rt2500pci.c 65.0 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
16
	along with this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 */

/*
	Module: rt2500pci
	Abstract: rt2500pci device specific routines.
	Supported chipsets: RT2560.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
31
#include <linux/slab.h>
32 33

#include "rt2x00.h"
34
#include "rt2x00mmio.h"
35 36 37 38 39 40
#include "rt2x00pci.h"
#include "rt2500pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
41
 * rt2x00mmio_register_read and rt2x00mmio_register_write.
42 43 44 45 46 47 48 49 50
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
51
#define WAIT_FOR_BBP(__dev, __reg) \
52
	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53
#define WAIT_FOR_RF(__dev, __reg) \
54
	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55

A
Adam Baker 已提交
56
static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 58 59 60
				const unsigned int word, const u8 value)
{
	u32 reg;

61 62
	mutex_lock(&rt2x00dev->csr_mutex);

63
	/*
64 65
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
66
	 */
67 68 69 70 71 72 73
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

74
		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75
	}
76 77

	mutex_unlock(&rt2x00dev->csr_mutex);
78 79
}

A
Adam Baker 已提交
80
static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 82 83 84
			       const unsigned int word, u8 *value)
{
	u32 reg;

85 86
	mutex_lock(&rt2x00dev->csr_mutex);

87
	/*
88 89 90 91 92 93
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
94
	 */
95 96 97 98 99
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100

101
		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102

103 104
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
105 106

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107 108

	mutex_unlock(&rt2x00dev->csr_mutex);
109 110
}

A
Adam Baker 已提交
111
static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 113 114 115
			       const unsigned int word, const u32 value)
{
	u32 reg;

116 117
	mutex_lock(&rt2x00dev->csr_mutex);

118 119 120 121 122 123 124 125 126 127 128
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

129
		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130
		rt2x00_rf_write(rt2x00dev, word, value);
131 132
	}

133
	mutex_unlock(&rt2x00dev->csr_mutex);
134 135 136 137 138 139 140
}

static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

141
	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

163
	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 165 166 167 168 169
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2500pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
170 171
		.read		= rt2x00mmio_register_read,
		.write		= rt2x00mmio_register_write,
172 173
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
174 175 176 177 178 179
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
180
		.word_base	= EEPROM_BASE,
181 182 183 184 185 186
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2500pci_bbp_read,
		.write		= rt2500pci_bbp_write,
187
		.word_base	= BBP_BASE,
188 189 190 191 192 193
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2500pci_rf_write,
194
		.word_base	= RF_BASE,
195 196 197 198 199 200 201 202 203 204
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

205
	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206
	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 208
}

209
#ifdef CONFIG_RT2X00_LIB_LEDS
210
static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
211 212 213 214 215 216 217
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

218
	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219

220
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 223
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224

225
	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226
}
227 228 229 230 231 232 233 234 235

static int rt2500pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

236
	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 238
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239
	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240 241 242

	return 0;
}
243 244 245 246 247 248 249 250 251 252 253

static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2500pci_brightness_set;
	led->led_dev.blink_set = rt2500pci_blink_set;
	led->flags = LED_INITIALIZED;
}
254
#endif /* CONFIG_RT2X00_LIB_LEDS */
255

256 257 258
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
259 260 261 262 263 264 265 266 267 268 269
static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
270
	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
I
Ivo van Doorn 已提交
271 272 273 274 275 276
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
277
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
I
Ivo van Doorn 已提交
278
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
279
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
280 281 282 283
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
284
	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
I
Ivo van Doorn 已提交
285 286
}

287 288 289 290
static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
291
{
292
	struct data_queue *queue = rt2x00dev->bcn;
293
	unsigned int bcn_preload;
294 295
	u32 reg;

296 297 298 299
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
300
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301
		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
302 303
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
304
		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
305

306 307 308
		/*
		 * Enable synchronisation.
		 */
309
		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
310
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
311
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
312 313 314
	}

	if (flags & CONFIG_UPDATE_MAC)
315
		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
316 317 318
					      conf->mac, sizeof(conf->mac));

	if (flags & CONFIG_UPDATE_BSSID)
319
		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
320
					      conf->bssid, sizeof(conf->bssid));
321 322
}

