migrate.c 76.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2
/*
3
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
4 5 6 7 8 9 10 11 12
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
13
 * Christoph Lameter
C
Christoph Lameter 已提交
14 15 16
 */

#include <linux/migrate.h>
17
#include <linux/export.h>
C
Christoph Lameter 已提交
18
#include <linux/swap.h>
19
#include <linux/swapops.h>
C
Christoph Lameter 已提交
20
#include <linux/pagemap.h>
21
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
22
#include <linux/mm_inline.h>
23
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
24
#include <linux/pagevec.h>
25
#include <linux/ksm.h>
C
Christoph Lameter 已提交
26 27 28 29
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
30
#include <linux/writeback.h>
31 32
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
33
#include <linux/security.h>
34
#include <linux/backing-dev.h>
35
#include <linux/compaction.h>
36
#include <linux/syscalls.h>
37
#include <linux/compat.h>
N
Naoya Horiguchi 已提交
38
#include <linux/hugetlb.h>
39
#include <linux/hugetlb_cgroup.h>
40
#include <linux/gfp.h>
41
#include <linux/pfn_t.h>
42
#include <linux/memremap.h>
43
#include <linux/userfaultfd_k.h>
44
#include <linux/balloon_compaction.h>
45
#include <linux/mmu_notifier.h>
46
#include <linux/page_idle.h>
47
#include <linux/page_owner.h>
48
#include <linux/sched/mm.h>
49
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
50

51 52
#include <asm/tlbflush.h>

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
56 57 58
#include "internal.h"

/*
59
 * migrate_prep() needs to be called before we start compiling a list of pages
60 61
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

76 77 78 79 80 81 82 83
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

84
int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

135
	return 0;
136 137 138 139 140 141

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
142
	return -EBUSY;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

159 160 161 162
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
163 164 165
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
166 167 168 169 170 171
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
172
	list_for_each_entry_safe(page, page2, l, lru) {
173 174 175 176
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
177
		list_del(&page->lru);
178 179 180 181 182
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
183
		if (unlikely(__PageMovable(page))) {
184 185 186 187 188 189 190 191 192
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
193 194
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
195
			putback_lru_page(page);
196
		}
C
Christoph Lameter 已提交
197 198 199
	}
}

200 201 202
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
203
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204
				 unsigned long addr, void *old)
205
{
206 207 208 209 210 211 212 213
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
214 215
	swp_entry_t entry;

216 217
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
218 219 220 221 222
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
223

224 225 226 227 228 229 230 231 232
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

233 234 235 236
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
237

238 239 240 241 242 243
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
244

245 246 247 248 249 250 251 252
		if (unlikely(is_zone_device_page(new))) {
			if (is_device_private_page(new)) {
				entry = make_device_private_entry(new, pte_write(pte));
				pte = swp_entry_to_pte(entry);
			} else if (is_device_public_page(new)) {
				pte = pte_mkdevmap(pte);
				flush_dcache_page(new);
			}
253 254 255
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
256
#ifdef CONFIG_HUGETLB_PAGE
257 258 259
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
260
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 262 263 264
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
265 266 267 268
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269

270 271 272 273 274
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
275 276 277
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

278 279 280
		if (PageTransHuge(page) && PageMlocked(page))
			clear_page_mlock(page);

281 282 283
		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
284

M
Minchan Kim 已提交
285
	return true;
286 287
}

288 289 290 291
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
292
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293
{
294 295 296 297 298
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

299 300 301 302
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
303 304
}

305 306 307 308 309
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
310
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311
				spinlock_t *ptl)
312
{
313
	pte_t pte;
314 315 316
	swp_entry_t entry;
	struct page *page;

317
	spin_lock(ptl);
318 319 320 321 322 323 324 325 326 327
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
328
	/*
329
	 * Once page cache replacement of page migration started, page_count
330 331
	 * is zero; but we must not call put_and_wait_on_page_locked() without
	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
N
Nick Piggin 已提交
332 333 334
	 */
	if (!get_page_unless_zero(page))
		goto out;
335
	pte_unmap_unlock(ptep, ptl);
336
	put_and_wait_on_page_locked(page);
337 338 339 340 341
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

342 343 344 345 346 347 348 349
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

350 351
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
352
{
353
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 355 356
	__migration_entry_wait(mm, pte, ptl);
}

357 358 359 360 361 362 363 364 365 366 367 368 369
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
370
	put_and_wait_on_page_locked(page);
371 372 373 374 375 376
	return;
unlock:
	spin_unlock(ptl);
}
#endif

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static int expected_page_refs(struct page *page)
{
	int expected_count = 1;

	/*
	 * Device public or private pages have an extra refcount as they are
	 * ZONE_DEVICE pages.
	 */
	expected_count += is_device_private_page(page);
	expected_count += is_device_public_page(page);
	if (page_mapping(page))
		expected_count += hpage_nr_pages(page) + page_has_private(page);

	return expected_count;
}

C
Christoph Lameter 已提交
393
/*
394
 * Replace the page in the mapping.
395 396 397 398
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
399
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
400
 */
401
int migrate_page_move_mapping(struct address_space *mapping,
402
		struct page *newpage, struct page *page, enum migrate_mode mode,
403
		int extra_count)
C
Christoph Lameter 已提交
404
{
405
	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 407
	struct zone *oldzone, *newzone;
	int dirty;
408
	int expected_count = expected_page_refs(page) + extra_count;
409

