fsl_spdif.c 40.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
// SPDX-License-Identifier: GPL-2.0
//
// Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver
//
// Copyright (C) 2013 Freescale Semiconductor, Inc.
//
// Based on stmp3xxx_spdif_dai.c
// Vladimir Barinov <vbarinov@embeddedalley.com>
// Copyright 2008 SigmaTel, Inc
// Copyright 2008 Embedded Alley Solutions, Inc
11

12
#include <linux/bitrev.h>
13
#include <linux/clk.h>
14
#include <linux/module.h>
15 16 17
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
18
#include <linux/regmap.h>
19
#include <linux/pm_runtime.h>
20 21 22

#include <sound/asoundef.h>
#include <sound/dmaengine_pcm.h>
23
#include <sound/soc.h>
24 25 26 27 28 29 30

#include "fsl_spdif.h"
#include "imx-pcm.h"

#define FSL_SPDIF_TXFIFO_WML	0x8
#define FSL_SPDIF_RXFIFO_WML	0x8

31 32 33 34 35 36 37
#define INTR_FOR_PLAYBACK	(INT_TXFIFO_RESYNC)
#define INTR_FOR_CAPTURE	(INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\
				INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\
				INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\
				INT_LOSS_LOCK | INT_DPLL_LOCKED)

#define SIE_INTR_FOR(tx)	(tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE)
38 39 40 41 42 43 44 45

/* Index list for the values that has if (DPLL Locked) condition */
static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb };
#define SRPC_NODPLL_START1	0x5
#define SRPC_NODPLL_START2	0xc

#define DEFAULT_RXCLK_SRC	1

46 47 48 49 50 51 52 53 54 55 56 57
/**
 * struct fsl_spdif_soc_data: soc specific data
 *
 * @imx: for imx platform
 * @shared_root_clock: flag of sharing a clock source with others;
 *                     so the driver shouldn't set root clock rate
 */
struct fsl_spdif_soc_data {
	bool imx;
	bool shared_root_clock;
};

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * SPDIF control structure
 * Defines channel status, subcode and Q sub
 */
struct spdif_mixer_control {
	/* spinlock to access control data */
	spinlock_t ctl_lock;

	/* IEC958 channel tx status bit */
	unsigned char ch_status[4];

	/* User bits */
	unsigned char subcode[2 * SPDIF_UBITS_SIZE];

	/* Q subcode part of user bits */
	unsigned char qsub[2 * SPDIF_QSUB_SIZE];

	/* Buffer offset for U/Q */
	u32 upos;
	u32 qpos;

	/* Ready buffer index of the two buffers */
	u32 ready_buf;
};

83
/**
84 85
 * struct fsl_spdif_priv - Freescale SPDIF private data
 * @soc: SPDIF soc data
86 87 88 89 90 91 92 93 94 95 96 97 98 99
 * @fsl_spdif_control: SPDIF control data
 * @cpu_dai_drv: cpu dai driver
 * @pdev: platform device pointer
 * @regmap: regmap handler
 * @dpll_locked: dpll lock flag
 * @txrate: the best rates for playback
 * @txclk_df: STC_TXCLK_DF dividers value for playback
 * @sysclk_df: STC_SYSCLK_DF dividers value for playback
 * @txclk_src: STC_TXCLK_SRC values for playback
 * @rxclk_src: SRPC_CLKSRC_SEL values for capture
 * @txclk: tx clock sources for playback
 * @rxclk: rx clock sources for capture
 * @coreclk: core clock for register access via DMA
 * @sysclk: system clock for rx clock rate measurement
100
 * @spbaclk: SPBA clock (optional, depending on SoC design)
101 102
 * @dma_params_tx: DMA parameters for transmit channel
 * @dma_params_rx: DMA parameters for receive channel
103
 * @regcache_srpc: regcache for SRPC
104
 */
105
struct fsl_spdif_priv {
106
	const struct fsl_spdif_soc_data *soc;
107 108 109 110 111
	struct spdif_mixer_control fsl_spdif_control;
	struct snd_soc_dai_driver cpu_dai_drv;
	struct platform_device *pdev;
	struct regmap *regmap;
	bool dpll_locked;
112
	u32 txrate[SPDIF_TXRATE_MAX];
113
	u8 txclk_df[SPDIF_TXRATE_MAX];
114
	u16 sysclk_df[SPDIF_TXRATE_MAX];
115 116 117 118
	u8 txclk_src[SPDIF_TXRATE_MAX];
	u8 rxclk_src;
	struct clk *txclk[SPDIF_TXRATE_MAX];
	struct clk *rxclk;
119
	struct clk *coreclk;
120
	struct clk *sysclk;
121
	struct clk *spbaclk;
122 123
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
124 125
	/* regcache for SRPC */
	u32 regcache_srpc;
126 127
};

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
static struct fsl_spdif_soc_data fsl_spdif_vf610 = {
	.imx = false,
	.shared_root_clock = false,
};

static struct fsl_spdif_soc_data fsl_spdif_imx35 = {
	.imx = true,
	.shared_root_clock = false,
};

static struct fsl_spdif_soc_data fsl_spdif_imx6sx = {
	.imx = true,
	.shared_root_clock = true,
};

