slab.h 20.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3 4
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
C
Christoph Lameter 已提交
5
 * (C) SGI 2006, Christoph Lameter
6 7
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
8 9
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
L
Linus Torvalds 已提交
10 11 12 13 14
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

15
#include <linux/gfp.h>
16
#include <linux/overflow.h>
17
#include <linux/types.h>
G
Glauber Costa 已提交
18
#include <linux/workqueue.h>
19
#include <linux/percpu-refcount.h>
G
Glauber Costa 已提交
20

L
Linus Torvalds 已提交
21

22 23
/*
 * Flags to pass to kmem_cache_create().
24
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
L
Linus Torvalds 已提交
25
 */
26
/* DEBUG: Perform (expensive) checks on alloc/free */
27
#define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
28
/* DEBUG: Red zone objs in a cache */
29
#define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
30
/* DEBUG: Poison objects */
31
#define SLAB_POISON		((slab_flags_t __force)0x00000800U)
32
/* Align objs on cache lines */
33
#define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
34
/* Use GFP_DMA memory */
35
#define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
36 37
/* Use GFP_DMA32 memory */
#define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
38
/* DEBUG: Store the last owner for bug hunting */
39
#define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
40
/* Panic if kmem_cache_create() fails */
41
#define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
42
/*
43
 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
68 69 70 71 72 73 74 75
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
76 77
 *
 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
78
 */
79
/* Defer freeing slabs to RCU */
80
#define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
81
/* Spread some memory over cpuset */
82
#define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
83
/* Trace allocations and frees */
84
#define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
L
Linus Torvalds 已提交
85

86 87
/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS
88
# define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
89
#else
90
# define SLAB_DEBUG_OBJECTS	0
91 92
#endif

93
/* Avoid kmemleak tracing */
94
#define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
95

96
/* Fault injection mark */
97
#ifdef CONFIG_FAILSLAB
98
# define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
99
#else
100
# define SLAB_FAILSLAB		0
101
#endif
102
/* Account to memcg */
103
#ifdef CONFIG_MEMCG_KMEM
104
# define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
V
Vladimir Davydov 已提交
105
#else
106
# define SLAB_ACCOUNT		0
V
Vladimir Davydov 已提交
107
#endif
V
Vegard Nossum 已提交
108

A
Alexander Potapenko 已提交
109
#ifdef CONFIG_KASAN
110
#define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
A
Alexander Potapenko 已提交
111
#else
112
#define SLAB_KASAN		0
A
Alexander Potapenko 已提交
113 114
#endif

115
/* The following flags affect the page allocator grouping pages by mobility */
116
/* Objects are reclaimable */
117
#define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
118
#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
119 120 121 122

/* Slab deactivation flag */
#define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)

123 124 125 126 127 128 129 130 131 132
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

133
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
134 135
				(unsigned long)ZERO_SIZE_PTR)

136
#include <linux/kasan.h>
137

138
struct mem_cgroup;
139 140 141 142
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
143
bool slab_is_available(void);
L
Linus Torvalds 已提交
144

145 146
extern bool usercopy_fallback;

147 148
struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
			unsigned int align, slab_flags_t flags,
149 150
			void (*ctor)(void *));
struct kmem_cache *kmem_cache_create_usercopy(const char *name,
151 152
			unsigned int size, unsigned int align,
			slab_flags_t flags,
153
			unsigned int useroffset, unsigned int usersize,
154
			void (*ctor)(void *));
155 156
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
157

158 159 160 161 162 163 164 165
/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
166 167 168 169 170 171 172 173 174 175 176 177 178 179
#define KMEM_CACHE(__struct, __flags)					\
		kmem_cache_create(#__struct, sizeof(struct __struct),	\
			__alignof__(struct __struct), (__flags), NULL)

/*
 * To whitelist a single field for copying to/from usercopy, use this
 * macro instead for KMEM_CACHE() above.
 */
#define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
		kmem_cache_create_usercopy(#__struct,			\
			sizeof(struct __struct),			\
			__alignof__(struct __struct), (__flags),	\
			offsetof(struct __struct, __field),		\
			sizeof_field(struct __struct, __field), NULL)
180

181 182 183 184 185
/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
186
void kfree_sensitive(const void *);
187
size_t __ksize(const void *);
188 189
size_t ksize(const void *);

190 191
#define kzfree(x)	kfree_sensitive(x)	/* For backward compatibility */

K
Kees Cook 已提交
192
#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
193 194
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			bool to_user);
K
Kees Cook 已提交
195
#else
196 197
static inline void __check_heap_object(const void *ptr, unsigned long n,
				       struct page *page, bool to_user) { }
K
Kees Cook 已提交
198 199
#endif

200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than the alignment of a 64-bit integer.
 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 */
#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
#else
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/*
 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 * Intended for arches that get misalignment faults even for 64 bit integer
 * aligned buffers.
 */
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif

/*
 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
 * aligned pointers.
 */
#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
#define __assume_page_alignment __assume_aligned(PAGE_SIZE)

231
/*
232 233 234 235 236 237
 * Kmalloc array related definitions
 */

#ifdef CONFIG_SLAB
/*
 * The largest kmalloc size supported by the SLAB allocators is
238 239 240 241 242 243 244
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
245 246
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
247
#define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
248
#ifndef KMALLOC_SHIFT_LOW
249
#define KMALLOC_SHIFT_LOW	5
250
#endif
251 252 253
#endif

#ifdef CONFIG_SLUB
254
/*
255 256
 * SLUB directly allocates requests fitting in to an order-1 page
 * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
257 258
 */
#define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
259
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
260
#ifndef KMALLOC_SHIFT_LOW
261 262
#define KMALLOC_SHIFT_LOW	3
#endif
263
#endif
264