410
	if (!mapping) {
411
		/* Anonymous page without mapping */
412
		if (page_count(page) != expected_count)
413
			return -EAGAIN;
414 415 416 417 418

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
419
			__SetPageSwapBacked(newpage);
420

421
		return MIGRATEPAGE_SUCCESS;
422 423
	}

424 425 426
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

427 428 429
	xas_lock_irq(&xas);
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
430
		return -EAGAIN;
C
Christoph Lameter 已提交
431 432
	}

433
	if (!page_ref_freeze(page, expected_count)) {
434
		xas_unlock_irq(&xas);
N
Nick Piggin 已提交
435 436 437
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
438
	/*
439 440
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
441
	 */
442 443
	newpage->index = page->index;
	newpage->mapping = page->mapping;
444
	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 446 447 448 449 450 451 452
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
453 454
	}

455 456 457 458 459 460 461
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

462
	xas_store(&xas, newpage);
463 464 465
	if (PageTransHuge(page)) {
		int i;

466
		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 468
			xas_next(&xas);
			xas_store(&xas, newpage + i);
469 470
		}
	}
471 472

	/*
473 474
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
475 476
	 * We know this isn't the last reference.
	 */
477
	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478

479
	xas_unlock(&xas);
480 481
	/* Leave irq disabled to prevent preemption while updating stats */

482 483 484 485 486 487 488
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
489
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 491
	 * are mapped to swap space.
	 */
492
	if (newzone != oldzone) {
493 494
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 497
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 499
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
500
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504
		}
505
	}
506
	local_irq_enable();
C
Christoph Lameter 已提交
507

508
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
509
}
510
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
511

N
Naoya Horiguchi 已提交
512 513 514 515 516 517 518
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
519
	XA_STATE(xas, &mapping->i_pages, page_index(page));
N
Naoya Horiguchi 已提交
520 521
	int expected_count;

522
	xas_lock_irq(&xas);
N
Naoya Horiguchi 已提交
523
	expected_count = 2 + page_has_private(page);
524 525
	if (page_count(page) != expected_count || xas_load(&xas) != page) {
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
526 527 528
		return -EAGAIN;
	}

529
	if (!page_ref_freeze(page, expected_count)) {
530
		xas_unlock_irq(&xas);
N
Naoya Horiguchi 已提交
531 532 533
		return -EAGAIN;
	}

534 535
	newpage->index = page->index;
	newpage->mapping = page->mapping;
536

N
Naoya Horiguchi 已提交
537 538
	get_page(newpage);

539
	xas_store(&xas, newpage);
N
Naoya Horiguchi 已提交
540

541
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
542

543
	xas_unlock_irq(&xas);
544

545
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
546 547
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
596 597 598
/*
 * Copy the page to its new location
 */
599
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
600
{
601 602
	int cpupid;

C
Christoph Lameter 已提交
603 604 605 606 607 608
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
609
	if (TestClearPageActive(page)) {
610
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
611
		SetPageActive(newpage);
612 613
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
614 615
	if (PageWorkingset(page))
		SetPageWorkingset(newpage);
C
Christoph Lameter 已提交
616 617 618 619 620
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

621 622 623
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
624

625 626 627 628 629
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

630 631 632 633 634 635 636
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

637
	ksm_migrate_page(newpage, page);
638 639 640 641
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
642 643
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
644 645 646 647 648 649 650 651 652
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
653 654

	copy_page_owner(page, newpage);
655 656

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
657
}
658 659 660 661 662 663 664 665 666 667 668
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
669
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
670

671 672 673 674
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
675
/*
676
 * Common logic to directly migrate a single LRU page suitable for
677
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
678 679 680
 *
 * Pages are locked upon entry and exit.
 */
681
int migrate_page(struct address_space *mapping,
682 683
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
684 685 686 687 688
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

689
	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
C
Christoph Lameter 已提交
690

691
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
692 693
		return rc;

694 695 696 697
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
698
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
699 700 701
}
EXPORT_SYMBOL(migrate_page);

702
#ifdef CONFIG_BLOCK
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/* Returns true if all buffers are successfully locked */
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
	if (mode != MIGRATE_ASYNC) {
		do {
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}

741 742 743
static int __buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode,
		bool check_refs)
744 745 746
{
	struct buffer_head *bh, *head;
	int rc;
747
	int expected_count;
748 749

	if (!page_has_buffers(page))
750
		return migrate_page(mapping, newpage, page, mode);
751

752 753 754 755
	/* Check whether page does not have extra refs before we do more work */
	expected_count = expected_page_refs(page);
	if (page_count(page) != expected_count)
		return -EAGAIN;
756

757 758 759
	head = page_buffers(page);
	if (!buffer_migrate_lock_buffers(head, mode))
		return -EAGAIN;
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (check_refs) {
		bool busy;
		bool invalidated = false;

recheck_buffers:
		busy = false;
		spin_lock(&mapping->private_lock);
		bh = head;
		do {
			if (atomic_read(&bh->b_count)) {
				busy = true;
				break;
			}
			bh = bh->b_this_page;
		} while (bh != head);
		spin_unlock(&mapping->private_lock);
		if (busy) {
			if (invalidated) {
				rc = -EAGAIN;
				goto unlock_buffers;
			}
			invalidate_bh_lrus();
			invalidated = true;
			goto recheck_buffers;
		}
	}

788
	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
789
	if (rc != MIGRATEPAGE_SUCCESS)
790
		goto unlock_buffers;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