/* Check if clk is a root clock that does not share clock source with others */
static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk)
{
	return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/* DPLL locked and lock loss interrupt handler */
static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 locked;

	regmap_read(regmap, REG_SPDIF_SRPC, &locked);
	locked &= SRPC_DPLL_LOCKED;

	dev_dbg(&pdev->dev, "isr: Rx dpll %s \n",
			locked ? "locked" : "loss lock");

	spdif_priv->dpll_locked = locked ? true : false;
}

/* Receiver found illegal symbol interrupt handler */
static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;

	dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n");

173 174
	/* Clear illegal symbol if DPLL unlocked since no audio stream */
	if (!spdif_priv->dpll_locked)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
		regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0);
}

/* U/Q Channel receive register full */
static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 *pos, size, val, reg;

	switch (name) {
	case 'U':
		pos = &ctrl->upos;
		size = SPDIF_UBITS_SIZE;
		reg = REG_SPDIF_SRU;
		break;
	case 'Q':
		pos = &ctrl->qpos;
		size = SPDIF_QSUB_SIZE;
		reg = REG_SPDIF_SRQ;
		break;
	default:
		dev_err(&pdev->dev, "unsupported channel name\n");
		return;
	}

	dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name);

	if (*pos >= size * 2) {
		*pos = 0;
	} else if (unlikely((*pos % size) + 3 > size)) {
207
		dev_err(&pdev->dev, "User bit receive buffer overflow\n");
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		return;
	}

	regmap_read(regmap, reg, &val);
	ctrl->subcode[*pos++] = val >> 16;
	ctrl->subcode[*pos++] = val >> 8;
	ctrl->subcode[*pos++] = val;
}

/* U/Q Channel sync found */
static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct platform_device *pdev = spdif_priv->pdev;

	dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n");

	/* U/Q buffer reset */
	if (ctrl->qpos == 0)
		return;

	/* Set ready to this buffer */
	ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1;
}

/* U/Q Channel framing error */
static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 val;

	dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n");

	/* Read U/Q data to clear the irq and do buffer reset */
	regmap_read(regmap, REG_SPDIF_SRU, &val);
	regmap_read(regmap, REG_SPDIF_SRQ, &val);

	/* Drop this U/Q buffer */
	ctrl->ready_buf = 0;
	ctrl->upos = 0;
	ctrl->qpos = 0;
}

/* Get spdif interrupt status and clear the interrupt */
static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	u32 val, val2;

	regmap_read(regmap, REG_SPDIF_SIS, &val);
	regmap_read(regmap, REG_SPDIF_SIE, &val2);

	regmap_write(regmap, REG_SPDIF_SIC, val & val2);

	return val;
}

static irqreturn_t spdif_isr(int irq, void *devid)
{
	struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 sis;

	sis = spdif_intr_status_clear(spdif_priv);

	if (sis & INT_DPLL_LOCKED)
		spdif_irq_dpll_lock(spdif_priv);

	if (sis & INT_TXFIFO_UNOV)
		dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n");

	if (sis & INT_TXFIFO_RESYNC)
		dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n");

	if (sis & INT_CNEW)
		dev_dbg(&pdev->dev, "isr: cstatus new\n");

	if (sis & INT_VAL_NOGOOD)
		dev_dbg(&pdev->dev, "isr: validity flag no good\n");

	if (sis & INT_SYM_ERR)
		spdif_irq_sym_error(spdif_priv);

	if (sis & INT_BIT_ERR)
		dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n");

	if (sis & INT_URX_FUL)
		spdif_irq_uqrx_full(spdif_priv, 'U');

	if (sis & INT_URX_OV)
		dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n");

	if (sis & INT_QRX_FUL)
		spdif_irq_uqrx_full(spdif_priv, 'Q');

	if (sis & INT_QRX_OV)
		dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n");

	if (sis & INT_UQ_SYNC)
		spdif_irq_uq_sync(spdif_priv);

	if (sis & INT_UQ_ERR)
		spdif_irq_uq_err(spdif_priv);

	if (sis & INT_RXFIFO_UNOV)
		dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n");

	if (sis & INT_RXFIFO_RESYNC)
		dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n");

	if (sis & INT_LOSS_LOCK)
		spdif_irq_dpll_lock(spdif_priv);

	/* FIXME: Write Tx FIFO to clear TxEm */
	if (sis & INT_TX_EM)
		dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n");

	/* FIXME: Read Rx FIFO to clear RxFIFOFul */
	if (sis & INT_RXFIFO_FUL)
		dev_dbg(&pdev->dev, "isr: Rx FIFO full\n");

	return IRQ_HANDLED;
}

static int spdif_softreset(struct fsl_spdif_priv *spdif_priv)
{
	struct regmap *regmap = spdif_priv->regmap;
	u32 val, cycle = 1000;

339 340
	regcache_cache_bypass(regmap, true);

341 342 343 344 345 346 347 348 349 350
	regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET);