I
Ivo van Doorn 已提交
323
static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 325
				 struct rt2x00lib_erp *erp,
				 u32 changed)
326
{
327
	int preamble_mask;
328 329
	u32 reg;

330 331 332
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
333 334 335
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		preamble_mask = erp->short_preamble << 3;

336
		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
337 338 339 340
		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341
		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342

343
		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
344 345 346 347
		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 10));
348
		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349

350
		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
351 352 353 354
		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 20));
355
		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356

357
		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
358 359 360 361
		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 55));
362
		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363

364
		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
365 366 367 368
		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 110));
369
		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370 371 372
	}

	if (changed & BSS_CHANGED_BASIC_RATES)
373
		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374 375

	if (changed & BSS_CHANGED_ERP_SLOT) {
376
		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
377
		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378
		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379

380
		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
381 382
		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383
		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384

385
		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
386 387
		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388
		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389 390 391
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
392
		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
393 394 395 396
		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
				   erp->beacon_int * 16);
397
		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398 399
	}

400 401
}

402 403
static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
404
{
405 406 407 408 409 410 411 412 413 414 415
	u32 reg;
	u8 r14;
	u8 r2;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

416
	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
	rt2500pci_bbp_read(rt2x00dev, 2, &r2);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
453
	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
454 455 456 457 458 459 460
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
461
		if (rt2x00_rf(rt2x00dev, RF2525E))
462 463 464 465 466 467
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
	}

468
	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
469 470
	rt2500pci_bbp_write(rt2x00dev, 14, r14);
	rt2500pci_bbp_write(rt2x00dev, 2, r2);
471 472 473
}

static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
474
				     struct rf_channel *rf, const int txpower)
475 476 477 478 479 480
{
	u8 r70;

	/*
	 * Set TXpower.
	 */
481
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
482 483 484 485 486

	/*
	 * Switch on tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
487
	if (!rt2x00_rf(rt2x00dev, RF2523))
488 489
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
490 491 492 493

	/*
	 * For RT2525 we should first set the channel to half band higher.
	 */
494
	if (rt2x00_rf(rt2x00dev, RF2525)) {
495 496 497 498 499 500 501
		static const u32 vals[] = {
			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
			0x00080d2e, 0x00080d3a
		};

502 503 504 505 506
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
		if (rf->rf4)
			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507 508
	}

509 510 511 512 513
	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
514 515 516 517 518

	/*
	 * Channel 14 requires the Japan filter bit to be set.
	 */
	r70 = 0x46;
519
	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
520 521 522 523 524 525 526 527
	rt2500pci_bbp_write(rt2x00dev, 70, r70);

	msleep(1);

	/*
	 * Switch off tuning bits.
	 * For RT2523 devices we do not need to update the R1 register.
	 */
528
	if (!rt2x00_rf(rt2x00dev, RF2523)) {
529 530
		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
531 532
	}

533 534
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
535 536 537 538

	/*
	 * Clear false CRC during channel switch.
	 */
539
	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
540 541 542 543 544 545 546 547 548 549 550 551
}

static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

	rt2x00_rf_read(rt2x00dev, 3, &rf3);
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500pci_rf_write(rt2x00dev, 3, rf3);
}

552 553
static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
554 555 556
{
	u32 reg;

557
	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
558 559 560 561
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
562
	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
563 564
}

I
Ivo van Doorn 已提交
565 566 567 568 569 570 571 572 573
static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
574
		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
I
Ivo van Doorn 已提交
575
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
576
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
577 578 579 580 581
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
582
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
I
Ivo van Doorn 已提交
583 584

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
585
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
586
	} else {
587
		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
588
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
589
		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
I
Ivo van Doorn 已提交
590 591 592 593 594
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

595
static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
596 597
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
598
{
599
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
600 601
		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
602 603
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
604 605
		rt2500pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
606 607
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2500pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
608 609
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2500pci_config_ps(rt2x00dev, libconf);
610 611 612 613 614
}

/*
 * Link tuning
 */
615 616
static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
617 618 619 620 621 622
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
623
	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
624
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
625 626 627 628

