intel_pstate.c 66.3 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88 89 90 91
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
205 206
};

207 208 209
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
210
 * @policy:		CPUFreq policy value
211
 * @update_util:	CPUFreq utility callback information
212
 * @update_util_set:	CPUFreq utility callback is set
213 214
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
215 216 217 218 219 220 221 222 223 224
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
225 226 227 228
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
229 230
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
231 232 233
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
234
 * @epp_policy:		Last saved policy used to set EPP/EPB
235 236 237 238
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
239 240 241
 *
 * This structure stores per CPU instance data for all CPUs.
 */
242 243 244
struct cpudata {
	int cpu;

245
	unsigned int policy;
246
	struct update_util_data update_util;
247
	bool   update_util_set;
248 249

	struct pstate_data pstate;
250
	struct vid_data vid;
251 252
	struct _pid pid;

253
	u64	last_update;
254
	u64	last_sample_time;
255 256
	u64	prev_aperf;
	u64	prev_mperf;
257
	u64	prev_tsc;
258
	u64	prev_cummulative_iowait;
259
	struct sample sample;
260 261
	int32_t	min_perf;
	int32_t	max_perf;
262 263 264 265
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
266
	unsigned int iowait_boost;
267
	s16 epp_powersave;
268
	s16 epp_policy;
269 270
	s16 epp_default;
	s16 epp_saved;
271 272 273
};

static struct cpudata **all_cpu_data;
274 275

/**
276
 * struct pstate_adjust_policy - Stores static PID configuration data
277 278 279 280 281 282 283 284 285 286
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
287 288
struct pstate_adjust_policy {
	int sample_rate_ms;
289
	s64 sample_rate_ns;
290 291 292 293 294 295 296
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
311 312
struct pstate_funcs {
	int (*get_max)(void);
313
	int (*get_max_physical)(void);
314 315
	int (*get_min)(void);
	int (*get_turbo)(void);
316
	int (*get_scaling)(void);
317
	u64 (*get_val)(struct cpudata*, int pstate);
318
	void (*get_vid)(struct cpudata *);
319
	int32_t (*get_target_pstate)(struct cpudata *);
320 321
};

322 323 324 325 326
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
327 328 329
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
330 331
};

332
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
333
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
334

335 336 337
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
338
static bool per_cpu_limits __read_mostly;
339

340 341
static bool driver_registered __read_mostly;

342 343 344
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
345

346
static struct global_params global;
347

348
static DEFINE_MUTEX(intel_pstate_driver_lock);
349 350
static DEFINE_MUTEX(intel_pstate_limits_lock);

351
#ifdef CONFIG_ACPI
352 353 354 355 356 357 358 359 360 361

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

413 414 415 416 417 418
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

419 420
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
421
		return;
422
	}
423

424
	if (!intel_pstate_get_ppc_enable_status())
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
467
	 * correct max turbo frequency based on the turbo state.
468 469
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
470
	if (!global.turbo_disabled)
471 472 473
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
474
	pr_debug("_PPC limits will be enforced\n");
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
494
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
495 496 497
{
}

498
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 500 501 502
{
}
#endif

503
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
504
			     int deadband, int integral) {
505 506
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
507
	pid->integral  = int_tofp(integral);
508
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
509 510 511 512
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
513
	pid->p_gain = div_fp(percent, 100);
514 515 516 517
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
518
	pid->i_gain = div_fp(percent, 100);
519 520 521 522
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
523
	pid->d_gain = div_fp(percent, 100);
524 525
}

526
static signed int pid_calc(struct _pid *pid, int32_t busy)
527
{
528
	signed int result;
529 530 531
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

532
	fp_error = pid->setpoint - busy;
533

534
	if (abs(fp_error) <= pid->deadband)
535 536 537 538 539 540
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

541 542 543 544 545 546 547 548
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
549 550 551 552 553 554
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

555 556
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
557 558

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
559
	result = result + (1 << (FRAC_BITS-1));
560 561 562 563 564
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
565 566 567
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
568

569
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
570 571 572 573 574
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
575

576 577 578 579 580 581
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

582 583 584 585 586 587 588
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
589
	global.turbo_disabled =
590 591 592 593
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