	/*
	 * RESET bit would be cleared after finishing its reset procedure,
	 * which typically lasts 8 cycles. 1000 cycles will keep it safe.
	 */
	do {
		regmap_read(regmap, REG_SPDIF_SCR, &val);
	} while ((val & SCR_SOFT_RESET) && cycle--);

351 352 353 354
	regcache_cache_bypass(regmap, false);
	regcache_mark_dirty(regmap);
	regcache_sync(regmap);

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	if (cycle)
		return 0;
	else
		return -EBUSY;
}

static void spdif_set_cstatus(struct spdif_mixer_control *ctrl,
				u8 mask, u8 cstatus)
{
	ctrl->ch_status[3] &= ~mask;
	ctrl->ch_status[3] |= cstatus & mask;
}

static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv)
{
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 ch_status;

	ch_status = (bitrev8(ctrl->ch_status[0]) << 16) |
376 377
		    (bitrev8(ctrl->ch_status[1]) << 8) |
		    bitrev8(ctrl->ch_status[2]);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	regmap_write(regmap, REG_SPDIF_STCSCH, ch_status);

	dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status);

	ch_status = bitrev8(ctrl->ch_status[3]) << 16;
	regmap_write(regmap, REG_SPDIF_STCSCL, ch_status);

	dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status);
}

/* Set SPDIF PhaseConfig register for rx clock */
static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv,
				enum spdif_gainsel gainsel, int dpll_locked)
{
	struct regmap *regmap = spdif_priv->regmap;
	u8 clksrc = spdif_priv->rxclk_src;

	if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX)
		return -EINVAL;

	regmap_update_bits(regmap, REG_SPDIF_SRPC,
			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
			SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel));

	return 0;
}

static int spdif_set_sample_rate(struct snd_pcm_substream *substream,
				int sample_rate)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
409
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
410 411 412 413 414
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	unsigned long csfs = 0;
	u32 stc, mask, rate;
415 416
	u16 sysclk_df;
	u8 clk, txclk_df;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int ret;

	switch (sample_rate) {
	case 32000:
		rate = SPDIF_TXRATE_32000;
		csfs = IEC958_AES3_CON_FS_32000;
		break;
	case 44100:
		rate = SPDIF_TXRATE_44100;
		csfs = IEC958_AES3_CON_FS_44100;
		break;
	case 48000:
		rate = SPDIF_TXRATE_48000;
		csfs = IEC958_AES3_CON_FS_48000;
		break;
432 433 434 435 436 437 438 439
	case 96000:
		rate = SPDIF_TXRATE_96000;
		csfs = IEC958_AES3_CON_FS_96000;
		break;
	case 192000:
		rate = SPDIF_TXRATE_192000;
		csfs = IEC958_AES3_CON_FS_192000;
		break;
440 441 442 443 444 445 446 447 448 449 450
	default:
		dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate);
		return -EINVAL;
	}

	clk = spdif_priv->txclk_src[rate];
	if (clk >= STC_TXCLK_SRC_MAX) {
		dev_err(&pdev->dev, "tx clock source is out of range\n");
		return -EINVAL;
	}

451 452 453
	txclk_df = spdif_priv->txclk_df[rate];
	if (txclk_df == 0) {
		dev_err(&pdev->dev, "the txclk_df can't be zero\n");
454 455 456
		return -EINVAL;
	}

457 458
	sysclk_df = spdif_priv->sysclk_df[rate];

459
	if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk))
460 461
		goto clk_set_bypass;

462 463 464
	/* The S/PDIF block needs a clock of 64 * fs * txclk_df */
	ret = clk_set_rate(spdif_priv->txclk[rate],
			   64 * sample_rate * txclk_df);
465 466 467 468 469
	if (ret) {
		dev_err(&pdev->dev, "failed to set tx clock rate\n");
		return ret;
	}

470
clk_set_bypass:
471
	dev_dbg(&pdev->dev, "expected clock rate = %d\n",
472
			(64 * sample_rate * txclk_df * sysclk_df));
473 474 475 476 477 478 479
	dev_dbg(&pdev->dev, "actual clock rate = %ld\n",
			clk_get_rate(spdif_priv->txclk[rate]));

	/* set fs field in consumer channel status */
	spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs);

	/* select clock source and divisor */
480 481 482 483
	stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) |
	      STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df);
	mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK |
	       STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK;
484 485
	regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc);

486 487
	dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n",
			spdif_priv->txrate[rate], sample_rate);
488 489 490 491

	return 0;
}

492 493
static int fsl_spdif_startup(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *cpu_dai)
494 495
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
496
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
497 498
	struct platform_device *pdev = spdif_priv->pdev;
	struct regmap *regmap = spdif_priv->regmap;
499
	u32 scr, mask;
500 501 502
	int ret;

	/* Reset module and interrupts only for first initialization */
503
	if (!snd_soc_dai_active(cpu_dai)) {
504 505 506
		ret = spdif_softreset(spdif_priv);
		if (ret) {
			dev_err(&pdev->dev, "failed to soft reset\n");
507
			return ret;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		}