	/*
	 * Update False CCA count from register.
	 */
629
	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
630
	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
631 632
}

633 634
static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
635
{
636
	if (qual->vgc_level_reg != vgc_level) {
637
		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
638
		qual->vgc_level = vgc_level;
639
		qual->vgc_level_reg = vgc_level;
640 641 642
	}
}

643 644
static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
645
{
646
	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
647 648
}

649 650
static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
651 652 653 654
{
	/*
	 * To prevent collisions with MAC ASIC on chipsets
	 * up to version C the link tuning should halt after 20
655
	 * seconds while being associated.
656
	 */
657
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
658
	    rt2x00dev->intf_associated && count > 20)
659 660 661 662
		return;

	/*
	 * Chipset versions C and lower should directly continue
663 664 665
	 * to the dynamic CCA tuning. Chipset version D and higher
	 * should go straight to dynamic CCA tuning when they
	 * are not associated.
666
	 */
667
	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
668
	    !rt2x00dev->intf_associated)
669 670 671 672 673 674 675
		goto dynamic_cca_tune;

	/*
	 * A too low RSSI will cause too much false CCA which will
	 * then corrupt the R17 tuning. To remidy this the tuning should
	 * be stopped (While making sure the R17 value will not exceed limits)
	 */
676 677 678
	if (qual->rssi < -80 && count > 20) {
		if (qual->vgc_level_reg >= 0x41)
			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
679 680 681 682 683 684
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
685 686
	if (qual->rssi >= -58) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
687 688 689 690 691 692
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
693 694
	if (qual->rssi >= -74) {
		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
695 696 697 698 699 700 701
		return;
	}

	/*
	 * Leave short or middle distance condition, restore r17
	 * to the dynamic tuning range.
	 */
702 703
	if (qual->vgc_level_reg >= 0x41) {
		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
704 705 706 707 708 709 710 711 712
		return;
	}

dynamic_cca_tune:

	/*
	 * R17 is inside the dynamic tuning range,
	 * start tuning the link based on the false cca counter.
	 */
713
	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
714
		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
715
	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
716
		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
717 718
}

719 720 721 722 723 724 725 726 727 728
/*
 * Queue handlers.
 */
static void rt2500pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
729
		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
730
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
731
		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
732 733
		break;
	case QID_BEACON:
734
		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
735 736 737
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
738
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
739 740 741 742 743 744 745 746 747 748 749 750
		break;
	default:
		break;
	}
}

static void rt2500pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
751
	case QID_AC_VO:
752
		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
753
		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
754
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
755
		break;
I
Ivo van Doorn 已提交
756
	case QID_AC_VI:
757
		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
758
		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
759
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
760 761
		break;
	case QID_ATIM:
762
		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
763
		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
764
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
765 766 767 768 769 770 771 772 773 774 775 776
		break;
	default:
		break;
	}
}

static void rt2500pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
777 778
	case QID_AC_VO:
	case QID_AC_VI:
779
	case QID_ATIM:
780
		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
781
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
782
		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
783 784
		break;
	case QID_RX:
785
		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
786
		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
787
		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
788 789
		break;
	case QID_BEACON:
790
		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
791 792 793
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
794
		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
795 796 797 798

		/*
		 * Wait for possibly running tbtt tasklets.
		 */
799
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
800 801 802 803 804 805
		break;
	default:
		break;
	}
}

806 807 808
/*
 * Initialization functions.
 */
809
static bool rt2500pci_get_entry_state(struct queue_entry *entry)
810
{
811
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
812 813
	u32 word;

814 815 816 817 818 819
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
820

821 822 823
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
824 825
}

826
static void rt2500pci_clear_entry(struct queue_entry *entry)
827
{
828
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
829
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
830 831
	u32 word;

832 833 834 835 836 837 838 839 840 841 842 843 844 845
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
846 847
}

I
Ivo van Doorn 已提交
848
static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
849
{
850
	struct queue_entry_priv_mmio *entry_priv;
851 852 853 854 855
	u32 reg;

	/*
	 * Initialize registers.
	 */
856
	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
857 858
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
859
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
I
Ivo van Doorn 已提交
860
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
861
	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
862

