blk-mq.c 72.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294 295
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
296
	if (blk_queue_io_stat(data->q))
297
		rq->rq_flags |= RQF_IO_STAT;
298 299 300 301 302 303
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
307
	set_start_time_ns(rq);
308 309 310 311 312 313 314 315 316 317 318
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
319 320
	rq->timeout = 0;

321 322 323 324
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

325 326
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
327 328
}

329 330 331 332 333 334
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
335
	unsigned int tag;
336
	bool put_ctx_on_error = false;
337 338 339

	blk_queue_enter_live(q);
	data->q = q;
340 341 342 343
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
344 345
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
364 365
			data->ctx = NULL;
		}
366 367
		blk_queue_exit(q);
		return NULL;
368 369
	}

370
	rq = blk_mq_rq_ctx_init(data, tag, op);
371 372
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
373
		if (e && e->type->ops.mq.prepare_request) {
374 375 376
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

377 378
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
379
		}
380 381 382
	}
	data->hctx->queued++;
	return rq;
383 384
}

385
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386
		blk_mq_req_flags_t flags)
387
{
388
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389
	struct request *rq;
390
	int ret;
391

392
	ret = blk_queue_enter(q, flags);
393 394
	if (ret)
		return ERR_PTR(ret);
395

396
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397
	blk_queue_exit(q);
398

399
	if (!rq)
400
		return ERR_PTR(-EWOULDBLOCK);
401

402 403
	blk_mq_put_ctx(alloc_data.ctx);

404 405 406
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
407 408
	return rq;
}
409
EXPORT_SYMBOL(blk_mq_alloc_request);
410

411
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
413
{
414
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
415
	struct request *rq;
416
	unsigned int cpu;
M
Ming Lin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

431
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
432 433 434
	if (ret)
		return ERR_PTR(ret);

435 436 437 438
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
439 440 441 442
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
443
	}
444 445
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450 451 452 453
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
454 455 456
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

457
void blk_mq_free_request(struct request *rq)
458 459
{
	struct request_queue *q = rq->q;
460 461 462 463 464
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

465
	if (rq->rq_flags & RQF_ELVPRIV) {
466 467 468 469 470 471 472
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
473

474
	ctx->rq_completed[rq_is_sync(rq)]++;
475
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
477

478 479 480
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
481
	wbt_done(q->rq_wb, &rq->issue_stat);
482

S
Shaohua Li 已提交
483 484 485
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

486
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 489 490
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
491
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492
	blk_mq_sched_restart(hctx);
493
	blk_queue_exit(q);
494
}
J
Jens Axboe 已提交
495
EXPORT_SYMBOL_GPL(blk_mq_free_request);
496

497
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498
{
M
Ming Lei 已提交
499 500
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
501
	if (rq->end_io) {
J
Jens Axboe 已提交
502
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
504 505 506
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
507
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
508
	}
509
}
510
EXPORT_SYMBOL(__blk_mq_end_request);
511

512
void blk_mq_end_request(struct request *rq, blk_status_t error)
513 514 515
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
516
	__blk_mq_end_request(rq, error);
517
}
518
EXPORT_SYMBOL(blk_mq_end_request);
519

520
static void __blk_mq_complete_request_remote(void *data)
521
{
522
	struct request *rq = data;
523

524
	rq->q->softirq_done_fn(rq);
525 526
}

527
static void __blk_mq_complete_request(struct request *rq)
528 529
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
530
	bool shared = false;
531 532
	int cpu;

533 534 535 536 537 538 539
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
540
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 542 543
		rq->q->softirq_done_fn(rq);
		return;
	}
544 545

	cpu = get_cpu();
C
Christoph Hellwig 已提交
546 547 548 549
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550
		rq->csd.func = __blk_mq_complete_request_remote;
551 552
		rq->csd.info = rq;
		rq->csd.flags = 0;
553
		smp_call_function_single_async(ctx->cpu, &rq->csd);
554
	} else {
555
		rq->q->softirq_done_fn(rq);
556
	}
557 558
	put_cpu();
}
559 560 561 562 563 564 565 566 567

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
568
void blk_mq_complete_request(struct request *rq)
569
{
570 571 572
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
573
		return;
574
	if (!blk_mark_rq_complete(rq))
575
		__blk_mq_complete_request(rq);
576 577
}
EXPORT_SYMBOL(blk_mq_complete_request);
578