		/* Disable all the interrupts */
		regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0);
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL |
			SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP |
			SCR_TXFIFO_FSEL_IF8;
		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
			SCR_TXFIFO_FSEL_MASK;
	} else {
		scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC;
		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
	}
	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);

	/* Power up SPDIF module */
	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0);

	return 0;
}

static void fsl_spdif_shutdown(struct snd_pcm_substream *substream,
				struct snd_soc_dai *cpu_dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
538
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
539
	struct regmap *regmap = spdif_priv->regmap;
540
	u32 scr, mask;
541 542 543 544 545 546 547 548 549 550 551 552 553 554

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		scr = 0;
		mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK |
			SCR_TXSEL_MASK | SCR_USRC_SEL_MASK |
			SCR_TXFIFO_FSEL_MASK;
	} else {
		scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO;
		mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK|
			SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK;
	}
	regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr);

	/* Power down SPDIF module only if tx&rx are both inactive */
555
	if (!snd_soc_dai_active(cpu_dai)) {
556 557 558 559 560 561 562 563 564 565 566
		spdif_intr_status_clear(spdif_priv);
		regmap_update_bits(regmap, REG_SPDIF_SCR,
				SCR_LOW_POWER, SCR_LOW_POWER);
	}
}

static int fsl_spdif_hw_params(struct snd_pcm_substream *substream,
				struct snd_pcm_hw_params *params,
				struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
567
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
568 569 570 571 572 573 574 575 576 577 578 579 580
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	struct platform_device *pdev = spdif_priv->pdev;
	u32 sample_rate = params_rate(params);
	int ret = 0;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		ret  = spdif_set_sample_rate(substream, sample_rate);
		if (ret) {
			dev_err(&pdev->dev, "%s: set sample rate failed: %d\n",
					__func__, sample_rate);
			return ret;
		}
		spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK,
581
				  IEC958_AES3_CON_CLOCK_1000PPM);
582 583 584 585 586 587 588 589 590 591 592 593 594
		spdif_write_channel_status(spdif_priv);
	} else {
		/* Setup rx clock source */
		ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1);
	}

	return ret;
}

static int fsl_spdif_trigger(struct snd_pcm_substream *substream,
				int cmd, struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
595
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
596
	struct regmap *regmap = spdif_priv->regmap;
597 598 599
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	u32 intr = SIE_INTR_FOR(tx);
	u32 dmaen = SCR_DMA_xX_EN(tx);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr);
		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0);
		regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

621
static const struct snd_soc_dai_ops fsl_spdif_dai_ops = {
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	.startup = fsl_spdif_startup,
	.hw_params = fsl_spdif_hw_params,
	.trigger = fsl_spdif_trigger,
	.shutdown = fsl_spdif_shutdown,
};


/*
 * FSL SPDIF IEC958 controller(mixer) functions
 *
 *	Channel status get/put control
 *	User bit value get/put control
 *	Valid bit value get control
 *	DPLL lock status get control
 *	User bit sync mode selection control
 */

static int fsl_spdif_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;

	return 0;
}

static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *uvalue)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;

	uvalue->value.iec958.status[0] = ctrl->ch_status[0];
	uvalue->value.iec958.status[1] = ctrl->ch_status[1];
	uvalue->value.iec958.status[2] = ctrl->ch_status[2];
	uvalue->value.iec958.status[3] = ctrl->ch_status[3];

	return 0;
}

static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *uvalue)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;

	ctrl->ch_status[0] = uvalue->value.iec958.status[0];
	ctrl->ch_status[1] = uvalue->value.iec958.status[1];
	ctrl->ch_status[2] = uvalue->value.iec958.status[2];
	ctrl->ch_status[3] = uvalue->value.iec958.status[3];

	spdif_write_channel_status(spdif_priv);

	return 0;
}

/* Get channel status from SPDIF_RX_CCHAN register */
static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 cstatus, val;

	regmap_read(regmap, REG_SPDIF_SIS, &val);
690
	if (!(val & INT_CNEW))
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
		return -EAGAIN;

	regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus);
	ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF;
	ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF;
	ucontrol->value.iec958.status[2] = cstatus & 0xFF;

	regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus);
	ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF;
	ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF;
	ucontrol->value.iec958.status[5] = cstatus & 0xFF;