863
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
864
	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
865
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
866
			   entry_priv->desc_dma);
867
	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
868

869
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
870
	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
871
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
872
			   entry_priv->desc_dma);
873
	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
874

875
	entry_priv = rt2x00dev->atim->entries[0].priv_data;
876
	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
877
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
878
			   entry_priv->desc_dma);
879
	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
880

881
	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
882
	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
883
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
884
			   entry_priv->desc_dma);
885
	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
886

887
	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
888
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
889
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
890
	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
891

892
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
893
	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
894 895
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
896
	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
897 898 899 900 901 902 903 904

	return 0;
}

static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

905 906 907 908
	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
909

910
	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
911 912 913
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
914
	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
915

916
	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
917 918
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size / 128);
919
	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
920 921 922 923

	/*
	 * Always use CWmin and CWmax set in descriptor.
	 */
924
	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
925
	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
926
	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
927

928
	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
929 930 931 932 933 934 935 936
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
937
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
938

939
	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
940

941
	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
942 943 944 945 946 947 948 949
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
950
	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
951

952
	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
953 954 955 956
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
957
	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
958

959
	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
960 961 962 963
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
964
	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
965

966
	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
967 968 969 970
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
971
	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
972

973
	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
974 975 976 977 978 979 980 981
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
982
	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
983

984
	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
985 986 987 988 989 990 991
	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
992
	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
993

994
	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
995

996 997
	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
998 999 1000 1001

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

1002 1003
	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1004

1005
	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1006
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1007
	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1008

1009
	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1010 1011 1012 1013 1014 1015
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1016
	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1017

1018
	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1019

1020
	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1021

1022
	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1023 1024 1025
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1026
	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1027

1028
	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1029 1030
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1031
	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1032 1033 1034 1035 1036 1037

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
1038 1039
	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1040 1041 1042 1043

	return 0;
}

1044
static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1045 1046 1047 1048 1049 1050 1051
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2500pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1052
			return 0;
1053 1054 1055
		udelay(REGISTER_BUSY_DELAY);
	}

1056
	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1057
	return -EACCES;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
}

static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
1120
	int mask = (state == STATE_RADIO_IRQ_OFF);
1121
	u32 reg;
1122
	unsigned long flags;
1123 1124 1125 1126 1127 1128

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
1129 1130
		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1131 1132 1133 1134 1135 1136
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
1137 1138
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);

1139
	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1140 1141 1142 1143 1144
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1145
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1146 1147 1148 1149 1150 1151 1152

	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished.
		 */
1153 1154 1155
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1156
	}
1157 1158 1159 1160 1161 1162 1163
}

static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
1164 1165 1166
	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
		     rt2500pci_init_registers(rt2x00dev) ||
		     rt2500pci_init_bbp(rt2x00dev)))
1167 1168 1169 1170 1171 1172 1173 1174
		return -EIO;

	return 0;
}

static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1175
	 * Disable power
1176
	 */
1177
	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1178 1179 1180 1181 1182
}

static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
1183
	u32 reg, reg2;
1184 1185 1186 1187 1188 1189 1190
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

1191
	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1192 1193 1194 1195
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1196
	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1197 1198 1199 1200 1201 1202 1203

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1204
		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1205 1206
		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1207 1208
		if (bbp_state == state && rf_state == state)
			return 0;
1209
		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		msleep(10);
	}

	return -EBUSY;
}

static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500pci_disable_radio(rt2x00dev);
		break;
1228 1229 1230
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2500pci_toggle_irq(rt2x00dev, state);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1243
	if (unlikely(retval))
1244 1245
		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
			   state, retval);
1246

1247 1248 1249 1250 1251 1252
	return retval;
}

/*
 * TX descriptor initialization
 */
1253
static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1254
				    struct txentry_desc *txdesc)
1255
{
1256
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1257
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1258
	__le32 *txd = entry_priv->desc;
1259 1260 1261 1262 1263
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1264
	rt2x00_desc_read(txd, 1, &word);
1265
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1266
	rt2x00_desc_write(txd, 1, word);
1267