807 808 809 810
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
811

812 813
	rc = MIGRATEPAGE_SUCCESS;
unlock_buffers:
814 815 816 817 818 819 820
	bh = head;
	do {
		unlock_buffer(bh);
		bh = bh->b_this_page;

	} while (bh != head);

821
	return rc;
822
}
823 824 825 826 827 828 829 830 831 832 833

/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist. For example attached buffer heads are accessed only under page lock.
 */
int buffer_migrate_page(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, false);
}
834
EXPORT_SYMBOL(buffer_migrate_page);
835 836 837 838 839 840 841 842 843 844 845 846

/*
 * Same as above except that this variant is more careful and checks that there
 * are also no buffer head references. This function is the right one for
 * mappings where buffer heads are directly looked up and referenced (such as
 * block device mappings).
 */
int buffer_migrate_page_norefs(struct address_space *mapping,
		struct page *newpage, struct page *page, enum migrate_mode mode)
{
	return __buffer_migrate_page(mapping, newpage, page, mode, true);
}
847
#endif
848

849 850 851 852
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
853
{
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

871
	/*
872 873 874 875 876 877
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
878
	 */
879
	remove_migration_ptes(page, page, false);
880

881
	rc = mapping->a_ops->writepage(page, &wbc);
882

883 884 885 886
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
887
	return (rc < 0) ? -EIO : -EAGAIN;
888 889 890 891 892 893
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
894
	struct page *newpage, struct page *page, enum migrate_mode mode)
895
{
896
	if (PageDirty(page)) {
897
		/* Only writeback pages in full synchronous migration */
898 899 900 901 902
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
903
			return -EBUSY;
904
		}
905
		return writeout(mapping, page);
906
	}
907 908 909 910 911

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
912
	if (page_has_private(page) &&
913 914 915
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

916
	return migrate_page(mapping, newpage, page, mode);
917 918
}

919 920 921 922 923 924
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
925 926 927
 *
 * Return value:
 *   < 0 - error code
928
 *  MIGRATEPAGE_SUCCESS - success
929
 */
930
static int move_to_new_page(struct page *newpage, struct page *page,
931
				enum migrate_mode mode)
932 933
{
	struct address_space *mapping;
934 935
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
936

937 938
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
939 940

	mapping = page_mapping(page);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
959
		/*
960 961
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
962
		 */
963 964 965 966 967 968 969 970 971 972 973 974
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
975

976 977 978 979 980
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
997
			page->mapping = NULL;
998
	}
999
out:
1000 1001 1002
	return rc;
}

1003
static int __unmap_and_move(struct page *page, struct page *newpage,
1004
				int force, enum migrate_mode mode)
1005
{
1006
	int rc = -EAGAIN;
1007
	int page_was_mapped = 0;
1008
	struct anon_vma *anon_vma = NULL;
1009
	bool is_lru = !__PageMovable(page);
1010

N
Nick Piggin 已提交
1011
	if (!trylock_page(page)) {
1012
		if (!force || mode == MIGRATE_ASYNC)
1013
			goto out;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
1029
			goto out;
1030

1031 1032 1033 1034
		lock_page(page);
	}

	if (PageWriteback(page)) {
1035
		/*
1036
		 * Only in the case of a full synchronous migration is it
1037 1038 1039
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1040
		 */
1041 1042 1043 1044 1045
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1046
			rc = -EBUSY;
1047
			goto out_unlock;
1048 1049
		}
		if (!force)
1050
			goto out_unlock;
1051 1052
		wait_on_page_writeback(page);
	}
1053

1054
	/*
1055 1056
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1057
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1058
	 * of migration. File cache pages are no problem because of page_lock()
1059 1060
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1061 1062 1063 1064 1065 1066
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1067
	 */
1068
	if (PageAnon(page) && !PageKsm(page))
1069
		anon_vma = page_get_anon_vma(page);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1082 1083 1084 1085 1086
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1087
	/*
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1098
	 */
1099
	if (!page->mapping) {
1100
		VM_BUG_ON_PAGE(PageAnon(page), page);
1101
		if (page_has_private(page)) {
1102
			try_to_free_buffers(page);
1103
			goto out_unlock_both;
1104
		}
1105 1106
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1107 1108
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1109
		try_to_unmap(page,
1110
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111 1112
		page_was_mapped = 1;
	}
1113

1114
	if (!page_mapped(page))
1115
		rc = move_to_new_page(newpage, page, mode);
1116

1117 1118
	if (page_was_mapped)
		remove_migration_ptes(page,
1119
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120

1121 1122 1123
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1124
	/* Drop an anon_vma reference if we took one */
1125
	if (anon_vma)
1126
		put_anon_vma(anon_vma);
1127
	unlock_page(page);
1128
out:
1129 1130 1131 1132
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
1133 1134 1135 1136
	 * list in here. Use the old state of the isolated source page to
	 * determine if we migrated a LRU page. newpage was already unlocked
	 * and possibly modified by its owner - don't rely on the page
	 * state.
1137 1138
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1139
		if (unlikely(!is_lru))
1140 1141 1142 1143 1144
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1145 1146
	return rc;
}
1147

1148 1149 1150 1151
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
1152 1153
#if defined(CONFIG_ARM) && \
	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154 1155 1156 1157 1158
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1159 1160 1161 1162
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1163 1164 1165
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1166 1167
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1168
{
1169 1170
	int rc = MIGRATEPAGE_SUCCESS;
	struct page *newpage;
1171