594 595 596 597 598 599 600 601
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

621 622 623 624 625 626 627 628 629 630 631
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
632
		epp = (hwp_req_data >> 24) & 0xff;
633
	} else {
634 635
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
636
	}
637 638 639 640

	return epp;
}

641
static int intel_pstate_set_epb(int cpu, s16 pref)
642 643
{
	u64 epb;
644
	int ret;
645 646

	if (!static_cpu_has(X86_FEATURE_EPB))
647
		return -ENXIO;
648

649 650 651
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
652 653 654

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
655 656

	return 0;
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

819
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
820
{
821
	int min, hw_min, max, hw_max, cpu;
822 823
	u64 value, cap;

824
	for_each_cpu(cpu, policy->cpus) {
825 826
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
827

828 829
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
830
		if (global.no_turbo)
831 832 833
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
834

835
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
836 837 838
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
839
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
840

D
Dirk Brandewie 已提交
841
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
842

D
Dirk Brandewie 已提交
843 844 845 846 847
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
848 849 850 851 852 853

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

854 855 856 857 858 859
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

860 861
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
862
			cpu_data->epp_powersave = epp;
863
			/* If EPP read was failed, then don't try to write */
864
			if (epp < 0)
865 866 867 868 869 870
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
871
			if (cpu_data->epp_powersave < 0)
872 873 874 875 876 877 878 879 880 881 882 883 884
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

885
			epp = cpu_data->epp_powersave;
886
		}
887
update_epp:
888 889 890 891 892 893 894
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
895 896
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
897
}
D
Dirk Brandewie 已提交
898

899 900 901 902 903 904 905 906 907 908 909 910
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

911 912 913 914 915
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

916 917
	mutex_lock(&intel_pstate_limits_lock);

918
	all_cpu_data[policy->cpu]->epp_policy = 0;
919
	intel_pstate_hwp_set(policy);
920 921 922

	mutex_unlock(&intel_pstate_limits_lock);

923
	return 0;
924 925
}

926
static void intel_pstate_update_policies(void)
927
{
928 929 930 931
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
932 933
}

934 935 936 937
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
938
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
939 940 941
	intel_pstate_reset_all_pid();
	return 0;
}
942

943 944 945 946 947
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
948
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
949

950 951
static struct dentry *debugfs_parent;

952 953 954
struct pid_param {
	char *name;
	void *value;
955
	struct dentry *dentry;
956 957 958
};

static struct pid_param pid_files[] = {
959 960 961 962 963 964 965
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
966 967
};

968
static void intel_pstate_debug_expose_params(void)
969
{
970
	int i;
971 972 973 974

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
975 976 977 978 979 980 981 982 983

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
984 985 986
	}
}

987 988 989 990 991 992 993 994 995 996
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
997
	}
998 999 1000

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1001 1002 1003 1004 1005 1006 1007 1008 1009
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1010
		return sprintf(buf, "%u\n", global.object);		\
1011 1012
	}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1041 1042 1043 1044 1045 1046 1047
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1048 1049 1050 1051 1052 1053 1054
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1055 1056 1057 1058
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1059
	turbo_fp = div_fp(no_turbo, total);
1060
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1061 1062 1063

	mutex_unlock(&intel_pstate_driver_lock);

1064 1065 1066
	return sprintf(buf, "%u\n", turbo_pct);
}

1067 1068 1069 1070 1071 1072
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1073 1074 1075 1076 1077 1078 1079
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1080 1081
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1082 1083 1084

	mutex_unlock(&intel_pstate_driver_lock);

1085 1086 1087
	return sprintf(buf, "%u\n", total);
}

1088 1089 1090 1091 1092
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1093 1094 1095 1096 1097 1098 1099
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1100
	update_turbo_state();
1101 1102
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1103
	else
1104
		ret = sprintf(buf, "%u\n", global.no_turbo);
1105

1106 1107
	mutex_unlock(&intel_pstate_driver_lock);

1108 1109 1110
	return ret;
}

1111
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1112
			      const char *buf, size_t count)
1113 1114 1115
{
	unsigned int input;
	int ret;
1116