579 580 581 582 583 584
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

585
void blk_mq_start_request(struct request *rq)
586 587 588
{
	struct request_queue *q = rq->q;

589 590
	blk_mq_sched_started_request(rq);

591 592
	trace_block_rq_issue(q, rq);

593
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
596
		wbt_issue(q->rq_wb, &rq->issue_stat);
597 598
	}

599
	blk_add_timer(rq);
600

601
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
602

603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
608 609 610 611
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
612
	 */
613 614 615 616 617 618 619 620 621 622 623 624
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
625
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
626
	}
627 628 629 630 631 632 633 634 635

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
636
}
637
EXPORT_SYMBOL(blk_mq_start_request);
638

639 640
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641
 * flag isn't set yet, so there may be race with timeout handler,
642 643 644 645 646 647
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
648
static void __blk_mq_requeue_request(struct request *rq)
649 650 651
{
	struct request_queue *q = rq->q;

652 653
	blk_mq_put_driver_tag(rq);

654
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
655
	wbt_requeue(q->rq_wb, &rq->issue_stat);
656
	blk_mq_sched_requeue_request(rq);
657

658 659 660 661
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
662 663
}

664
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 666 667 668
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
669
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 671 672
}
EXPORT_SYMBOL(blk_mq_requeue_request);

673 674 675
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
676
		container_of(work, struct request_queue, requeue_work.work);
677 678 679
	LIST_HEAD(rq_list);
	struct request *rq, *next;

680
	spin_lock_irq(&q->requeue_lock);
681
	list_splice_init(&q->requeue_list, &rq_list);
682
	spin_unlock_irq(&q->requeue_lock);
683 684

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 687
			continue;

688
		rq->rq_flags &= ~RQF_SOFTBARRIER;
689
		list_del_init(&rq->queuelist);
690
		blk_mq_sched_insert_request(rq, true, false, false, true);
691 692 693 694 695
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
696
		blk_mq_sched_insert_request(rq, false, false, false, true);
697 698
	}

699
	blk_mq_run_hw_queues(q, false);
700 701
}

702 703
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
704 705 706 707 708 709
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
710
	 * request head insertion from the workqueue.
711
	 */
712
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713 714 715

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
716
		rq->rq_flags |= RQF_SOFTBARRIER;
717 718 719 720 721
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
722 723 724

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
725 726 727 728 729
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
730
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 732 733
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

734 735 736
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
737 738
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
739 740 741
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

742 743
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
744 745
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
746
		return tags->rqs[tag];
747
	}
748 749

	return NULL;
750 751 752
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

753
struct blk_mq_timeout_data {
754 755
	unsigned long next;
	unsigned int next_set;
756 757
};

758
void blk_mq_rq_timed_out(struct request *req, bool reserved)
759
{
J
Jens Axboe 已提交
760
	const struct blk_mq_ops *ops = req->q->mq_ops;
761
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762 763 764 765 766 767 768

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
769
	 * both flags will get cleared. So check here again, and ignore
770 771
	 * a timeout event with a request that isn't active.
	 */
772 773
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
774

775
	if (ops->timeout)
776
		ret = ops->timeout(req, reserved);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
792
}
793

794 795 796 797
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
798
	unsigned long deadline;
799

800
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801
		return;
802

803 804 805 806 807 808 809 810
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

811 812 813 814 815 816 817 818 819 820 821 822 823
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
824 825 826 827 828 829 830 831 832 833
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
834
			blk_mq_rq_timed_out(rq, reserved);
835 836 837
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
838 839
		data->next_set = 1;
	}
840 841
}

842
static void blk_mq_timeout_work(struct work_struct *work)
843
{
844 845
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
846 847 848 849 850
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
851

852 853 854 855 856 857 858 859 860
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
861
	 * blk_freeze_queue_start, and the moment the last request is
862 863 864 865
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
866 867
		return;

868
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869

870 871 872
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
873
	} else {
874 875
		struct blk_mq_hw_ctx *hctx;

876 877 878 879 880
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
881
	}
882
	blk_queue_exit(q);
883 884
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

903 904 905 906
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
907
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908
{
909 910 911 912
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
913

914
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915
}
916
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

957 958 959 960
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
961

962
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 964
}

965 966
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
967 968 969 970 971 972 973
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

974 975
	might_sleep_if(wait);