M
Michal Hocko 已提交
1172 1173 1174
	if (!thp_migration_supported() && PageTransHuge(page))
		return -ENOMEM;

1175
	newpage = get_new_page(page, private);
1176 1177 1178 1179 1180
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1181 1182
		ClearPageActive(page);
		ClearPageUnevictable(page);
1183 1184 1185 1186 1187 1188
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1189 1190 1191 1192
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1193 1194 1195
		goto out;
	}

1196
	rc = __unmap_and_move(page, newpage, force, mode);
1197
	if (rc == MIGRATEPAGE_SUCCESS)
1198
		set_page_owner_migrate_reason(newpage, reason);
1199

1200
out:
1201
	if (rc != -EAGAIN) {
1202 1203 1204 1205 1206 1207 1208
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1209 1210 1211 1212 1213 1214 1215

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1216 1217
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1228
			/*
1229 1230 1231
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1232
			 */
1233
			if (set_hwpoison_free_buddy_page(page))
1234
				num_poisoned_pages_inc();
1235 1236
		}
	} else {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1252 1253 1254 1255
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1256
	}
1257

1258 1259 1260
	return rc;
}

N
Naoya Horiguchi 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1280 1281
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1282
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1283
{
1284
	int rc = -EAGAIN;
1285
	int page_was_mapped = 0;
1286
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1287 1288
	struct anon_vma *anon_vma = NULL;

1289 1290 1291 1292 1293 1294 1295
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1296
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1297
		putback_active_hugepage(hpage);
1298
		return -ENOSYS;
1299
	}
1300

1301
	new_hpage = get_new_page(hpage, private);
N
Naoya Horiguchi 已提交
1302 1303 1304 1305
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1306
		if (!force)
N
Naoya Horiguchi 已提交
1307
			goto out;
1308 1309 1310 1311 1312 1313 1314
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1315 1316 1317
		lock_page(hpage);
	}

1318 1319
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1320

1321 1322 1323
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1324 1325
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
1326
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1327 1328
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1329 1330

	if (!page_mapped(hpage))
1331
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1332

1333 1334
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1335
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1336

1337 1338 1339
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1340
	if (anon_vma)
1341
		put_anon_vma(anon_vma);
1342

1343
	if (rc == MIGRATEPAGE_SUCCESS) {
1344
		move_hugetlb_state(hpage, new_hpage, reason);
1345 1346
		put_new_page = NULL;
	}
1347

N
Naoya Horiguchi 已提交
1348
	unlock_page(hpage);
1349
out:
1350 1351
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1352 1353 1354 1355 1356 1357

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1358
	if (put_new_page)
1359 1360
		put_new_page(new_hpage, private);
	else
1361
		putback_active_hugepage(new_hpage);
1362

N
Naoya Horiguchi 已提交
1363 1364 1365
	return rc;
}

C
Christoph Lameter 已提交
1366
/*
1367 1368
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1369
 *
1370 1371 1372
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1373 1374
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1375 1376 1377 1378
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1379
 *
1380 1381
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1382
 * The caller should call putback_movable_pages() to return pages to the LRU
1383
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1384
 *
1385
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1386
 */
1387
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1388 1389
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1390
{
1391
	int retry = 1;
C
Christoph Lameter 已提交
1392
	int nr_failed = 0;
1393
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1403 1404
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1405

1406
		list_for_each_entry_safe(page, page2, from, lru) {
M
Michal Hocko 已提交
1407
retry:
1408
			cond_resched();
1409

1410 1411
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1412
						put_new_page, private, page,
1413
						pass > 2, mode, reason);
1414
			else
1415
				rc = unmap_and_move(get_new_page, put_new_page,
1416 1417
						private, page, pass > 2, mode,
						reason);
1418

1419
			switch(rc) {
1420
			case -ENOMEM:
M
Michal Hocko 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
				/*
				 * THP migration might be unsupported or the
				 * allocation could've failed so we should
				 * retry on the same page with the THP split
				 * to base pages.
				 *
				 * Head page is retried immediately and tail
				 * pages are added to the tail of the list so
				 * we encounter them after the rest of the list
				 * is processed.
				 */
1432
				if (PageTransHuge(page) && !PageHuge(page)) {
M
Michal Hocko 已提交
1433 1434 1435 1436 1437 1438 1439 1440
					lock_page(page);
					rc = split_huge_page_to_list(page, from);
					unlock_page(page);
					if (!rc) {
						list_safe_reset_next(page, page2, lru);
						goto retry;
					}
				}
1441
				nr_failed++;
1442
				goto out;
1443
			case -EAGAIN:
1444
				retry++;
1445
				break;
1446
			case MIGRATEPAGE_SUCCESS:
1447
				nr_succeeded++;
1448 1449
				break;
			default:
1450 1451 1452 1453 1454 1455
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1456
				nr_failed++;
1457
				break;
1458
			}
C
Christoph Lameter 已提交
1459 1460
		}
	}
1461 1462
	nr_failed += retry;
	rc = nr_failed;
1463
out:
1464 1465 1466 1467
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1468 1469
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1470 1471 1472
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1473
	return rc;
C
Christoph Lameter 已提交
1474
}
1475

1476 1477
#ifdef CONFIG_NUMA

M
Michal Hocko 已提交
1478
static int store_status(int __user *status, int start, int value, int nr)
1479
{
M
Michal Hocko 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	while (nr-- > 0) {
		if (put_user(value, status + start))
			return -EFAULT;
		start++;
	}

	return 0;
}

static int do_move_pages_to_node(struct mm_struct *mm,
		struct list_head *pagelist, int node)
{
	int err;

	if (list_empty(pagelist))
		return 0;