1268 1269
	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
H
Helmut Schaa 已提交
1270 1271 1272
	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1273 1274 1275
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
1276 1277 1278 1279 1280 1281
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
1282 1283 1284 1285
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 10, &word);
	rt2x00_set_field32(&word, TXD_W10_RTS,
I
Ivo van Doorn 已提交
1286
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1287 1288
	rt2x00_desc_write(txd, 10, word);

1289 1290 1291 1292 1293
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1294 1295 1296 1297
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1298
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1299
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1300
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1301
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1302
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1303
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1304
			   (txdesc->rate_mode == RATE_MODE_OFDM));
1305
	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1306
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1307
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1308
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1309
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1310 1311
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
	rt2x00_desc_write(txd, 0, word);
1312 1313 1314 1315 1316 1317

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1318 1319 1320 1321 1322
}

/*
 * TX data initialization
 */
1323 1324
static void rt2500pci_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1325 1326 1327 1328 1329 1330 1331 1332
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
1333
	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1334
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1335
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1336

1337
	if (rt2x00queue_map_txskb(entry)) {
1338
		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1339 1340
		goto out;
	}
1341

1342 1343 1344
	/*
	 * Write the TX descriptor for the beacon.
	 */
1345
	rt2500pci_write_tx_desc(entry, txdesc);
1346 1347 1348 1349 1350

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1351
out:
1352 1353 1354 1355
	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1356
	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1357 1358
}

1359 1360 1361
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1362 1363
static void rt2500pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1364
{
1365
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1366 1367 1368
	u32 word0;
	u32 word2;

1369 1370
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1371

1372
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1373
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1374
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1375 1376
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;

I
Ivo van Doorn 已提交
1377 1378 1379 1380 1381 1382
	/*
	 * Obtain the status about this packet.
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
	 */
I
Ivo van Doorn 已提交
1383 1384 1385 1386
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1387 1388 1389

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
1390 1391
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1392 1393
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1394 1395 1396 1397 1398
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1399
static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1400
			     const enum data_queue_qid queue_idx)
1401
{
1402
	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1403
	struct queue_entry_priv_mmio *entry_priv;
I
Ivo van Doorn 已提交
1404 1405
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1406 1407
	u32 word;

I
Ivo van Doorn 已提交
1408 1409
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1410 1411
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1412 1413 1414 1415 1416 1417 1418 1419

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1432
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1433

1434
		rt2x00lib_txdone(entry, &txdesc);
1435 1436 1437
	}
}

1438 1439
static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
1440
{
1441
	u32 reg;
1442 1443

	/*
1444 1445
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
1446
	 */
1447
	spin_lock_irq(&rt2x00dev->irqmask_lock);
1448

1449
	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1450
	rt2x00_set_field32(&reg, irq_field, 0);
1451
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1452

1453
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1454
}
1455

1456 1457 1458 1459
static void rt2500pci_txstatus_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	u32 reg;
1460 1461

	/*
1462
	 * Handle all tx queues.
1463
	 */
1464 1465 1466
	rt2500pci_txdone(rt2x00dev, QID_ATIM);
	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1467 1468

	/*
1469
	 * Enable all TXDONE interrupts again.
1470
	 */
1471 1472
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
		spin_lock_irq(&rt2x00dev->irqmask_lock);
1473

1474
		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1475 1476 1477
		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1478
		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1479

1480 1481
		spin_unlock_irq(&rt2x00dev->irqmask_lock);
	}
1482 1483 1484 1485 1486 1487
}

static void rt2500pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
1488 1489
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1490 1491 1492 1493 1494
}

static void rt2500pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1495
	if (rt2x00mmio_rxdone(rt2x00dev))
1496
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1497
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1498
		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1499 1500
}

1501 1502 1503
static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
1504
	u32 reg, mask;
1505 1506 1507 1508 1509

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
1510 1511
	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1512 1513 1514 1515 1516 1517 1518

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	mask = reg;

	/*
	 * Schedule tasklets for interrupt handling.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);

	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);

	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
		/*
		 * Mask out all txdone interrupts.
		 */
		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
	}

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
1546
	spin_lock(&rt2x00dev->irqmask_lock);
1547

1548
	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1549
	reg |= mask;
1550
	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1551