976 977
	if (rq->tag != -1)
		goto done;
978

979 980 981
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

982 983
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
984 985 986 987
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
988 989 990
		data.hctx->tags->rqs[rq->tag] = rq;
	}

991 992 993 994
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
995 996
}

997 998
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
999 1000 1001 1002 1003
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1004
	list_del_init(&wait->entry);
1005 1006 1007 1008
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1017
{
1018
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1019
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1020
	struct sbq_wait_state *ws;
1021 1022
	wait_queue_entry_t *wait;
	bool ret;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1037

1038 1039
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1040 1041
	}

1042
	/*
1043 1044 1045
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1046
	 */
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1068
		spin_unlock(&this_hctx->lock);
1069
		return true;
1070
	}
1071 1072
}

1073
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1074
			     bool got_budget)
1075
{
1076
	struct blk_mq_hw_ctx *hctx;
1077
	struct request *rq, *nxt;
1078
	bool no_tag = false;
1079
	int errors, queued;
1080

1081 1082 1083
	if (list_empty(list))
		return false;

1084 1085
	WARN_ON(!list_is_singular(list) && got_budget);

1086 1087 1088
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1089
	errors = queued = 0;
1090
	do {
1091
		struct blk_mq_queue_data bd;
1092
		blk_status_t ret;
1093

1094
		rq = list_first_entry(list, struct request, queuelist);
1095
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1096
			/*
1097
			 * The initial allocation attempt failed, so we need to
1098 1099 1100 1101
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1102
			 */
1103
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1104 1105
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1106 1107 1108 1109 1110 1111
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1112 1113 1114 1115
				break;
			}
		}

1116 1117
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1118
			break;
1119
		}
1120

1121 1122
		list_del_init(&rq->queuelist);

1123
		bd.rq = rq;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1135 1136

		ret = q->mq_ops->queue_rq(hctx, &bd);
1137
		if (ret == BLK_STS_RESOURCE) {
1138 1139
			/*
			 * If an I/O scheduler has been configured and we got a
1140 1141
			 * driver tag for the next request already, free it
			 * again.
1142 1143 1144 1145 1146
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1147
			list_add(&rq->queuelist, list);
1148
			__blk_mq_requeue_request(rq);
1149
			break;
1150 1151 1152
		}

		if (unlikely(ret != BLK_STS_OK)) {
1153
			errors++;
1154
			blk_mq_end_request(rq, BLK_STS_IOERR);
1155
			continue;
1156 1157
		}

1158
		queued++;
1159
	} while (!list_empty(list));
1160

1161
	hctx->dispatched[queued_to_index(queued)]++;
1162 1163 1164 1165 1166

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1167
	if (!list_empty(list)) {
1168
		spin_lock(&hctx->lock);
1169
		list_splice_init(list, &hctx->dispatch);
1170
		spin_unlock(&hctx->lock);
1171

1172
		/*
1173 1174 1175
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1176
		 *
1177 1178 1179 1180
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1181
		 *
1182 1183 1184 1185 1186 1187 1188
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1189
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1190
		 *   and dm-rq.
1191
		 */
1192 1193
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1194
			blk_mq_run_hw_queue(hctx, true);
1195
	}
1196

1197
	return (queued + errors) != 0;
1198 1199
}

1200 1201 1202 1203
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1204 1205 1206 1207
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1208 1209 1210
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1211 1212 1213 1214 1215 1216
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1217 1218
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1219
		blk_mq_sched_dispatch_requests(hctx);
1220 1221
		rcu_read_unlock();
	} else {
1222 1223
		might_sleep();

1224
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1225
		blk_mq_sched_dispatch_requests(hctx);
1226
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1227 1228 1229
	}
}

1230 1231 1232 1233 1234 1235 1236 1237
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1238 1239
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1240 1241

	if (--hctx->next_cpu_batch <= 0) {
1242
		int next_cpu;
1243 1244 1245 1246 1247 1248 1249 1250 1251

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1252
	return hctx->next_cpu;
1253 1254
}

1255 1256
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1257
{
1258 1259 1260 1261
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1262 1263
		return;

1264
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1265 1266
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1267
			__blk_mq_run_hw_queue(hctx);
1268
			put_cpu();
1269 1270
			return;
		}
1271

