retry)
202
		panic("activating PMU module failed!");
203 204 205 206 207 208 209

	return 0;
}

/* disable a clock gate */
static void pmu_disable(struct clk *clk)
{
210 211
	int retry = 1000000;

212 213 214 215 216 217 218 219 220 221 222 223 224
	if (of_machine_is_compatible("lantiq,ar10")
	    || of_machine_is_compatible("lantiq,grx390")) {
		pmu_w32(clk->bits, PWDCR_DIS_XRX(clk->module));
		do {} while (--retry &&
			     (pmu_r32(PWDSR_XRX(clk->module)) & clk->bits));
	} else {
		spin_lock(&g_pmu_lock);
		pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
				PWDCR(clk->module));
		do {} while (--retry &&
			     (!(pmu_r32(PWDSR(clk->module)) & clk->bits)));
		spin_unlock(&g_pmu_lock);
	}
225 226 227

	if (!retry)
		pr_warn("deactivating PMU module failed!");
228 229 230 231 232
}

/* the pci enable helper */
static int pci_enable(struct clk *clk)
{
233
	unsigned int val = ltq_cgu_r32(ifccr);
234
	/* set bus clock speed */
235 236
	if (of_machine_is_compatible("lantiq,ar9") ||
			of_machine_is_compatible("lantiq,vr9")) {
237
		val &= ~0x1f00000;
238
		if (clk->rate == CLOCK_33M)
239
			val |= 0xe00000;
240
		else
241
			val |= 0x700000; /* 62.5M */
242
	} else {
243
		val &= ~0xf00000;
244
		if (clk->rate == CLOCK_33M)
245
			val |= 0x800000;
246
		else
247
			val |= 0x400000; /* 62.5M */
248
	}
249
	ltq_cgu_w32(val, ifccr);
250 251 252 253 254 255 256
	pmu_enable(clk);
	return 0;
}

/* enable the external clock as a source */
static int pci_ext_enable(struct clk *clk)
{
257 258
	ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
	ltq_cgu_w32((1 << 30), pcicr);
259 260 261 262 263 264
	return 0;
}

/* disable the external clock as a source */
static void pci_ext_disable(struct clk *clk)
{
265 266
	ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
	ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
267 268 269 270 271 272 273 274 275 276 277
}

/* enable a clockout source */
static int clkout_enable(struct clk *clk)
{
	int i;

	/* get the correct rate */
	for (i = 0; i < 4; i++) {
		if (clk->rates[i] == clk->rate) {
			int shift = 14 - (2 * clk->module);
278
			int enable = 7 - clk->module;
279
			unsigned int val = ltq_cgu_r32(ifccr);
280

281 282
			val &= ~(3 << shift);
			val |= i << shift;
283
			val |= enable;
284
			ltq_cgu_w32(val, ifccr);
285 286 287 288 289 290 291
			return 0;
		}
	}
	return -1;
}

/* manage the clock gates via PMU */
292 293
static void clkdev_add_pmu(const char *dev, const char *con, bool deactivate,
			   unsigned int module, unsigned int bits)
294 295 296 297 298 299 300 301 302 303
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);

	clk->cl.dev_id = dev;
	clk->cl.con_id = con;
	clk->cl.clk = clk;
	clk->enable = pmu_enable;
	clk->disable = pmu_disable;
	clk->module = module;
	clk->bits = bits;
304 305 306 307 308 309 310
	if (deactivate) {
		/*
		 * Disable it during the initialization. Module should enable
		 * when used
		 */
		pmu_disable(clk);
	}
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	clkdev_add(&clk->cl);
}

/* manage the clock generator */
static void clkdev_add_cgu(const char *dev, const char *con,
					unsigned int bits)
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);

	clk->cl.dev_id = dev;
	clk->cl.con_id = con;
	clk->cl.clk = clk;
	clk->enable = cgu_enable;
	clk->disable = cgu_disable;
	clk->bits = bits;
	clkdev_add(&clk->cl);
}

/* pci needs its own enable function as the setup is a bit more complex */
static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};

static void clkdev_add_pci(void)
{
	struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
	struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);