	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
			MIGRATE_SYNC, MR_SYSCALL);
	if (err)
		putback_movable_pages(pagelist);
	return err;
1502 1503 1504
}

/*
M
Michal Hocko 已提交
1505 1506 1507 1508 1509
 * Resolves the given address to a struct page, isolates it from the LRU and
 * puts it to the given pagelist.
 * Returns -errno if the page cannot be found/isolated or 0 when it has been
 * queued or the page doesn't need to be migrated because it is already on
 * the target node
1510
 */
M
Michal Hocko 已提交
1511 1512
static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
		int node, struct list_head *pagelist, bool migrate_all)
1513
{
M
Michal Hocko 已提交
1514 1515 1516
	struct vm_area_struct *vma;
	struct page *page;
	unsigned int follflags;
1517 1518 1519
	int err;

	down_read(&mm->mmap_sem);
M
Michal Hocko 已提交
1520 1521 1522 1523
	err = -EFAULT;
	vma = find_vma(mm, addr);
	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
		goto out;
1524

M
Michal Hocko 已提交
1525 1526 1527
	/* FOLL_DUMP to ignore special (like zero) pages */
	follflags = FOLL_GET | FOLL_DUMP;
	page = follow_page(vma, addr, follflags);
1528

M
Michal Hocko 已提交
1529 1530 1531
	err = PTR_ERR(page);
	if (IS_ERR(page))
		goto out;
1532

M
Michal Hocko 已提交
1533 1534 1535
	err = -ENOENT;
	if (!page)
		goto out;
1536

M
Michal Hocko 已提交
1537 1538 1539
	err = 0;
	if (page_to_nid(page) == node)
		goto out_putpage;
1540

M
Michal Hocko 已提交
1541 1542 1543
	err = -EACCES;
	if (page_mapcount(page) > 1 && !migrate_all)
		goto out_putpage;
1544

M
Michal Hocko 已提交
1545 1546 1547 1548
	if (PageHuge(page)) {
		if (PageHead(page)) {
			isolate_huge_page(page, pagelist);
			err = 0;
1549
		}
M
Michal Hocko 已提交
1550 1551
	} else {
		struct page *head;
1552

1553 1554
		head = compound_head(page);
		err = isolate_lru_page(head);
1555
		if (err)
M
Michal Hocko 已提交
1556
			goto out_putpage;
1557

M
Michal Hocko 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		err = 0;
		list_add_tail(&head->lru, pagelist);
		mod_node_page_state(page_pgdat(head),
			NR_ISOLATED_ANON + page_is_file_cache(head),
			hpage_nr_pages(head));
	}
out_putpage:
	/*
	 * Either remove the duplicate refcount from
	 * isolate_lru_page() or drop the page ref if it was
	 * not isolated.
	 */
	put_page(page);
out:
1572 1573 1574 1575
	up_read(&mm->mmap_sem);
	return err;
}

1576 1577 1578 1579
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1580
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1581 1582 1583 1584 1585
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
M
Michal Hocko 已提交
1586 1587 1588 1589
	int current_node = NUMA_NO_NODE;
	LIST_HEAD(pagelist);
	int start, i;
	int err = 0, err1;
1590 1591 1592

	migrate_prep();

M
Michal Hocko 已提交
1593 1594 1595 1596
	for (i = start = 0; i < nr_pages; i++) {
		const void __user *p;
		unsigned long addr;
		int node;
1597

M
Michal Hocko 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		err = -EFAULT;
		if (get_user(p, pages + i))
			goto out_flush;
		if (get_user(node, nodes + i))
			goto out_flush;
		addr = (unsigned long)p;

		err = -ENODEV;
		if (node < 0 || node >= MAX_NUMNODES)
			goto out_flush;
		if (!node_state(node, N_MEMORY))
			goto out_flush;
1610

M
Michal Hocko 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		err = -EACCES;
		if (!node_isset(node, task_nodes))
			goto out_flush;

		if (current_node == NUMA_NO_NODE) {
			current_node = node;
			start = i;
		} else if (node != current_node) {
			err = do_move_pages_to_node(mm, &pagelist, current_node);
			if (err)
				goto out;
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
			start = i;
			current_node = node;
1627 1628
		}

M
Michal Hocko 已提交
1629 1630 1631 1632 1633 1634 1635 1636
		/*
		 * Errors in the page lookup or isolation are not fatal and we simply
		 * report them via status
		 */
		err = add_page_for_migration(mm, addr, current_node,
				&pagelist, flags & MPOL_MF_MOVE_ALL);
		if (!err)
			continue;
1637

M
Michal Hocko 已提交
1638 1639 1640
		err = store_status(status, i, err, 1);
		if (err)
			goto out_flush;
1641

M
Michal Hocko 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
		err = do_move_pages_to_node(mm, &pagelist, current_node);
		if (err)
			goto out;
		if (i > start) {
			err = store_status(status, start, current_node, i - start);
			if (err)
				goto out;
		}
		current_node = NUMA_NO_NODE;
1651
	}
M
Michal Hocko 已提交
1652
out_flush:
1653 1654 1655
	if (list_empty(&pagelist))
		return err;