1117 1118 1119
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1120

1121 1122 1123 1124 1125 1126 1127
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1128 1129
	mutex_lock(&intel_pstate_limits_lock);

1130
	update_turbo_state();
1131
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1132
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1133
		mutex_unlock(&intel_pstate_limits_lock);
1134
		mutex_unlock(&intel_pstate_driver_lock);
1135
		return -EPERM;
1136
	}
D
Dirk Brandewie 已提交
1137

1138
	global.no_turbo = clamp_t(int, input, 0, 1);
1139

1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1149 1150
	mutex_unlock(&intel_pstate_limits_lock);

1151 1152
	intel_pstate_update_policies();

1153 1154
	mutex_unlock(&intel_pstate_driver_lock);

1155 1156 1157 1158
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1159
				  const char *buf, size_t count)
1160 1161 1162
{
	unsigned int input;
	int ret;
1163

1164 1165 1166 1167
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1168 1169 1170 1171 1172 1173 1174
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1175 1176
	mutex_lock(&intel_pstate_limits_lock);

1177
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1178

1179 1180
	mutex_unlock(&intel_pstate_limits_lock);

1181 1182
	intel_pstate_update_policies();

1183 1184
	mutex_unlock(&intel_pstate_driver_lock);

1185 1186 1187 1188
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1189
				  const char *buf, size_t count)
1190 1191 1192
{
	unsigned int input;
	int ret;
1193

1194 1195 1196
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1197

1198 1199 1200 1201 1202 1203 1204
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1205 1206
	mutex_lock(&intel_pstate_limits_lock);

1207 1208
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1209

1210 1211
	mutex_unlock(&intel_pstate_limits_lock);

1212 1213
	intel_pstate_update_policies();

1214 1215
	mutex_unlock(&intel_pstate_driver_lock);

1216 1217 1218 1219 1220 1221
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1222
define_one_global_rw(status);
1223 1224 1225
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1226
define_one_global_ro(turbo_pct);
1227
define_one_global_ro(num_pstates);
1228 1229

static struct attribute *intel_pstate_attributes[] = {
1230
	&status.attr,
1231
	&no_turbo.attr,
1232
	&turbo_pct.attr,
1233
	&num_pstates.attr,
1234 1235 1236 1237 1238 1239 1240
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1241
static void __init intel_pstate_sysfs_expose_params(void)
1242
{
1243
	struct kobject *intel_pstate_kobject;
1244 1245 1246 1247
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1248 1249 1250
	if (WARN_ON(!intel_pstate_kobject))
		return;

1251
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1268 1269
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1270

1271
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1272
{
1273
	/* First disable HWP notification interrupt as we don't process them */
1274 1275
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1276

1277
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1278
	cpudata->epp_policy = 0;
1279 1280
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1302
static int atom_get_min_pstate(void)
1303 1304
{
	u64 value;
1305

1306
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1307
	return (value >> 8) & 0x7F;
1308 1309
}

1310
static int atom_get_max_pstate(void)
1311 1312
{
	u64 value;
1313

1314
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1315
	return (value >> 16) & 0x7F;
1316
}
1317

1318
static int atom_get_turbo_pstate(void)
1319 1320
{
	u64 value;
1321

1322
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1323
	return value & 0x7F;
1324 1325
}

1326
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1327 1328 1329 1330 1331
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1332
	val = (u64)pstate << 8;
1333
	if (global.no_turbo && !global.turbo_disabled)
1334 1335 1336 1337 1338 1339 1340
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1341
	vid = ceiling_fp(vid_fp);
1342

1343 1344 1345
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1346
	return val | vid;
1347 1348
}

1349
static int silvermont_get_scaling(void)
1350 1351 1352
{
	u64 value;
	int i;
1353 1354 1355
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1356 1357

	rdmsrl(MSR_FSB_FREQ, value);
1358 1359
	i = value & 0x7;
	WARN_ON(i > 4);
1360

1361 1362
	return silvermont_freq_table[i];
}
1363

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1378 1379
}

1380
static void atom_get_vid(struct cpudata *cpudata)
1381 1382 1383
{
	u64 value;

1384
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1385 1386
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1387 1388 1389 1390
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1391