	/* main pci clock */
	clk->cl.dev_id = "17000000.pci";
	clk->cl.con_id = NULL;
	clk->cl.clk = clk;
	clk->rate = CLOCK_33M;
	clk->rates = valid_pci_rates;
	clk->enable = pci_enable;
	clk->disable = pmu_disable;
	clk->module = 0;
	clk->bits = PMU_PCI;
	clkdev_add(&clk->cl);

	/* use internal/external bus clock */
	clk_ext->cl.dev_id = "17000000.pci";
	clk_ext->cl.con_id = "external";
	clk_ext->cl.clk = clk_ext;
	clk_ext->enable = pci_ext_enable;
	clk_ext->disable = pci_ext_disable;
	clkdev_add(&clk_ext->cl);
}

/* xway socs can generate clocks on gpio pins */
static unsigned long valid_clkout_rates[4][5] = {
	{CLOCK_32_768K, CLOCK_1_536M, CLOCK_2_5M, CLOCK_12M, 0},
	{CLOCK_40M, CLOCK_12M, CLOCK_24M, CLOCK_48M, 0},
	{CLOCK_25M, CLOCK_40M, CLOCK_30M, CLOCK_60M, 0},
	{CLOCK_12M, CLOCK_50M, CLOCK_32_768K, CLOCK_25M, 0},
};

static void clkdev_add_clkout(void)
{
	int i;

	for (i = 0; i < 4; i++) {
		struct clk *clk;
		char *name;

		name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
		sprintf(name, "clkout%d", i);

		clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
		clk->cl.dev_id = "1f103000.cgu";
		clk->cl.con_id = name;
		clk->cl.clk = clk;
		clk->rate = 0;
		clk->rates = valid_clkout_rates[i];
		clk->enable = clkout_enable;
		clk->module = i;
		clkdev_add(&clk->cl);
	}
}

/* bring up all register ranges that we need for basic system control */
void __init ltq_soc_init(void)
{
	struct resource res_pmu, res_cgu, res_ebu;
	struct device_node *np_pmu =
			of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
	struct device_node *np_cgu =
			of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
	struct device_node *np_ebu =
			of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");

	/* check if all the core register ranges are available */
	if (!np_pmu || !np_cgu || !np_ebu)
J
John Crispin 已提交
402
		panic("Failed to load core nodes from devicetree");
403 404 405 406 407 408 409 410 411 412 413 414

	if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
			of_address_to_resource(np_cgu, 0, &res_cgu) ||
			of_address_to_resource(np_ebu, 0, &res_ebu))
		panic("Failed to get core resources");

	if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
				res_pmu.name) < 0) ||
		(request_mem_region(res_cgu.start, resource_size(&res_cgu),
				res_cgu.name) < 0) ||
		(request_mem_region(res_ebu.start, resource_size(&res_ebu),
				res_ebu.name) < 0))
M
Masanari Iida 已提交
415
		pr_err("Failed to request core resources");
416 417 418 419 420 421 422 423 424 425 426 427 428

	pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
	ltq_cgu_membase = ioremap_nocache(res_cgu.start,
						resource_size(&res_cgu));
	ltq_ebu_membase = ioremap_nocache(res_ebu.start,
						resource_size(&res_ebu));
	if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
		panic("Failed to remap core resources");

	/* make sure to unprotect the memory region where flash is located */
	ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);

	/* add our generic xway clocks */
429 430 431 432 433 434 435
	clkdev_add_pmu("10000000.fpi", NULL, 0, 0, PMU_FPI);
	clkdev_add_pmu("1e100400.serial", NULL, 0, 0, PMU_ASC0);
	clkdev_add_pmu("1e100a00.gptu", NULL, 1, 0, PMU_GPT);
	clkdev_add_pmu("1e100bb0.stp", NULL, 1, 0, PMU_STP);
	clkdev_add_pmu("1e104100.dma", NULL, 1, 0, PMU_DMA);
	clkdev_add_pmu("1e100800.spi", NULL, 1, 0, PMU_SPI);
	clkdev_add_pmu("1e105300.ebu", NULL, 0, 0, PMU_EBU);
436 437 438
	clkdev_add_clkout();