M
Michal Hocko 已提交
1656 1657 1658 1659 1660 1661
	/* Make sure we do not overwrite the existing error */
	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
	if (!err1)
		err1 = store_status(status, start, current_node, i - start);
	if (!err)
		err = err1;
1662 1663 1664 1665
out:
	return err;
}

1666
/*
1667
 * Determine the nodes of an array of pages and store it in an array of status.
1668
 */
1669 1670
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1671
{
1672 1673
	unsigned long i;

1674 1675
	down_read(&mm->mmap_sem);

1676
	for (i = 0; i < nr_pages; i++) {
1677
		unsigned long addr = (unsigned long)(*pages);
1678 1679
		struct vm_area_struct *vma;
		struct page *page;
1680
		int err = -EFAULT;
1681 1682

		vma = find_vma(mm, addr);
1683
		if (!vma || addr < vma->vm_start)
1684 1685
			goto set_status;

1686 1687
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1688 1689 1690 1691 1692

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1693
		err = page ? page_to_nid(page) : -ENOENT;
1694
set_status:
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1716 1717
	while (nr_pages) {
		unsigned long chunk_nr;
1718

1719 1720 1721 1722 1723 1724
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1725 1726 1727

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1728 1729
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1730

1731 1732 1733 1734 1735
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1736 1737 1738 1739 1740 1741
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1742 1743 1744 1745
static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
			     const void __user * __user *pages,
			     const int __user *nodes,
			     int __user *status, int flags)
1746 1747 1748
{
	struct task_struct *task;
	struct mm_struct *mm;
1749
	int err;
1750
	nodemask_t task_nodes;
1751 1752 1753 1754 1755 1756 1757 1758 1759

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1760
	rcu_read_lock();
1761
	task = pid ? find_task_by_vpid(pid) : current;
1762
	if (!task) {
1763
		rcu_read_unlock();
1764 1765
		return -ESRCH;
	}
1766
	get_task_struct(task);
1767 1768 1769

	/*
	 * Check if this process has the right to modify the specified
1770
	 * process. Use the regular "ptrace_may_access()" checks.
1771
	 */
1772
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1773
		rcu_read_unlock();
1774
		err = -EPERM;
1775
		goto out;
1776
	}
1777
	rcu_read_unlock();
1778

1779 1780
 	err = security_task_movememory(task);
 	if (err)
1781
		goto out;
1782

1783 1784 1785 1786
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1787 1788 1789 1790 1791 1792 1793 1794
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1795 1796 1797

	mmput(mm);
	return err;
1798 1799 1800 1801

out:
	put_task_struct(task);
	return err;
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
{
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
		       compat_uptr_t __user *, pages32,
		       const int __user *, nodes,
		       int __user *, status,
		       int, flags)
{
	const void __user * __user *pages;
	int i;

	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
	for (i = 0; i < nr_pages; i++) {
		compat_uptr_t p;

		if (get_user(p, pages32 + i) ||
			put_user(compat_ptr(p), pages + i))
			return -EFAULT;
	}
	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
}
#endif /* CONFIG_COMPAT */

1834 1835 1836 1837 1838 1839
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1840
				   unsigned long nr_migrate_pages)
1841 1842
{
	int z;
M
Mel Gorman 已提交
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
1862
					   unsigned long data)
1863 1864 1865 1866
{
	int nid = (int) data;
	struct page *newpage;

1867
	newpage = __alloc_pages_node(nid,
1868 1869 1870
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1871
					 ~__GFP_RECLAIM, 0);
1872

1873 1874 1875
	return newpage;
}

1876
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1877
{
1878
	int page_lru;
1879

1880
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1881

1882
	/* Avoid migrating to a node that is nearly full */
1883 1884
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1885

1886 1887
	if (isolate_lru_page(page))
		return 0;
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1899 1900
	}

1901
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1902
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1903 1904
				hpage_nr_pages(page));

1905
	/*
1906 1907 1908
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1909 1910
	 */
	put_page(page);
1911
	return 1;
1912 1913
}

1914 1915 1916 1917 1918 1919
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1920 1921 1922 1923 1924
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1925 1926
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1927 1928
{
	pg_data_t *pgdat = NODE_DATA(node);
1929
	int isolated;
1930 1931 1932 1933
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1934 1935
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1936
	 */
1937 1938
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1939 1940
		goto out;

1941 1942 1943 1944 1945 1946 1947
	/*
	 * Also do not migrate dirty pages as not all filesystems can move
	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
	 */
	if (page_is_file_cache(page) && PageDirty(page))
		goto out;

1948 1949 1950 1951 1952
	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1953
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1954 1955
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1956
	if (nr_remaining) {
1957 1958
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1959
			dec_node_page_state(page, NR_ISOLATED_ANON +
1960 1961 1962
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1963 1964 1965
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1966 1967
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1968 1969 1970 1971

out:
	put_page(page);
	return 0;
1972
}
1973
#endif /* CONFIG_NUMA_BALANCING */
1974

1975
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1976 1977 1978 1979
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1980 1981 1982 1983 1984 1985
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1986
	spinlock_t *ptl;
1987 1988 1989 1990
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1991
	unsigned long start = address & HPAGE_PMD_MASK;
1992 1993

	new_page = alloc_pages_node(node,
1994
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1995
		HPAGE_PMD_ORDER);
1996 1997
	if (!new_page)
		goto out_fail;
1998
	prep_transhuge_page(new_page);
1999

2000
	isolated = numamigrate_isolate_page(pgdat, page);
2001
	if (!isolated) {
2002
		put_page(new_page);
2003
		goto out_fail;
2004
	}
2005