1392
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1393
	cpudata->vid.turbo = value & 0x7f;
1394 1395
}

1396
static int core_get_min_pstate(void)
1397 1398
{
	u64 value;
1399

1400
	rdmsrl(MSR_PLATFORM_INFO, value);
1401 1402 1403
	return (value >> 40) & 0xFF;
}

1404
static int core_get_max_pstate_physical(void)
1405 1406
{
	u64 value;
1407

1408
	rdmsrl(MSR_PLATFORM_INFO, value);
1409 1410 1411
	return (value >> 8) & 0xFF;
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1445
static int core_get_max_pstate(void)
1446
{
1447 1448 1449
	u64 tar;
	u64 plat_info;
	int max_pstate;
1450
	int tdp_ratio;
1451 1452 1453 1454 1455
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1456 1457 1458 1459 1460 1461 1462 1463 1464
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1465 1466
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1467 1468
		int tar_levels;

1469
		/* Do some sanity checking for safety */
1470 1471 1472 1473
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1474 1475
		}
	}
1476

1477
	return max_pstate;
1478 1479
}

1480
static int core_get_turbo_pstate(void)
1481 1482 1483
{
	u64 value;
	int nont, ret;
1484

1485
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1486
	nont = core_get_max_pstate();
1487
	ret = (value) & 255;
1488 1489 1490 1491 1492
	if (ret <= nont)
		ret = nont;
	return ret;
}

1493 1494 1495 1496 1497
static inline int core_get_scaling(void)
{
	return 100000;
}

1498
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1499 1500 1501
{
	u64 val;

1502
	val = (u64)pstate << 8;
1503
	if (global.no_turbo && !global.turbo_disabled)
1504 1505
		val |= (u64)1 << 32;

1506
	return val;
1507 1508
}

1509 1510 1511 1512 1513
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1514
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1515 1516 1517 1518 1519 1520 1521
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1533
		.get_max_physical = core_get_max_pstate_physical,
1534 1535
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1536
		.get_scaling = core_get_scaling,
1537
		.get_val = core_get_val,
1538
		.get_target_pstate = get_target_pstate_use_performance,
1539 1540 1541
	},
};

1542
static const struct cpu_defaults silvermont_params = {
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1556
		.get_val = atom_get_val,
1557 1558
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1559
		.get_target_pstate = get_target_pstate_use_cpu_load,
1560 1561 1562
	},
};

1563
static const struct cpu_defaults airmont_params = {
1564 1565 1566
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1567
		.setpoint = 60,
1568 1569 1570 1571 1572
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1573 1574 1575 1576
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1577
		.get_val = atom_get_val,
1578
		.get_scaling = airmont_get_scaling,
1579
		.get_vid = atom_get_vid,
1580
		.get_target_pstate = get_target_pstate_use_cpu_load,
1581 1582 1583
	},
};

1584
static const struct cpu_defaults knl_params = {
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1595
		.get_max_physical = core_get_max_pstate_physical,
1596 1597
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1598
		.get_scaling = core_get_scaling,
1599
		.get_val = core_get_val,
1600
		.get_target_pstate = get_target_pstate_use_performance,
1601 1602 1603
	},
};

1604
static const struct cpu_defaults bxt_params = {
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1624 1625 1626
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1627
	int max_perf_adj;
1628
	int min_perf;
1629

1630
	if (global.no_turbo || global.turbo_disabled)
1631 1632
		max_perf = cpu->pstate.max_pstate;

1633 1634 1635 1636 1637
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1638
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1639 1640
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1641

1642
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1643
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1644 1645
}

1646
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1647
{
1648 1649
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1650 1651 1652 1653 1654 1655 1656
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1673 1674
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1675 1676
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1677
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1678
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1679
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1680 1681
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1682

1683 1684
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1685 1686

	intel_pstate_set_min_pstate(cpu);
1687 1688
}

1689
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1690
{
1691
	struct sample *sample = &cpu->sample;
1692

1693
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1694 1695
}

1696
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1697 1698
{
	u64 aperf, mperf;
1699
	unsigned long flags;
1700
	u64 tsc;
1701