1272
		put_cpu();
1273
	}
1274

1275 1276 1277
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1278 1279 1280 1281 1282 1283 1284 1285
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1286
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1287
{
1288 1289 1290 1291 1292 1293
	if (blk_mq_hctx_has_pending(hctx)) {
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1294
}
O
Omar Sandoval 已提交
1295
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1296

1297
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1298 1299 1300 1301 1302
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1303
		if (blk_mq_hctx_stopped(hctx))
1304 1305
			continue;

1306
		blk_mq_run_hw_queue(hctx, async);
1307 1308
	}
}
1309
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1331 1332 1333
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1334
 * BLK_STS_RESOURCE is usually returned.
1335 1336 1337 1338 1339
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1340 1341
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1342
	cancel_delayed_work(&hctx->run_work);
1343

1344
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1345
}
1346
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1347

1348 1349 1350
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1351
 * BLK_STS_RESOURCE is usually returned.
1352 1353 1354 1355 1356
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1357 1358
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1359 1360 1361 1362 1363
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1364 1365 1366
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1367 1368 1369
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1370

1371
	blk_mq_run_hw_queue(hctx, false);
1372 1373 1374
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1395
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1396 1397 1398 1399
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1400 1401
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1402 1403 1404
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1405
static void blk_mq_run_work_fn(struct work_struct *work)
1406 1407 1408
{
	struct blk_mq_hw_ctx *hctx;

1409
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1410

1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1419

1420 1421 1422
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1423 1424 1425 1426

	__blk_mq_run_hw_queue(hctx);
}

1427 1428 1429

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1430
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1431
		return;
1432

1433 1434 1435 1436 1437
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1438
	blk_mq_stop_hw_queue(hctx);
1439 1440 1441 1442
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1443 1444 1445
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1446 1447 1448
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1449
{
J
Jens Axboe 已提交
1450 1451
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1452 1453
	lockdep_assert_held(&ctx->lock);

1454 1455
	trace_block_rq_insert(hctx->queue, rq);

1456 1457 1458 1459
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1460
}
1461

1462 1463
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1464 1465 1466
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1467 1468
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1469
	__blk_mq_insert_req_list(hctx, rq, at_head);
1470 1471 1472
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1473 1474 1475 1476
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1477
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1478 1479 1480 1481 1482 1483 1484 1485
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1486 1487
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1488 1489
}

1490 1491
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1503
		BUG_ON(rq->mq_ctx != ctx);
1504
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1505
		__blk_mq_insert_req_list(hctx, rq, false);
1506
	}
1507
	blk_mq_hctx_mark_pending(hctx, ctx);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1544 1545 1546 1547
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1564 1565 1566
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1567 1568 1569 1570 1571
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1572
	blk_init_request_from_bio(rq, bio);
1573

S
Shaohua Li 已提交
1574 1575
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1576
	blk_account_io_start(rq, true);
1577 1578
}

1579 1580 1581 1582 1583 1584 1585
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1586
}
1587

1588 1589
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1590 1591 1592 1593
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1594 1595
}

M
Ming Lei 已提交
1596 1597 1598
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1599 1600 1601 1602
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1603
		.last = true,
1604
	};
1605
	blk_qc_t new_cookie;
1606
	blk_status_t ret;
M
Ming Lei 已提交
1607 1608
	bool run_queue = true;

1609 1610
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1611 1612 1613
		run_queue = false;
		goto insert;
	}
1614

1615
	if (q->elevator)
1616 1617
		goto insert;

M
Ming Lei 已提交
1618
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1619 1620
		goto insert;

1621
	if (!blk_mq_get_dispatch_budget(hctx)) {
1622 1623
		blk_mq_put_driver_tag(rq);
		goto insert;
1624
	}
1625

1626 1627
	new_cookie = request_to_qc_t(hctx, rq);

1628 1629 1630 1631 1632 1633
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1634 1635
	switch (ret) {
	case BLK_STS_OK:
1636
		*cookie = new_cookie;
1637
		return;
1638 1639 1640 1641
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1642
		*cookie = BLK_QC_T_NONE;
1643
		blk_mq_end_request(rq, ret);
1644
		return;
1645
	}
1646

1647
insert:
M
Ming Lei 已提交
1648
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1649 1650
}

1651 1652 1653 1654 1655
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1656
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1657 1658
		rcu_read_unlock();
	} else {
1659 1660 1661 1662
		unsigned int srcu_idx;

		might_sleep();

1663
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1664
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1665
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1666 1667 1668
	}
}