	/* add the soc dependent clocks */
439 440 441 442
	if (of_machine_is_compatible("lantiq,vr9")) {
		ifccr = CGU_IFCCR_VR9;
		pcicr = CGU_PCICR_VR9;
	} else {
443
		clkdev_add_pmu("1e180000.etop", NULL, 1, 0, PMU_PPE);
444
	}
445 446

	if (!of_machine_is_compatible("lantiq,ase")) {
447
		clkdev_add_pmu("1e100c00.serial", NULL, 0, 0, PMU_ASC1);
448 449 450 451 452
		clkdev_add_pci();
	}

	if (of_machine_is_compatible("lantiq,ase")) {
		if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
453 454
			clkdev_add_static(CLOCK_266M, CLOCK_133M,
						CLOCK_133M, CLOCK_266M);
455
		else
456 457
			clkdev_add_static(CLOCK_133M, CLOCK_133M,
						CLOCK_133M, CLOCK_133M);
458 459 460 461
		clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
		clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e180000.etop", "ppe", 1, 0, PMU_PPE);
		clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY);
462
		clkdev_add_pmu("1e180000.etop", "ephy", 1, 0, PMU_EPHY);
463
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_ASE_SDIO);
464 465
	} else if (of_machine_is_compatible("lantiq,vr9")) {
		clkdev_add_static(ltq_vr9_cpu_hz(), ltq_vr9_fpi_hz(),
466
				ltq_vr9_fpi_hz(), ltq_vr9_pp32_hz());
467 468 469 470
		clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0 | PMU_AHBM);
		clkdev_add_pmu("1e106000.usb", "phy", 1, 0, PMU_USB1_P);
		clkdev_add_pmu("1e106000.usb", "ctl", 1, 0, PMU_USB1 | PMU_AHBM);
471 472 473 474 475 476
		clkdev_add_pmu("1d900000.pcie", "phy", 1, 1, PMU1_PCIE_PHY);
		clkdev_add_pmu("1d900000.pcie", "bus", 1, 0, PMU_PCIE_CLK);
		clkdev_add_pmu("1d900000.pcie", "msi", 1, 1, PMU1_PCIE_MSI);
		clkdev_add_pmu("1d900000.pcie", "pdi", 1, 1, PMU1_PCIE_PDI);
		clkdev_add_pmu("1d900000.pcie", "ctl", 1, 1, PMU1_PCIE_CTL);
		clkdev_add_pmu("1d900000.pcie", "ahb", 1, 0, PMU_AHBM | PMU_AHBS);
477 478

		clkdev_add_pmu("1da00000.usif", "NULL", 1, 0, PMU_USIF);
479
		clkdev_add_pmu("1e108000.eth", NULL, 1, 0,
480 481 482
				PMU_SWITCH | PMU_PPE_DPLUS | PMU_PPE_DPLUM |
				PMU_PPE_EMA | PMU_PPE_TC | PMU_PPE_SLL01 |
				PMU_PPE_QSB | PMU_PPE_TOP);
483
		clkdev_add_pmu("1f203000.rcu", "gphy", 1, 0, PMU_GPHY);
484
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
485 486
	} else if (of_machine_is_compatible("lantiq,ar9")) {
		clkdev_add_static(ltq_ar9_cpu_hz(), ltq_ar9_fpi_hz(),
487
				ltq_ar9_fpi_hz(), CLOCK_250M);
488 489 490 491
		clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
		clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e106000.usb", "ctl", 1, 0, PMU_USB1);
		clkdev_add_pmu("1e106000.usb", "phy", 1, 0, PMU_USB1_P);
492
		clkdev_add_pmu("1e180000.etop", "switch", 1, 0, PMU_SWITCH);
493
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
494 495
	} else {
		clkdev_add_static(ltq_danube_cpu_hz(), ltq_danube_fpi_hz(),
496
				ltq_danube_fpi_hz(), ltq_danube_pp32_hz());
497 498 499
		clkdev_add_pmu("1e101000.usb", "ctl", 1, 0, PMU_USB0);
		clkdev_add_pmu("1e101000.usb", "phy", 1, 0, PMU_USB0_P);
		clkdev_add_pmu("1e103000.sdio", NULL, 1, 0, PMU_SDIO);
500 501
	}
}