1702
	local_irq_save(flags);
1703 1704
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1705
	tsc = rdtsc();
1706
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1707
		local_irq_restore(flags);
1708
		return false;
1709
	}
1710
	local_irq_restore(flags);
1711

1712
	cpu->last_sample_time = cpu->sample.time;
1713
	cpu->sample.time = time;
1714 1715
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1716
	cpu->sample.tsc =  tsc;
1717 1718
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1719
	cpu->sample.tsc -= cpu->prev_tsc;
1720

1721 1722
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1723
	cpu->prev_tsc = tsc;
1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1732 1733
}

1734 1735
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1736 1737
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1738 1739
}

1740 1741
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1742 1743
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1744 1745
}

1746 1747 1748
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1749
	int32_t busy_frac, boost;
1750
	int target, avg_pstate;
1751

1752
	busy_frac = div_fp(sample->mperf, sample->tsc);
1753

1754 1755
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1756

1757 1758
	if (busy_frac < boost)
		busy_frac = boost;
1759

1760
	sample->busy_scaled = busy_frac * 100;
1761

1762
	target = global.no_turbo || global.turbo_disabled ?
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1781 1782
}

1783
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1784
{
1785
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1786
	u64 duration_ns;
1787

1788
	/*
1789 1790 1791 1792 1793
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1794
	 */
1795 1796
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1797
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1798
			       div_fp(100 * max_pstate, current_pstate));
1799

1800
	/*
1801 1802 1803
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1804
	 * enough period of time to adjust our performance metric.
1805
	 */
1806
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1807
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1808
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1809
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1810 1811 1812
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1813
			perf_scaled = 0;
1814 1815
	}

1816 1817
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1818 1819
}

1820
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1821 1822 1823 1824 1825
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1826 1827 1828 1829 1830
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1831 1832 1833
	if (pstate == cpu->pstate.current_pstate)
		return;

1834
	cpu->pstate.current_pstate = pstate;
1835 1836 1837
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1838 1839
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1840
	int from, target_pstate;
1841 1842 1843
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1844

1845 1846
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1847

1848 1849
	update_turbo_state();

1850 1851
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1852
	intel_pstate_update_pstate(cpu, target_pstate);
1853 1854

	sample = &cpu->sample;
1855
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1856
		fp_toint(sample->busy_scaled),
1857 1858 1859 1860 1861
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1862 1863
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1864 1865
}

1866
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1867
				     unsigned int flags)
1868
{
1869
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1870 1871
	u64 delta_ns;

1872
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1883

1884
	delta_ns = time - cpu->sample.time;
1885
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1886 1887
		bool sample_taken = intel_pstate_sample(cpu, time);

1888
		if (sample_taken) {
1889
			intel_pstate_calc_avg_perf(cpu);
1890 1891 1892
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1893
	}
1894 1895 1896
}

#define ICPU(model, policy) \
1897 1898
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1899 1900

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1918
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1919
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1920 1921 1922 1923
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1924
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1925
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1926 1927
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1928 1929 1930
	{}
};

1931 1932 1933 1934 1935
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1936 1937 1938 1939
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1940 1941 1942
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1943
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1944 1945 1946 1947 1948
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1949 1950 1951
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1952
	}
1953 1954 1955 1956

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1957

1958
	if (hwp_active) {
1959 1960 1961 1962 1963 1964
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1965
		intel_pstate_hwp_enable(cpu);
1966 1967 1968
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1969

1970
	intel_pstate_get_cpu_pstates(cpu);
1971

1972 1973
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1974
	pr_debug("controlling: cpu %d\n", cpunum);
1975 1976 1977 1978 1979 1980

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1981
	struct cpudata *cpu = all_cpu_data[cpu_num];
1982

1983
	return cpu ? get_avg_frequency(cpu) : 0;
1984 1985
}

1986
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1987
{
1988 1989
	struct cpudata *cpu = all_cpu_data[cpu_num];

1990 1991 1992
	if (cpu->update_util_set)
		return;

1993 1994
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1995 1996
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1997
	cpu->update_util_set = true;
1998 1999 2000 2001
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2002 2003 2004 2005 2006
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2007
	cpufreq_remove_update_util_hook(cpu);
2008
	cpu_data->update_util_set = false;
2009 2010 2011
	synchronize_sched();
}