1669
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1670
{
1671
	const int is_sync = op_is_sync(bio->bi_opf);
1672
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1673
	struct blk_mq_alloc_data data = { .flags = 0 };
1674
	struct request *rq;
1675
	unsigned int request_count = 0;
1676
	struct blk_plug *plug;
1677
	struct request *same_queue_rq = NULL;
1678
	blk_qc_t cookie;
J
Jens Axboe 已提交
1679
	unsigned int wb_acct;
1680 1681 1682

	blk_queue_bounce(q, &bio);

1683
	blk_queue_split(q, &bio);
1684

1685
	if (!bio_integrity_prep(bio))
1686
		return BLK_QC_T_NONE;
1687

1688 1689 1690
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1691

1692 1693 1694
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1695 1696
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1697 1698
	trace_block_getrq(q, bio, bio->bi_opf);

1699
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1700 1701
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1702 1703
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1704
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1705 1706 1707
	}

	wbt_track(&rq->issue_stat, wb_acct);
1708

1709
	cookie = request_to_qc_t(data.hctx, rq);
1710

1711
	plug = current->plug;
1712
	if (unlikely(is_flush_fua)) {
1713
		blk_mq_put_ctx(data.ctx);
1714
		blk_mq_bio_to_request(rq, bio);
1715 1716 1717 1718

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1719
	} else if (plug && q->nr_hw_queues == 1) {
1720 1721
		struct request *last = NULL;

1722
		blk_mq_put_ctx(data.ctx);
1723
		blk_mq_bio_to_request(rq, bio);
1724 1725 1726 1727 1728 1729 1730

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1731 1732 1733
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1734
		if (!request_count)
1735
			trace_block_plug(q);
1736 1737
		else
			last = list_entry_rq(plug->mq_list.prev);
1738

1739 1740
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1741 1742
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1743
		}
1744

1745
		list_add_tail(&rq->queuelist, &plug->mq_list);
1746
	} else if (plug && !blk_queue_nomerges(q)) {
1747
		blk_mq_bio_to_request(rq, bio);
1748 1749

		/*
1750
		 * We do limited plugging. If the bio can be merged, do that.
1751 1752
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1753 1754
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1755
		 */
1756 1757 1758 1759 1760 1761
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1762 1763
		blk_mq_put_ctx(data.ctx);

1764 1765 1766
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1767 1768
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1769
		}
1770
	} else if (q->nr_hw_queues > 1 && is_sync) {
1771
		blk_mq_put_ctx(data.ctx);
1772 1773
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1774
	} else if (q->elevator) {
1775
		blk_mq_put_ctx(data.ctx);
1776
		blk_mq_bio_to_request(rq, bio);
1777
		blk_mq_sched_insert_request(rq, false, true, true, true);
1778
	} else {
1779
		blk_mq_put_ctx(data.ctx);
1780 1781
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1782
		blk_mq_run_hw_queue(data.hctx, true);
1783
	}
1784

1785
	return cookie;
1786 1787
}

1788 1789
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1790
{
1791
	struct page *page;
1792

1793
	if (tags->rqs && set->ops->exit_request) {
1794
		int i;
1795

1796
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1797 1798 1799
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1800
				continue;
1801
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1802
			tags->static_rqs[i] = NULL;
1803
		}
1804 1805
	}

1806 1807
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1808
		list_del_init(&page->lru);
1809 1810 1811 1812 1813
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1814 1815
		__free_pages(page, page->private);
	}
1816
}
1817

1818 1819
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1820
	kfree(tags->rqs);
1821
	tags->rqs = NULL;
J
Jens Axboe 已提交
1822 1823
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1824

1825
	blk_mq_free_tags(tags);
1826 1827
}

1828 1829 1830 1831
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1832
{
1833
	struct blk_mq_tags *tags;
1834
	int node;
1835

1836 1837 1838 1839 1840
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1841
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1842 1843
	if (!tags)
		return NULL;
1844

1845
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1846
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1847
				 node);
1848 1849 1850 1851
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1852

J
Jens Axboe 已提交
1853 1854
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1855
				 node);
J
Jens Axboe 已提交
1856 1857 1858 1859 1860 1861
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1875 1876 1877 1878 1879
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1880 1881 1882

	INIT_LIST_HEAD(&tags->page_list);

1883 1884 1885 1886
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1887
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1888
				cache_line_size());
1889
	left = rq_size * depth;
1890