	/* Clear intr */
	regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW);

	return 0;
}

/*
 * Get User bits (subcode) from chip value which readed out
 * in UChannel register.
 */
static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	unsigned long flags;
720
	int ret = -EAGAIN;
721 722 723 724 725 726

	spin_lock_irqsave(&ctrl->ctl_lock, flags);
	if (ctrl->ready_buf) {
		int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE;
		memcpy(&ucontrol->value.iec958.subcode[0],
				&ctrl->subcode[idx], SPDIF_UBITS_SIZE);
727
		ret = 0;
728 729 730 731 732 733
	}
	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);

	return ret;
}

734
/* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
	uinfo->count = SPDIF_QSUB_SIZE;

	return 0;
}

/* Get Q subcode from chip value which readed out in QChannel register */
static int fsl_spdif_qget(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control;
	unsigned long flags;
752
	int ret = -EAGAIN;
753 754 755 756 757 758

	spin_lock_irqsave(&ctrl->ctl_lock, flags);
	if (ctrl->ready_buf) {
		int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE;
		memcpy(&ucontrol->value.bytes.data[0],
				&ctrl->qsub[idx], SPDIF_QSUB_SIZE);
759
		ret = 0;
760 761 762 763 764 765
	}
	spin_unlock_irqrestore(&ctrl->ctl_lock, flags);

	return ret;
}

766
/* Valid bit information */
767 768 769 770 771 772 773 774 775 776 777 778
static int fsl_spdif_vbit_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 1;

	return 0;
}

/* Get valid good bit from interrupt status register */
779 780
static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
781 782 783 784 785 786
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

787
	regmap_read(regmap, REG_SPDIF_SIS, &val);
788 789 790 791 792 793
	ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0;
	regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD);

	return 0;
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SCR, &val);
	val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET;
	val = 1 - val;
	ucontrol->value.integer.value[0] = val;

	return 0;
}

static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET;

	regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val);

	return 0;
}

823
/* DPLL lock information */
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = 16000;
	uinfo->value.integer.max = 96000;

	return 0;
}

static u32 gainsel_multi[GAINSEL_MULTI_MAX] = {
	24, 16, 12, 8, 6, 4, 3,
};

/* Get RX data clock rate given the SPDIF bus_clk */
static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv,
				enum spdif_gainsel gainsel)
{
	struct regmap *regmap = spdif_priv->regmap;
	struct platform_device *pdev = spdif_priv->pdev;
	u64 tmpval64, busclk_freq = 0;
	u32 freqmeas, phaseconf;
	u8 clksrc;

	regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas);
	regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf);

	clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf;
853 854 855

	/* Get bus clock from system */
	if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED))
856
		busclk_freq = clk_get_rate(spdif_priv->sysclk);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

	/* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */
	tmpval64 = (u64) busclk_freq * freqmeas;
	do_div(tmpval64, gainsel_multi[gainsel] * 1024);
	do_div(tmpval64, 128 * 1024);

	dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas);
	dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq);
	dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64);

	return (int)tmpval64;
}

/*
 * Get DPLL lock or not info from stable interrupt status register.
 * User application must use this control to get locked,
 * then can do next PCM operation
 */
static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
880
	int rate = 0;
881 882

	if (spdif_priv->dpll_locked)
883 884 885
		rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL);

	ucontrol->value.integer.value[0] = rate;
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	return 0;
}

/* User bit sync mode info */
static int fsl_spdif_usync_info(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
	uinfo->count = 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 1;

	return 0;
}

/*
 * User bit sync mode:
 * 1 CD User channel subcode
 * 0 Non-CD data
 */
static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol,
			       struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val;

	regmap_read(regmap, REG_SPDIF_SRCD, &val);
	ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0;

	return 0;
}

/*
 * User bit sync mode:
 * 1 CD User channel subcode
 * 0 Non-CD data
 */
static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai);
	struct regmap *regmap = spdif_priv->regmap;
	u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET;

	regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val);

	return 0;
}

/* FSL SPDIF IEC958 controller defines */
static struct snd_kcontrol_new fsl_spdif_ctrls[] = {
	/* Status cchanel controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_pb_get,
		.put = fsl_spdif_pb_put,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_capture_get,
	},
	/* User bits controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 Subcode Capture Default",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_info,
		.get = fsl_spdif_subcode_get,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 Q-subcode Capture Default",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_qinfo,
		.get = fsl_spdif_qget,
	},
	/* Valid bit error controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
980
		.name = "IEC958 RX V-Bit Errors",
981 982 983
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_vbit_info,
984 985 986 987 988 989 990 991 992 993 994
		.get = fsl_spdif_rx_vbit_get,
	},
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 TX V-Bit",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_vbit_info,
		.get = fsl_spdif_tx_vbit_get,
		.put = fsl_spdif_tx_vbit_put,
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	},
	/* DPLL lock info get controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "RX Sample Rate",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_rxrate_info,
		.get = fsl_spdif_rxrate_get,
	},
	/* User bit sync mode set/get controller */
	{
		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
		.name = "IEC958 USyncMode CDText",
		.access = SNDRV_CTL_ELEM_ACCESS_READ |
			SNDRV_CTL_ELEM_ACCESS_WRITE |
			SNDRV_CTL_ELEM_ACCESS_VOLATILE,
		.info = fsl_spdif_usync_info,
		.get = fsl_spdif_usync_get,
		.put = fsl_spdif_usync_put,
	},
};

static int fsl_spdif_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai);

1022 1023
	snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx,
				  &spdif_private->dma_params_rx);
1024 1025 1026

	snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls));

1027 1028 1029 1030
	/*Clear the val bit for Tx*/
	regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR,
			   SCR_VAL_MASK, SCR_VAL_CLEAR);