2012 2013 2014 2015 2016 2017
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

2018
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2019
					    struct cpudata *cpu)
2020
{
2021
	int max_freq = intel_pstate_get_max_freq(cpu);
2022
	int32_t max_policy_perf, min_policy_perf;
2023

2024
	max_policy_perf = div_ext_fp(policy->max, max_freq);
2025
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2026
	if (policy->max == policy->min) {
2027
		min_policy_perf = max_policy_perf;
2028
	} else {
2029
		min_policy_perf = div_ext_fp(policy->min, max_freq);
2030 2031
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2032
	}
2033

2034
	/* Normalize user input to [min_perf, max_perf] */
2035
	if (per_cpu_limits) {
2036 2037
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
2038 2039 2040 2041 2042 2043
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2044
		if (max_freq != cpu->pstate.turbo_freq) {
2045 2046 2047 2048 2049 2050 2051 2052
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2053

2054 2055 2056 2057
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2058 2059

		/* Make sure min_perf <= max_perf */
2060
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2061
	}
2062

2063 2064
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2065 2066

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2067 2068
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2069 2070
}

2071 2072
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2073 2074
	struct cpudata *cpu;

2075 2076 2077
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2078 2079 2080
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2081
	cpu = all_cpu_data[policy->cpu];
2082 2083
	cpu->policy = policy->policy;

2084 2085
	mutex_lock(&intel_pstate_limits_lock);

2086
	intel_pstate_update_perf_limits(policy, cpu);
2087

2088
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2089 2090 2091 2092 2093 2094 2095 2096
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2097 2098
	intel_pstate_set_update_util_hook(policy->cpu);

2099 2100
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2101

2102 2103
	mutex_unlock(&intel_pstate_limits_lock);

2104 2105 2106
	return 0;
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2118 2119
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2120 2121 2122
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2123 2124
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2125

2126
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2127
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2128 2129
		return -EINVAL;

2130 2131
	intel_pstate_adjust_policy_max(policy, cpu);

2132 2133 2134
	return 0;
}

2135 2136 2137 2138 2139
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2140
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2141
{
2142
	pr_debug("CPU %d exiting\n", policy->cpu);
2143

2144
	intel_pstate_clear_update_util_hook(policy->cpu);
2145 2146 2147
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2148 2149
		intel_cpufreq_stop_cpu(policy);
}
2150

2151 2152 2153
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2154

2155
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2156

2157
	return 0;
2158 2159
}

2160
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2161 2162
{
	struct cpudata *cpu;
2163
	int rc;
2164 2165 2166 2167 2168 2169 2170

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2171 2172
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2173

2174 2175
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2176 2177

	/* cpuinfo and default policy values */
2178
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2179
	update_turbo_state();
2180
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2181 2182 2183
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2184
	intel_pstate_init_acpi_perf_limits(policy);
2185 2186
	cpumask_set_cpu(policy->cpu, policy->cpus);

2187 2188
	policy->fast_switch_possible = true;

2189 2190 2191
	return 0;
}

2192
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2193
{
2194 2195 2196 2197 2198 2199
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2200
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2201 2202 2203
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2204 2205 2206 2207

	return 0;
}

2208
static struct cpufreq_driver intel_pstate = {
2209 2210 2211
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2212
	.suspend	= intel_pstate_hwp_save_state,
2213
	.resume		= intel_pstate_resume,
2214 2215
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2216
	.exit		= intel_pstate_cpu_exit,
2217
	.stop_cpu	= intel_pstate_stop_cpu,
2218 2219 2220
	.name		= "intel_pstate",
};

2221 2222 2223 2224 2225
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2226 2227
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2228

2229
	intel_pstate_adjust_policy_max(policy, cpu);
2230

2231 2232
	intel_pstate_update_perf_limits(policy, cpu);

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2244 2245
	update_turbo_state();

2246
	freqs.old = policy->cur;
2247
	freqs.new = target_freq;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2267
	freqs.new = target_pstate * cpu->pstate.scaling;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2279 2280
	update_turbo_state();