1552
	spin_unlock(&rt2x00dev->irqmask_lock);
1553

1554
	return IRQ_HANDLED;
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/*
 * Device probe functions.
 */
static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

1567
	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2500pci_eepromregister_read;
	eeprom.register_write = rt2500pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
J
Joe Perches 已提交
1587
		eth_random_addr(mac);
1588
		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1589 1590 1591 1592 1593
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1594 1595 1596 1597 1598 1599
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
1600 1601 1602 1603
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1604
		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1605 1606 1607 1608 1609 1610 1611 1612
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1613
		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1614 1615 1616 1617 1618 1619 1620
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1621 1622
		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
				  word);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	}

	return 0;
}

static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643
	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1644 1645
	rt2x00_set_chip(rt2x00dev, RT2560, value,
			rt2x00_get_field32(reg, CSR0_REVISION));
1646

1647 1648 1649 1650 1651 1652
	if (!rt2x00_rf(rt2x00dev, RF2522) &&
	    !rt2x00_rf(rt2x00dev, RF2523) &&
	    !rt2x00_rf(rt2x00dev, RF2524) &&
	    !rt2x00_rf(rt2x00dev, RF2525) &&
	    !rt2x00_rf(rt2x00dev, RF2525E) &&
	    !rt2x00_rf(rt2x00dev, RF5222)) {
1653
		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1654 1655 1656 1657 1658 1659
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1660
	rt2x00dev->default_ant.tx =
1661
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1662
	rt2x00dev->default_ant.rx =
1663 1664 1665 1666 1667
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Store led mode, for correct led behaviour.
	 */
1668
#ifdef CONFIG_RT2X00_LIB_LEDS
1669 1670
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1671
	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672 1673 1674
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1675 1676
		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1677
#endif /* CONFIG_RT2X00_LIB_LEDS */
1678 1679 1680 1681

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
1682
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
I
Ivo van Doorn 已提交
1683
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1684 1685 1686 1687 1688
		/*
		 * On this device RFKILL initialized during probe does not work.
		 */
		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
	}
1689 1690 1691 1692 1693

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1694
	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
I
Ivo van Doorn 已提交
1695
		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

1862
static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1863 1864
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1865 1866
	struct channel_info *info;
	char *tx_power;
1867 1868 1869 1870 1871
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1872 1873 1874 1875
	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1876

1877
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1878 1879 1880 1881
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

1882 1883 1884 1885 1886
	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

1887 1888 1889
	/*
	 * Initialize hw_mode information.
	 */
1890 1891
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1892

1893
	if (rt2x00_rf(rt2x00dev, RF2522)) {
1894 1895
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
1896
	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1897 1898
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
1899
	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1900 1901
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
1902
	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1903 1904
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
1905
	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1906 1907
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
1908
	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1909
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1910 1911 1912
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
	}
1913 1914 1915 1916

	/*
	 * Create channel information array
	 */
1917
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1918 1919 1920 1921 1922 1923
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1924 1925 1926 1927
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
1928 1929

	if (spec->num_channels > 14) {
1930 1931 1932 1933
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 = DEFAULT_TXPOWER;
		}
1934 1935 1936
	}

	return 0;
1937 1938 1939 1940 1941
}

static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;
1942
	u32 reg;
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

1955 1956 1957 1958
	/*
	 * Enable rfkill polling by setting GPIO direction of the
	 * rfkill switch GPIO pin correctly.
	 */
1959
	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1960
	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1961
	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1962

1963 1964 1965
	/*
	 * Initialize hw specifications.
	 */
1966 1967 1968
	retval = rt2500pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1969 1970

	/*
1971
	 * This device requires the atim queue and DMA-mapped skbs.
1972
	 */
I
Ivo van Doorn 已提交
1973 1974 1975
	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
1988 1989
static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
			     struct ieee80211_vif *vif)
1990 1991 1992 1993 1994
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

1995
	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1996
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1997
	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