1031 1032 1033
	return 0;
}

1034
static struct snd_soc_dai_driver fsl_spdif_dai = {
1035 1036
	.probe = &fsl_spdif_dai_probe,
	.playback = {
1037
		.stream_name = "CPU-Playback",
1038 1039 1040 1041 1042 1043
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSL_SPDIF_RATES_PLAYBACK,
		.formats = FSL_SPDIF_FORMATS_PLAYBACK,
	},
	.capture = {
1044
		.stream_name = "CPU-Capture",
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSL_SPDIF_RATES_CAPTURE,
		.formats = FSL_SPDIF_FORMATS_CAPTURE,
	},
	.ops = &fsl_spdif_dai_ops,
};

static const struct snd_soc_component_driver fsl_spdif_component = {
	.name		= "fsl-spdif",
};

1057
/* FSL SPDIF REGMAP */
1058
static const struct reg_default fsl_spdif_reg_defaults[] = {
1059 1060 1061 1062 1063 1064 1065 1066
	{REG_SPDIF_SCR,    0x00000400},
	{REG_SPDIF_SRCD,   0x00000000},
	{REG_SPDIF_SIE,	   0x00000000},
	{REG_SPDIF_STL,	   0x00000000},
	{REG_SPDIF_STR,	   0x00000000},
	{REG_SPDIF_STCSCH, 0x00000000},
	{REG_SPDIF_STCSCL, 0x00000000},
	{REG_SPDIF_STC,	   0x00020f00},
1067
};
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SCR:
	case REG_SPDIF_SRCD:
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIE:
	case REG_SPDIF_SIS:
	case REG_SPDIF_SRL:
	case REG_SPDIF_SRR:
	case REG_SPDIF_SRCSH:
	case REG_SPDIF_SRCSL:
	case REG_SPDIF_SRU:
	case REG_SPDIF_SRQ:
	case REG_SPDIF_STCSCH:
	case REG_SPDIF_STCSCL:
	case REG_SPDIF_SRFM:
	case REG_SPDIF_STC:
		return true;
	default:
		return false;
1090
	}
1091 1092
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIS:
	case REG_SPDIF_SRL:
	case REG_SPDIF_SRR:
	case REG_SPDIF_SRCSH:
	case REG_SPDIF_SRCSL:
	case REG_SPDIF_SRU:
	case REG_SPDIF_SRQ:
	case REG_SPDIF_SRFM:
		return true;
	default:
		return false;
	}
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_SPDIF_SCR:
	case REG_SPDIF_SRCD:
	case REG_SPDIF_SRPC:
	case REG_SPDIF_SIE:
	case REG_SPDIF_SIC:
	case REG_SPDIF_STL:
	case REG_SPDIF_STR:
	case REG_SPDIF_STCSCH:
	case REG_SPDIF_STCSCL:
	case REG_SPDIF_STC:
		return true;
	default:
		return false;
1127
	}
1128 1129
}

1130
static const struct regmap_config fsl_spdif_regmap_config = {
1131 1132 1133 1134 1135
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = REG_SPDIF_STC,
1136 1137
	.reg_defaults = fsl_spdif_reg_defaults,
	.num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults),
1138
	.readable_reg = fsl_spdif_readable_reg,
1139
	.volatile_reg = fsl_spdif_volatile_reg,
1140
	.writeable_reg = fsl_spdif_writeable_reg,
1141
	.cache_type = REGCACHE_FLAT,
1142 1143 1144 1145
};

static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv,
				struct clk *clk, u64 savesub,
1146
				enum spdif_txrate index, bool round)
1147
{
1148
	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1149
	bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk);
1150
	u64 rate_ideal, rate_actual, sub;
1151 1152 1153
	u32 arate;
	u16 sysclk_dfmin, sysclk_dfmax, sysclk_df;
	u8 txclk_df;
1154 1155 1156 1157 1158 1159 1160

	/* The sysclk has an extra divisor [2, 512] */
	sysclk_dfmin = is_sysclk ? 2 : 1;
	sysclk_dfmax = is_sysclk ? 512 : 1;

	for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) {
		for (txclk_df = 1; txclk_df <= 128; txclk_df++) {
1161
			rate_ideal = rate[index] * txclk_df * 64ULL;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			if (round)
				rate_actual = clk_round_rate(clk, rate_ideal);
			else
				rate_actual = clk_get_rate(clk);

			arate = rate_actual / 64;
			arate /= txclk_df * sysclk_df;

			if (arate == rate[index]) {
				/* We are lucky */
				savesub = 0;
				spdif_priv->txclk_df[index] = txclk_df;
				spdif_priv->sysclk_df[index] = sysclk_df;
1175
				spdif_priv->txrate[index] = arate;
1176 1177 1178
				goto out;
			} else if (arate / rate[index] == 1) {
				/* A little bigger than expect */
1179
				sub = (u64)(arate - rate[index]) * 100000;
1180 1181 1182
				do_div(sub, rate[index]);
				if (sub >= savesub)
					continue;
1183
				savesub = sub;
1184
				spdif_priv->txclk_df[index] = txclk_df;
1185
				spdif_priv->sysclk_df[index] = sysclk_df;
1186
				spdif_priv->txrate[index] = arate;
1187 1188
			} else if (rate[index] / arate == 1) {
				/* A little smaller than expect */
1189
				sub = (u64)(rate[index] - arate) * 100000;
1190 1191 1192
				do_div(sub, rate[index]);
				if (sub >= savesub)
					continue;
1193
				savesub = sub;
1194
				spdif_priv->txclk_df[index] = txclk_df;
1195
				spdif_priv->sysclk_df[index] = sysclk_df;
1196
				spdif_priv->txrate[index] = arate;
1197 1198 1199 1200
			}
		}
	}