1891
	for (i = 0; i < depth; ) {
1892 1893 1894 1895 1896
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1897
		while (this_order && left < order_to_size(this_order - 1))
1898 1899 1900
			this_order--;

		do {
1901
			page = alloc_pages_node(node,
1902
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1903
				this_order);
1904 1905 1906 1907 1908 1909 1910 1911 1912
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1913
			goto fail;
1914 1915

		page->private = this_order;
1916
		list_add_tail(&page->lru, &tags->page_list);
1917 1918

		p = page_address(page);
1919 1920 1921 1922
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1923
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1924
		entries_per_page = order_to_size(this_order) / rq_size;
1925
		to_do = min(entries_per_page, depth - i);
1926 1927
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1928 1929 1930
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1931
			if (set->ops->init_request) {
1932
				if (set->ops->init_request(set, rq, hctx_idx,
1933
						node)) {
J
Jens Axboe 已提交
1934
					tags->static_rqs[i] = NULL;
1935
					goto fail;
1936
				}
1937 1938
			}

1939 1940 1941 1942
			p += rq_size;
			i++;
		}
	}
1943
	return 0;
1944

1945
fail:
1946 1947
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1948 1949
}

J
Jens Axboe 已提交
1950 1951 1952 1953 1954
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1955
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1956
{
1957
	struct blk_mq_hw_ctx *hctx;
1958 1959 1960
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1961
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1962
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1963 1964 1965 1966 1967 1968 1969 1970 1971

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1972
		return 0;
1973

J
Jens Axboe 已提交
1974 1975 1976
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1977 1978

	blk_mq_run_hw_queue(hctx, true);
1979
	return 0;
1980 1981
}

1982
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1983
{
1984 1985
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1986 1987
}

1988
/* hctx->ctxs will be freed in queue's release handler */
1989 1990 1991 1992
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1993 1994
	blk_mq_debugfs_unregister_hctx(hctx);

1995 1996
	blk_mq_tag_idle(hctx);

1997
	if (set->ops->exit_request)
1998
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1999

2000 2001
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2002 2003 2004
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2005
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2006
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2007

2008
	blk_mq_remove_cpuhp(hctx);
2009
	blk_free_flush_queue(hctx->fq);
2010
	sbitmap_free(&hctx->ctx_map);
2011 2012
}

M
Ming Lei 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2022
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2023 2024 2025
	}
}

2026 2027 2028
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2029
{
2030 2031 2032 2033 2034 2035
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2036
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2037 2038 2039
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2040
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2041

2042
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2043 2044

	hctx->tags = set->tags[hctx_idx];
2045 2046

	/*
2047 2048
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2049
	 */
2050
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2051 2052 2053
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2054

2055 2056
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2057
		goto free_ctxs;
2058

2059
	hctx->nr_ctx = 0;
2060

2061 2062 2063
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2064 2065 2066
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2067

2068 2069 2070
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2071 2072
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2073
		goto sched_exit_hctx;
2074

2075
	if (set->ops->init_request &&
2076 2077
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2078
		goto free_fq;
2079

2080
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2081
		init_srcu_struct(hctx->queue_rq_srcu);
2082

2083 2084
	blk_mq_debugfs_register_hctx(q, hctx);

2085
	return 0;
2086

2087 2088
 free_fq:
	kfree(hctx->fq);
2089 2090
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2091 2092 2093
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2094
 free_bitmap:
2095
	sbitmap_free(&hctx->ctx_map);
2096 2097 2098
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2099
	blk_mq_remove_cpuhp(hctx);
2100 2101
	return -1;
}
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2117 2118
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2119 2120
			continue;

C
Christoph Hellwig 已提交
2121
		hctx = blk_mq_map_queue(q, i);
2122

2123 2124 2125 2126 2127
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2128
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2129 2130 2131
	}
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2154 2155 2156 2157 2158
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2159 2160
}

2161
static void blk_mq_map_swqueue(struct request_queue *q)
2162
{
2163
	unsigned int i, hctx_idx;
2164 2165
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2166
	struct blk_mq_tag_set *set = q->tag_set;
2167

2168 2169 2170 2171 2172
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2173
	queue_for_each_hw_ctx(q, hctx, i) {
2174
		cpumask_clear(hctx->cpumask);
2175 2176 2177 2178
		hctx->nr_ctx = 0;
	}