2008
	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2009 2010 2011 2012 2013
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2500pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2014 2015
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2016 2017 2018
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
2019
	.configure_filter	= rt2x00mac_configure_filter,
2020 2021
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2022
	.get_stats		= rt2x00mac_get_stats,
2023
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2024 2025 2026
	.conf_tx		= rt2x00mac_conf_tx,
	.get_tsf		= rt2500pci_get_tsf,
	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2027
	.rfkill_poll		= rt2x00mac_rfkill_poll,
I
Ivo van Doorn 已提交
2028
	.flush			= rt2x00mac_flush,
2029 2030
	.set_antenna		= rt2x00mac_set_antenna,
	.get_antenna		= rt2x00mac_get_antenna,
2031
	.get_ringparam		= rt2x00mac_get_ringparam,
2032
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2033 2034 2035 2036
};

static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
	.irq_handler		= rt2500pci_interrupt,
2037 2038 2039
	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2040
	.probe_hw		= rt2500pci_probe_hw,
2041 2042
	.initialize		= rt2x00mmio_initialize,
	.uninitialize		= rt2x00mmio_uninitialize,
2043 2044
	.get_entry_state	= rt2500pci_get_entry_state,
	.clear_entry		= rt2500pci_clear_entry,
2045 2046 2047 2048 2049
	.set_device_state	= rt2500pci_set_device_state,
	.rfkill_poll		= rt2500pci_rfkill_poll,
	.link_stats		= rt2500pci_link_stats,
	.reset_tuner		= rt2500pci_reset_tuner,
	.link_tuner		= rt2500pci_link_tuner,
2050 2051 2052
	.start_queue		= rt2500pci_start_queue,
	.kick_queue		= rt2500pci_kick_queue,
	.stop_queue		= rt2500pci_stop_queue,
2053
	.flush_queue		= rt2x00mmio_flush_queue,
2054
	.write_tx_desc		= rt2500pci_write_tx_desc,
2055
	.write_beacon		= rt2500pci_write_beacon,
2056
	.fill_rxdone		= rt2500pci_fill_rxdone,
I
Ivo van Doorn 已提交
2057
	.config_filter		= rt2500pci_config_filter,
2058
	.config_intf		= rt2500pci_config_intf,
2059
	.config_erp		= rt2500pci_config_erp,
2060
	.config_ant		= rt2500pci_config_ant,
2061 2062 2063
	.config			= rt2500pci_config,
};

2064 2065 2066 2067 2068 2069 2070 2071 2072
static void rt2500pci_queue_init(struct data_queue *queue)
{
	switch (queue->qid) {
	case QID_RX:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = RXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;
I
Ivo van Doorn 已提交
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082
	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;
I
Ivo van Doorn 已提交
2083

2084 2085 2086 2087 2088 2089
	case QID_BEACON:
		queue->limit = 1;
		queue->data_size = MGMT_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;
I
Ivo van Doorn 已提交
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	case QID_ATIM:
		queue->limit = 8;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
		break;

	default:
		BUG();
		break;
	}
}
I
Ivo van Doorn 已提交
2103

2104
static const struct rt2x00_ops rt2500pci_ops = {
G
Gertjan van Wingerde 已提交
2105 2106 2107 2108 2109
	.name			= KBUILD_MODNAME,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
2110
	.queue_init		= rt2500pci_queue_init,
G
Gertjan van Wingerde 已提交
2111 2112
	.lib			= &rt2500pci_rt2x00_ops,
	.hw			= &rt2500pci_mac80211_ops,
2113
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
2114
	.debugfs		= &rt2500pci_rt2x00debug,
2115 2116 2117 2118 2119 2120
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2500pci module information.
 */
2121
static const struct pci_device_id rt2500pci_device_table[] = {
2122
	{ PCI_DEVICE(0x1814, 0x0201) },
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
MODULE_LICENSE("GPL");

2133 2134 2135 2136 2137 2138
static int rt2500pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
}

2139
static struct pci_driver rt2500pci_driver = {
2140
	.name		= KBUILD_MODNAME,
2141
	.id_table	= rt2500pci_device_table,
2142
	.probe		= rt2500pci_probe,
B
Bill Pemberton 已提交
2143
	.remove		= rt2x00pci_remove,
2144 2145 2146 2147
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

A
Axel Lin 已提交
2148
module_pci_driver(rt2500pci_driver);