1201
out:
1202 1203 1204 1205 1206 1207
	return savesub;
}

static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv,
				enum spdif_txrate index)
{
1208
	static const u32 rate[] = { 32000, 44100, 48000, 96000, 192000 };
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	struct platform_device *pdev = spdif_priv->pdev;
	struct device *dev = &pdev->dev;
	u64 savesub = 100000, ret;
	struct clk *clk;
	char tmp[16];
	int i;

	for (i = 0; i < STC_TXCLK_SRC_MAX; i++) {
		sprintf(tmp, "rxtx%d", i);
		clk = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(clk)) {
			dev_err(dev, "no rxtx%d clock in devicetree\n", i);
			return PTR_ERR(clk);
		}
		if (!clk_get_rate(clk))
			continue;

1226
		ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index,
1227
					     fsl_spdif_can_set_clk_rate(spdif_priv, i));
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		if (savesub == ret)
			continue;

		savesub = ret;
		spdif_priv->txclk[index] = clk;
		spdif_priv->txclk_src[index] = i;

		/* To quick catch a divisor, we allow a 0.1% deviation */
		if (savesub < 100)
			break;
	}

1240
	dev_dbg(&pdev->dev, "use rxtx%d as tx clock source for %dHz sample rate\n",
1241
			spdif_priv->txclk_src[index], rate[index]);
1242 1243
	dev_dbg(&pdev->dev, "use txclk df %d for %dHz sample rate\n",
			spdif_priv->txclk_df[index], rate[index]);
1244
	if (clk_is_match(spdif_priv->txclk[index], spdif_priv->sysclk))
1245 1246
		dev_dbg(&pdev->dev, "use sysclk df %d for %dHz sample rate\n",
				spdif_priv->sysclk_df[index], rate[index]);
1247 1248
	dev_dbg(&pdev->dev, "the best rate for %dHz sample rate is %dHz\n",
			rate[index], spdif_priv->txrate[index]);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	return 0;
}

static int fsl_spdif_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_spdif_priv *spdif_priv;
	struct spdif_mixer_control *ctrl;
	struct resource *res;
	void __iomem *regs;
	int irq, ret, i;

	if (!np)
		return -ENODEV;

1265
	spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL);
1266 1267 1268 1269 1270
	if (!spdif_priv)
		return -ENOMEM;

	spdif_priv->pdev = pdev;

1271 1272 1273 1274 1275 1276
	spdif_priv->soc = of_device_get_match_data(&pdev->dev);
	if (!spdif_priv->soc) {
		dev_err(&pdev->dev, "failed to get soc data\n");
		return -ENODEV;
	}

1277 1278
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai));
1279
	spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev);
1280 1281 1282 1283

	/* Get the addresses and IRQ */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	regs = devm_ioremap_resource(&pdev->dev, res);
1284
	if (IS_ERR(regs))
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		return PTR_ERR(regs);

	spdif_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
			"core", regs, &fsl_spdif_regmap_config);
	if (IS_ERR(spdif_priv->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(spdif_priv->regmap);
	}

	irq = platform_get_irq(pdev, 0);
1295
	if (irq < 0)
1296 1297 1298
		return irq;

	ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0,
1299
			       dev_name(&pdev->dev), spdif_priv);
1300 1301 1302 1303 1304
	if (ret) {
		dev_err(&pdev->dev, "could not claim irq %u\n", irq);
		return ret;
	}

1305 1306 1307 1308 1309 1310 1311
	/* Get system clock for rx clock rate calculation */
	spdif_priv->sysclk = devm_clk_get(&pdev->dev, "rxtx5");
	if (IS_ERR(spdif_priv->sysclk)) {
		dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n");
		return PTR_ERR(spdif_priv->sysclk);
	}

1312 1313 1314 1315 1316 1317 1318
	/* Get core clock for data register access via DMA */
	spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(spdif_priv->coreclk)) {
		dev_err(&pdev->dev, "no core clock in devicetree\n");
		return PTR_ERR(spdif_priv->coreclk);
	}

1319 1320 1321 1322
	spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
	if (IS_ERR(spdif_priv->spbaclk))
		dev_warn(&pdev->dev, "no spba clock in devicetree\n");

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/* Select clock source for rx/tx clock */
	spdif_priv->rxclk = devm_clk_get(&pdev->dev, "rxtx1");
	if (IS_ERR(spdif_priv->rxclk)) {
		dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n");
		return PTR_ERR(spdif_priv->rxclk);
	}
	spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC;