	/*
2179 2180 2181
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2182
	 */
2183
	for_each_present_cpu(i) {
2184 2185
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2186 2187
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2188 2189 2190 2191 2192 2193
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2194
			q->mq_map[i] = 0;
2195 2196
		}

2197
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2198
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2199

2200
		cpumask_set_cpu(i, hctx->cpumask);
2201 2202 2203
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2204

2205 2206
	mutex_unlock(&q->sysfs_lock);

2207
	queue_for_each_hw_ctx(q, hctx, i) {
2208
		/*
2209 2210
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2211 2212
		 */
		if (!hctx->nr_ctx) {
2213 2214 2215 2216
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2217 2218 2219
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2220
			hctx->tags = NULL;
2221 2222 2223
			continue;
		}

M
Ming Lei 已提交
2224 2225 2226
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2227 2228 2229 2230 2231
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2232
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2233

2234 2235 2236
		/*
		 * Initialize batch roundrobin counts
		 */
2237 2238 2239
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2240 2241
}

2242 2243 2244 2245
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2246
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2247 2248 2249 2250
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2251
	queue_for_each_hw_ctx(q, hctx, i) {
2252 2253 2254
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2255
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2256 2257 2258
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2259
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2260
		}
2261 2262 2263
	}
}

2264 2265
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2266 2267
{
	struct request_queue *q;
2268

2269 2270
	lockdep_assert_held(&set->tag_list_lock);

2271 2272
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2273
		queue_set_hctx_shared(q, shared);
2274 2275 2276 2277 2278 2279 2280 2281 2282
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2283 2284
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2285 2286 2287 2288 2289 2290
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2291
	mutex_unlock(&set->tag_list_lock);
2292 2293

	synchronize_rcu();
2294 2295 2296 2297 2298 2299 2300 2301
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2302

2303 2304 2305 2306 2307
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2308 2309 2310 2311 2312 2313
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2314
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2315

2316 2317 2318
	mutex_unlock(&set->tag_list_lock);
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2331 2332 2333
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2334
		kobject_put(&hctx->kobj);
2335
	}
2336

2337 2338
	q->mq_map = NULL;

2339 2340
	kfree(q->queue_hw_ctx);

2341 2342 2343 2344 2345 2346
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2347 2348 2349
	free_percpu(q->queue_ctx);
}

2350
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2380 2381
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2382
{
K
Keith Busch 已提交
2383 2384
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2385

K
Keith Busch 已提交
2386
	blk_mq_sysfs_unregister(q);
2387
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2388
		int node;
2389

K
Keith Busch 已提交
2390 2391 2392 2393
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2394
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2395
					GFP_KERNEL, node);
2396
		if (!hctxs[i])
K
Keith Busch 已提交
2397
			break;
2398

2399
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2400 2401 2402 2403 2404
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2405

2406
		atomic_set(&hctxs[i]->nr_active, 0);
2407
		hctxs[i]->numa_node = node;
2408
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2409 2410 2411 2412 2413 2414 2415 2416

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2417
	}
K
Keith Busch 已提交
2418 2419 2420 2421
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2422 2423
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2437 2438 2439
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2440
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2441 2442
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2443 2444 2445
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2446 2447
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2448
		goto err_exit;
K
Keith Busch 已提交
2449

2450 2451 2452
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2453 2454 2455 2456 2457
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2458
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2459 2460 2461 2462

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2463

2464
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2465
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2466 2467 2468

	q->nr_queues = nr_cpu_ids;

2469
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2470

2471 2472 2473
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2474 2475
	q->sg_reserved_size = INT_MAX;

2476
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2477 2478 2479
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2480
	blk_queue_make_request(q, blk_mq_make_request);
2481 2482
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2483

2484 2485 2486 2487 2488
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2489 2490 2491 2492 2493
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2494 2495
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2496

2497
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2498
	blk_mq_add_queue_tag_set(set, q);
2499
	blk_mq_map_swqueue(q);
2500

2501 2502 2503 2504 2505 2506 2507 2508
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2509
	return q;
2510

2511
err_hctxs:
K
Keith Busch 已提交
2512
	kfree(q->queue_hw_ctx);
2513
err_percpu:
K
Keith Busch 已提交
2514
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2515 2516
err_exit:
	q->mq_ops = NULL;
2517 2518
	return ERR_PTR(-ENOMEM);
}
2519
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2520 2521 2522