2006
	/* Prepare a page as a migration target */
2007
	__SetPageLocked(new_page);
2008 2009
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2010 2011 2012 2013

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
2014 2015
	/* flush the cache before copying using the kernel virtual address */
	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2016 2017 2018 2019
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2020
	ptl = pmd_lock(mm, pmd);
2021
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2022
		spin_unlock(ptl);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2033 2034
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2035
		putback_lru_page(page);
M
Mel Gorman 已提交
2036
		mod_node_page_state(page_pgdat(page),
2037
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2038 2039

		goto out_unlock;
2040 2041
	}

K
Kirill A. Shutemov 已提交
2042
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2043
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2044

2045
	/*
2046 2047 2048 2049 2050 2051
	 * Overwrite the old entry under pagetable lock and establish
	 * the new PTE. Any parallel GUP will either observe the old
	 * page blocking on the page lock, block on the page table
	 * lock or observe the new page. The SetPageUptodate on the
	 * new page and page_add_new_anon_rmap guarantee the copy is
	 * visible before the pagetable update.
2052
	 */
2053
	page_add_anon_rmap(new_page, vma, start, true);
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
	 * has already been flushed globally.  So no TLB can be currently
	 * caching this non present pmd mapping.  There's no need to clear the
	 * pmd before doing set_pmd_at(), nor to flush the TLB after
	 * set_pmd_at().  Clearing the pmd here would introduce a race
	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
	 * pmd.
	 */
2065
	set_pmd_at(mm, start, pmd, entry);
2066
	update_mmu_cache_pmd(vma, address, &entry);
2067

2068
	page_ref_unfreeze(page, 2);
2069
	mlock_migrate_page(new_page, page);
2070
	page_remove_rmap(page, true);
2071
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2072

2073
	spin_unlock(ptl);
2074

2075 2076 2077 2078
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2079 2080 2081 2082 2083 2084 2085 2086
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2087
	mod_node_page_state(page_pgdat(page),
2088 2089 2090 2091
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2092 2093
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2094 2095
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2096
		entry = pmd_modify(entry, vma->vm_page_prot);
2097
		set_pmd_at(mm, start, pmd, entry);
2098 2099 2100
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2101

2102
out_unlock:
2103
	unlock_page(page);
2104 2105 2106
	put_page(page);
	return 0;
}
2107 2108 2109
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2110

2111
#if defined(CONFIG_MIGRATE_VMA_HELPER)
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2129
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2130
		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2131
		migrate->dst[migrate->npages] = 0;
2132
		migrate->npages++;
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		migrate->cpages++;
	}

	return 0;
}

static int migrate_vma_collect_skip(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2162
	unsigned long addr = start, unmapped = 0;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
2184
				return migrate_vma_collect_skip(start, end,
2185 2186 2187 2188 2189 2190 2191
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
2192
				return migrate_vma_collect_skip(start, end,
2193 2194 2195 2196
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
2197 2198 2199 2200
			if (ret)
				return migrate_vma_collect_skip(start, end,
								walk);
			if (pmd_none(*pmdp))
2201 2202 2203 2204 2205 2206
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
2207
		return migrate_vma_collect_skip(start, end, walk);
2208 2209

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2210 2211
	arch_enter_lazy_mmu_mode();

2212 2213 2214
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2215
		swp_entry_t entry;
2216 2217 2218 2219 2220
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2221
		if (pte_none(pte)) {
2222 2223 2224
			mpfn = MIGRATE_PFN_MIGRATE;
			migrate->cpages++;
			pfn = 0;
2225 2226 2227
			goto next;
		}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
2246 2247 2248 2249 2250 2251
			if (is_zero_pfn(pfn)) {
				mpfn = MIGRATE_PFN_MIGRATE;
				migrate->cpages++;
				pfn = 0;
				goto next;
			}
2252
			page = _vm_normal_page(migrate->vma, addr, pte, true);
2253 2254 2255 2256
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2257 2258 2259 2260 2261
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2262
		pfn = page_to_pfn(page);
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
2288 2289
			entry = make_migration_entry(page, mpfn &
						     MIGRATE_PFN_WRITE);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2302 2303 2304

			if (pte_present(pte))
				unmapped++;
2305 2306
		}

2307
next:
2308
		migrate->dst[migrate->npages] = 0;
2309 2310
		migrate->src[migrate->npages++] = mpfn;
	}
2311
	arch_leave_lazy_mmu_mode();
2312 2313
	pte_unmap_unlock(ptep - 1, ptl);

2314 2315 2316 2317
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
2331
	struct mmu_notifier_range range;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2343 2344 2345
	mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
				migrate->end);
	mmu_notifier_invalidate_range_start(&range);
2346
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2347
	mmu_notifier_invalidate_range_end(&range);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

2395 2396 2397 2398 2399 2400 2401
		/*
		 * Only allow device public page to be migrated and account for
		 * the extra reference count imply by ZONE_DEVICE pages.
		 */
		if (!is_device_public_page(page))
			return false;
		extra++;
2402 2403
	}

2404 2405 2406 2407
	/* For file back page */
	if (page_mapping(page))
		extra += 1 + page_has_private(page);

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2426 2427
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2428 2429 2430 2431 2432 2433
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2434
		bool remap = true;
2435 2436 2437 2438

		if (!page)
			continue;

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2456 2457
		}

2458 2459 2460 2461 2462 2463 2464
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2465