2281
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2282
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2283
	intel_pstate_update_pstate(cpu, target_pstate);
2284
	return target_pstate * cpu->pstate.scaling;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2335 2336
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2337

2338 2339 2340 2341 2342 2343
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2344 2345
	global.min_perf_pct = min_perf_pct_min();

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2424 2425 2426
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2427
static unsigned int force_load __initdata;
2428

2429
static int __init intel_pstate_msrs_not_valid(void)
2430
{
2431
	if (!pstate_funcs.get_max() ||
2432 2433
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2434 2435 2436 2437
		return -ENODEV;

	return 0;
}
2438

2439
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2440 2441
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2442
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2443 2444 2445 2446 2447 2448 2449
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2450 2451 2452
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2453 2454 2455 2456 2457 2458
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2459 2460
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
2461
	}
2462 2463 2464 2465 2466 2467 2468
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2469
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2470 2471
{
	pstate_funcs.get_max   = funcs->get_max;
2472
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2473 2474
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2475
	pstate_funcs.get_scaling = funcs->get_scaling;
2476
	pstate_funcs.get_val   = funcs->get_val;
2477
	pstate_funcs.get_vid   = funcs->get_vid;
2478 2479
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2480
	intel_pstate_use_acpi_profile();
2481 2482
}

2483
#ifdef CONFIG_ACPI
2484

2485
static bool __init intel_pstate_no_acpi_pss(void)
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2514
static bool __init intel_pstate_has_acpi_ppc(void)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2534 2535 2536 2537
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2538
	int  oem_pwr_table;
2539 2540 2541
};

/* Hardware vendor-specific info that has its own power management modes */
2542
static struct hw_vendor_info vendor_info[] __initdata = {
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2554 2555 2556 2557
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2558 2559 2560
	{0, "", ""},
};

2561
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2562 2563 2564
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2574

2575 2576
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2577 2578 2579
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2580
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2581 2582 2583 2584 2585 2586
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2587 2588
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2589
			}
2590 2591 2592 2593
	}

	return false;
}
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2604 2605
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2606
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2607
static inline void intel_pstate_request_control_from_smm(void) {}
2608 2609
#endif /* CONFIG_ACPI */

2610 2611 2612 2613 2614
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2615 2616
static int __init intel_pstate_init(void)
{
2617
	int rc;
2618

2619 2620 2621
	if (no_load)
		return -ENODEV;

2622
	if (x86_match_cpu(hwp_support_ids)) {
2623
		copy_cpu_funcs(&core_params.funcs);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		if (no_hwp) {
			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2634

2635 2636 2637
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2638

2639
		cpu_def = (struct cpu_defaults *)id->driver_data;
2640

2641 2642 2643
		copy_pid_params(&cpu_def->pid_policy);
		copy_cpu_funcs(&cpu_def->funcs);
	}
2644

2645 2646 2647
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2648 2649 2650 2651 2652 2653 2654 2655
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2656 2657 2658
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2659
	pr_info("Intel P-state driver initializing\n");
2660

2661
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2662 2663 2664
	if (!all_cpu_data)
		return -ENOMEM;

2665 2666
	intel_pstate_request_control_from_smm();

2667
	intel_pstate_sysfs_expose_params();
2668

2669
	mutex_lock(&intel_pstate_driver_lock);
2670
	rc = intel_pstate_register_driver();
2671
	mutex_unlock(&intel_pstate_driver_lock);
2672 2673
	if (rc)
		return rc;
2674

2675
	if (hwp_active)
J
Joe Perches 已提交
2676
		pr_info("HWP enabled\n");
2677

2678
	return 0;
2679 2680 2681
}
device_initcall(intel_pstate_init);

2682 2683 2684 2685 2686
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2687
	if (!strcmp(str, "disable")) {
2688
		no_load = 1;
2689 2690 2691 2692 2693
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2694
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2695
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2696
		no_hwp = 1;
2697
	}
2698 2699
	if (!strcmp(str, "force"))
		force_load = 1;
2700 2701
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2702 2703
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2704 2705 2706 2707 2708 2709

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2710 2711 2712 2713
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2714 2715 2716
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");