	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
		ret = fsl_spdif_probe_txclk(spdif_priv, i);
		if (ret)
			return ret;
	}

	/* Initial spinlock for control data */
	ctrl = &spdif_priv->fsl_spdif_control;
	spin_lock_init(&ctrl->ctl_lock);

	/* Init tx channel status default value */
1342 1343
	ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT |
			     IEC958_AES0_CON_EMPHASIS_5015;
1344 1345
	ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID;
	ctrl->ch_status[2] = 0x00;
1346 1347
	ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 |
			     IEC958_AES3_CON_CLOCK_1000PPM;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	spdif_priv->dpll_locked = false;

	spdif_priv->dma_params_tx.maxburst = FSL_SPDIF_TXFIFO_WML;
	spdif_priv->dma_params_rx.maxburst = FSL_SPDIF_RXFIFO_WML;
	spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL;
	spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL;

	/* Register with ASoC */
	dev_set_drvdata(&pdev->dev, spdif_priv);
1358 1359
	pm_runtime_enable(&pdev->dev);
	regcache_cache_only(spdif_priv->regmap, true);
1360

1361 1362
	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component,
					      &spdif_priv->cpu_dai_drv, 1);
1363 1364
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1365
		return ret;
1366 1367
	}

1368
	ret = imx_pcm_dma_init(pdev, IMX_SPDIF_DMABUF_SIZE);
1369
	if (ret && ret != -EPROBE_DEFER)
1370 1371 1372 1373 1374
		dev_err(&pdev->dev, "imx_pcm_dma_init failed: %d\n", ret);

	return ret;
}

1375 1376
#ifdef CONFIG_PM
static int fsl_spdif_runtime_suspend(struct device *dev)
1377 1378
{
	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1379
	int i;
1380 1381 1382 1383

	regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC,
			&spdif_priv->regcache_srpc);
	regcache_cache_only(spdif_priv->regmap, true);
1384 1385 1386 1387 1388 1389 1390 1391 1392

	clk_disable_unprepare(spdif_priv->rxclk);

	for (i = 0; i < SPDIF_TXRATE_MAX; i++)
		clk_disable_unprepare(spdif_priv->txclk[i]);

	if (!IS_ERR(spdif_priv->spbaclk))
		clk_disable_unprepare(spdif_priv->spbaclk);
	clk_disable_unprepare(spdif_priv->coreclk);
1393 1394 1395 1396

	return 0;
}

1397
static int fsl_spdif_runtime_resume(struct device *dev)
1398 1399
{
	struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	int ret;
	int i;

	ret = clk_prepare_enable(spdif_priv->coreclk);
	if (ret) {
		dev_err(dev, "failed to enable core clock\n");
		return ret;
	}

	if (!IS_ERR(spdif_priv->spbaclk)) {
		ret = clk_prepare_enable(spdif_priv->spbaclk);
		if (ret) {
			dev_err(dev, "failed to enable spba clock\n");
			goto disable_core_clk;
		}
	}

	for (i = 0; i < SPDIF_TXRATE_MAX; i++) {
		ret = clk_prepare_enable(spdif_priv->txclk[i]);
		if (ret)
			goto disable_tx_clk;
	}

	ret = clk_prepare_enable(spdif_priv->rxclk);
	if (ret)
		goto disable_tx_clk;
1426 1427

	regcache_cache_only(spdif_priv->regmap, false);
1428
	regcache_mark_dirty(spdif_priv->regmap);
1429 1430 1431 1432 1433

	regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC,
			SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK,
			spdif_priv->regcache_srpc);

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	ret = regcache_sync(spdif_priv->regmap);
	if (ret)
		goto disable_rx_clk;

	return 0;

disable_rx_clk:
	clk_disable_unprepare(spdif_priv->rxclk);
disable_tx_clk:
	for (i--; i >= 0; i--)
		clk_disable_unprepare(spdif_priv->txclk[i]);
	if (!IS_ERR(spdif_priv->spbaclk))
		clk_disable_unprepare(spdif_priv->spbaclk);
disable_core_clk:
	clk_disable_unprepare(spdif_priv->coreclk);

	return ret;
1451
}
1452
#endif /* CONFIG_PM */
1453 1454

static const struct dev_pm_ops fsl_spdif_pm = {
1455 1456 1457 1458
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
	SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume,
			   NULL)
1459 1460
};

1461
static const struct of_device_id fsl_spdif_dt_ids[] = {
1462 1463 1464
	{ .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, },
	{ .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, },
	{ .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, },
1465 1466 1467 1468 1469 1470 1471 1472
	{}
};
MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids);

static struct platform_driver fsl_spdif_driver = {
	.driver = {
		.name = "fsl-spdif-dai",
		.of_match_table = fsl_spdif_dt_ids,
1473
		.pm = &fsl_spdif_pm,
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	},
	.probe = fsl_spdif_probe,
};

module_platform_driver(fsl_spdif_driver);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-spdif-dai");