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2478
			}
2479 2480 2481

			/* Drop the reference we took in collect */
			put_page(page);
2482 2483 2484
		}

		if (!migrate_vma_check_page(page)) {
2485 2486 2487 2488
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2489

2490 2491 2492 2493
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2494 2495 2496 2497 2498
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2499 2500 2501 2502
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2503
			}
2504 2505
		}
	}
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2546 2547 2548 2549
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2550
		}
2551 2552 2553 2554 2555 2556 2557 2558

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2573 2574 2575 2576
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2577 2578 2579
	}
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static void migrate_vma_insert_page(struct migrate_vma *migrate,
				    unsigned long addr,
				    struct page *page,
				    unsigned long *src,
				    unsigned long *dst)
{
	struct vm_area_struct *vma = migrate->vma;
	struct mm_struct *mm = vma->vm_mm;
	struct mem_cgroup *memcg;
	bool flush = false;
	spinlock_t *ptl;
	pte_t entry;
	pgd_t *pgdp;
	p4d_t *p4dp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

	/* Only allow populating anonymous memory */
	if (!vma_is_anonymous(vma))
		goto abort;

	pgdp = pgd_offset(mm, addr);
	p4dp = p4d_alloc(mm, pgdp, addr);
	if (!p4dp)
		goto abort;
	pudp = pud_alloc(mm, p4dp, addr);
	if (!pudp)
		goto abort;
	pmdp = pmd_alloc(mm, pudp, addr);
	if (!pmdp)
		goto abort;

	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
		goto abort;

	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
2626
	if (pte_alloc(mm, pmdp))
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		goto abort;

	/* See the comment in pte_alloc_one_map() */
	if (unlikely(pmd_trans_unstable(pmdp)))
		goto abort;

	if (unlikely(anon_vma_prepare(vma)))
		goto abort;
	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
		goto abort;

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	if (is_zone_device_page(page)) {
		if (is_device_private_page(page)) {
			swp_entry_t swp_entry;

			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
			entry = swp_entry_to_pte(swp_entry);
		} else if (is_device_public_page(page)) {
			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
			if (vma->vm_flags & VM_WRITE)
				entry = pte_mkwrite(pte_mkdirty(entry));
			entry = pte_mkdevmap(entry);
		}
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	} else {
		entry = mk_pte(page, vma->vm_page_prot);
		if (vma->vm_flags & VM_WRITE)
			entry = pte_mkwrite(pte_mkdirty(entry));
	}

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);

	if (pte_present(*ptep)) {
		unsigned long pfn = pte_pfn(*ptep);

		if (!is_zero_pfn(pfn)) {
			pte_unmap_unlock(ptep, ptl);
			mem_cgroup_cancel_charge(page, memcg, false);
			goto abort;
		}
		flush = true;
	} else if (!pte_none(*ptep)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	/*
	 * Check for usefaultfd but do not deliver the fault. Instead,
	 * just back off.
	 */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(ptep, ptl);
		mem_cgroup_cancel_charge(page, memcg, false);
		goto abort;
	}

	inc_mm_counter(mm, MM_ANONPAGES);
	page_add_new_anon_rmap(page, vma, addr, false);
	mem_cgroup_commit_charge(page, memcg, false, false);
	if (!is_zone_device_page(page))
		lru_cache_add_active_or_unevictable(page, vma);
	get_page(page);

	if (flush) {
		flush_cache_page(vma, addr, pte_pfn(*ptep));
		ptep_clear_flush_notify(vma, addr, ptep);
		set_pte_at_notify(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	} else {
		/* No need to invalidate - it was non-present before */
		set_pte_at(mm, addr, ptep, entry);
		update_mmu_cache(vma, addr, ptep);
	}

	pte_unmap_unlock(ptep, ptl);
	*src = MIGRATE_PFN_MIGRATE;
	return;

abort:
	*src &= ~MIGRATE_PFN_MIGRATE;
}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
2728 2729
	struct mmu_notifier_range range;
	unsigned long addr, i;
2730
	bool notified = false;
2731 2732 2733 2734 2735 2736 2737

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

2738 2739
		if (!newpage) {
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2740
			continue;
2741 2742 2743 2744 2745 2746 2747 2748
		}

		if (!page) {
			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
				continue;
			}
			if (!notified) {
				notified = true;
2749 2750 2751 2752 2753

				mmu_notifier_range_init(&range,
							migrate->vma->vm_mm,
							addr, migrate->end);
				mmu_notifier_invalidate_range_start(&range);
2754 2755 2756 2757
			}
			migrate_vma_insert_page(migrate, addr, newpage,
						&migrate->src[i],
						&migrate->dst[i]);
2758
			continue;
2759
		}
2760 2761 2762

		mapping = page_mapping(page);

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
2773
			} else if (!is_device_public_page(newpage)) {
2774 2775 2776 2777 2778 2779 2780 2781 2782
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2783 2784 2785 2786
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
2787

2788 2789 2790 2791 2792
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
	 * did already call it.
	 */
2793
	if (notified)
2794
		mmu_notifier_invalidate_range_only_end(&range);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

2817 2818 2819 2820 2821
		if (!page) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
2822
			continue;
2823 2824
		}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2837 2838 2839 2840
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2841 2842 2843

		if (newpage != page) {
			unlock_page(newpage);
2844 2845 2846 2847
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
2916 2917
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
			vma_is_dax(vma))
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);
2971
#endif /* defined(MIGRATE_VMA_HELPER) */