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2523
	struct blk_mq_tag_set	*set = q->tag_set;
2524

2525
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2526
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2527 2528 2529
}

/* Basically redo blk_mq_init_queue with queue frozen */
2530
static void blk_mq_queue_reinit(struct request_queue *q)
2531
{
2532
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2533

2534
	blk_mq_debugfs_unregister_hctxs(q);
2535 2536
	blk_mq_sysfs_unregister(q);

2537 2538
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2539 2540
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2541
	 */
2542
	blk_mq_map_swqueue(q);
2543

2544
	blk_mq_sysfs_register(q);
2545
	blk_mq_debugfs_register_hctxs(q);
2546 2547
}

2548 2549 2550 2551
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2552 2553
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2554 2555 2556 2557 2558 2559
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2560
		blk_mq_free_rq_map(set->tags[i]);
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2600 2601 2602 2603 2604 2605 2606 2607
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2608 2609 2610 2611 2612 2613
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2614 2615
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2616 2617
	int ret;

B
Bart Van Assche 已提交
2618 2619
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2620 2621
	if (!set->nr_hw_queues)
		return -EINVAL;
2622
	if (!set->queue_depth)
2623 2624 2625 2626
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2627
	if (!set->ops->queue_rq)
2628 2629
		return -EINVAL;

2630 2631 2632
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2633 2634 2635 2636 2637
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2648 2649 2650 2651 2652
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2653

K
Keith Busch 已提交
2654
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2655 2656
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2657
		return -ENOMEM;
2658

2659 2660 2661
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2662 2663 2664
	if (!set->mq_map)
		goto out_free_tags;

2665
	ret = blk_mq_update_queue_map(set);
2666 2667 2668 2669 2670
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2671
		goto out_free_mq_map;
2672

2673 2674 2675
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2676
	return 0;
2677 2678 2679 2680 2681

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2682 2683
	kfree(set->tags);
	set->tags = NULL;
2684
	return ret;
2685 2686 2687 2688 2689 2690 2691
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2692 2693
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2694

2695 2696 2697
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2698
	kfree(set->tags);
2699
	set->tags = NULL;
2700 2701 2702
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2703 2704 2705 2706 2707 2708
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2709
	if (!set)
2710 2711
		return -EINVAL;

2712 2713
	blk_mq_freeze_queue(q);

2714 2715
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2716 2717
		if (!hctx->tags)
			continue;
2718 2719 2720 2721
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2722
		if (!hctx->sched_tags) {
2723
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2724 2725 2726 2727 2728
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2729 2730 2731 2732 2733 2734 2735
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2736 2737
	blk_mq_unfreeze_queue(q);

2738 2739 2740
	return ret;
}

2741 2742
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2743 2744 2745
{
	struct request_queue *q;

2746 2747
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2757
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2758 2759
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2760
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2761 2762 2763 2764 2765
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2766 2767 2768 2769 2770 2771 2772

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2773 2774
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2801
	int bucket;
2802

2803 2804 2805 2806
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2807 2808
}

2809 2810 2811 2812 2813
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2814
	int bucket;
2815 2816 2817 2818 2819

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2820
	if (!blk_poll_stats_enable(q))
2821 2822 2823 2824 2825 2826 2827 2828
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2829 2830
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2831
	 */
2832 2833 2834 2835 2836 2837
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2838 2839 2840 2841

	return ret;
}

2842
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2843
				     struct blk_mq_hw_ctx *hctx,
2844 2845 2846 2847
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2848
	unsigned int nsecs;
2849 2850
	ktime_t kt;

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2869 2870 2871 2872 2873 2874 2875 2876
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2877
	kt = nsecs;
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2900 2901 2902 2903 2904
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2905 2906 2907 2908 2909 2910 2911
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2912
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2913 2914
		return true;

J
Jens Axboe 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2943
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2944 2945 2946 2947
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2948
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2949 2950 2951
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2952 2953
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2954
	else {
2955
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2956 2957 2958 2959 2960 2961 2962 2963 2964
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2965 2966 2967 2968

	return __blk_mq_poll(hctx, rq);
}

2969 2970
static int __init blk_mq_init(void)
{
2971 2972 2973 2974 2975 2976
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2977 2978
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2979 2980 2981
	return 0;
}
subsys_initcall(blk_mq_init);