265 266
#ifdef CONFIG_SLOB
/*
267
 * SLOB passes all requests larger than one page to the page allocator.
268 269 270 271
 * No kmalloc array is necessary since objects of different sizes can
 * be allocated from the same page.
 */
#define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
272
#define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
273 274 275 276 277
#ifndef KMALLOC_SHIFT_LOW
#define KMALLOC_SHIFT_LOW	3
#endif
#endif

278 279 280 281
/* Maximum allocatable size */
#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
/* Maximum size for which we actually use a slab cache */
#define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
282
/* Maximum order allocatable via the slab allocator */
283
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
284

285 286 287
/*
 * Kmalloc subsystem.
 */
288
#ifndef KMALLOC_MIN_SIZE
289
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
290 291
#endif

J
Joonsoo Kim 已提交
292 293 294 295 296 297 298 299 300 301 302
/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */
#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

303 304 305 306
/*
 * Whenever changing this, take care of that kmalloc_type() and
 * create_kmalloc_caches() still work as intended.
 */
307 308
enum kmalloc_cache_type {
	KMALLOC_NORMAL = 0,
309
	KMALLOC_RECLAIM,
310 311 312 313 314 315
#ifdef CONFIG_ZONE_DMA
	KMALLOC_DMA,
#endif
	NR_KMALLOC_TYPES
};

316
#ifndef CONFIG_SLOB
317 318 319 320 321
extern struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];

static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
{
322
#ifdef CONFIG_ZONE_DMA
323 324 325 326 327 328
	/*
	 * The most common case is KMALLOC_NORMAL, so test for it
	 * with a single branch for both flags.
	 */
	if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
		return KMALLOC_NORMAL;
329 330

	/*
331 332
	 * At least one of the flags has to be set. If both are, __GFP_DMA
	 * is more important.
333
	 */
334 335 336 337
	return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
#else
	return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
#endif
338 339
}

340 341 342 343 344
/*
 * Figure out which kmalloc slab an allocation of a certain size
 * belongs to.
 * 0 = zero alloc
 * 1 =  65 .. 96 bytes
345 346
 * 2 = 129 .. 192 bytes
 * n = 2^(n-1)+1 .. 2^n
347
 */
348
static __always_inline unsigned int kmalloc_index(size_t size)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
{
	if (!size)
		return 0;

	if (size <= KMALLOC_MIN_SIZE)
		return KMALLOC_SHIFT_LOW;

	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
		return 1;
	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
		return 2;
	if (size <=          8) return 3;
	if (size <=         16) return 4;
	if (size <=         32) return 5;
	if (size <=         64) return 6;
	if (size <=        128) return 7;
	if (size <=        256) return 8;
	if (size <=        512) return 9;
	if (size <=       1024) return 10;
	if (size <=   2 * 1024) return 11;
	if (size <=   4 * 1024) return 12;
	if (size <=   8 * 1024) return 13;
	if (size <=  16 * 1024) return 14;
	if (size <=  32 * 1024) return 15;
	if (size <=  64 * 1024) return 16;
	if (size <= 128 * 1024) return 17;
	if (size <= 256 * 1024) return 18;
	if (size <= 512 * 1024) return 19;
	if (size <= 1024 * 1024) return 20;
	if (size <=  2 * 1024 * 1024) return 21;
	if (size <=  4 * 1024 * 1024) return 22;
	if (size <=  8 * 1024 * 1024) return 23;
	if (size <=  16 * 1024 * 1024) return 24;
	if (size <=  32 * 1024 * 1024) return 25;
	if (size <=  64 * 1024 * 1024) return 26;
	BUG();

	/* Will never be reached. Needed because the compiler may complain */
	return -1;
}
389
#endif /* !CONFIG_SLOB */
390

391 392
void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
393
void kmem_cache_free(struct kmem_cache *, void *);
394

395
/*
J
Jesper Dangaard Brouer 已提交
396
 * Bulk allocation and freeing operations. These are accelerated in an
397 398 399 400 401 402
 * allocator specific way to avoid taking locks repeatedly or building
 * metadata structures unnecessarily.
 *
 * Note that interrupts must be enabled when calling these functions.
 */
void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
403
int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
404

405 406 407 408 409 410 411 412 413
/*
 * Caller must not use kfree_bulk() on memory not originally allocated
 * by kmalloc(), because the SLOB allocator cannot handle this.
 */
static __always_inline void kfree_bulk(size_t size, void **p)
{
	kmem_cache_free_bulk(NULL, size, p);
}

414
#ifdef CONFIG_NUMA
415 416
void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
417 418 419 420 421 422 423 424 425 426 427 428 429
#else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}

static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
{
	return kmem_cache_alloc(s, flags);
}
#endif

#ifdef CONFIG_TRACING
430
extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
431 432 433 434

#ifdef CONFIG_NUMA
extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
					   gfp_t gfpflags,
435
					   int node, size_t size) __assume_slab_alignment __malloc;
436 437 438 439 440 441 442 443 444 445 446 447 448 449
#else
static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
	return kmem_cache_alloc_trace(s, gfpflags, size);
}
#endif /* CONFIG_NUMA */

#else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
		gfp_t flags, size_t size)
{
450 451
	void *ret = kmem_cache_alloc(s, flags);

452
	ret = kasan_kmalloc(s, ret, size, flags);
453
	return ret;
454 455 456 457 458 459 460
}

static __always_inline void *
kmem_cache_alloc_node_trace(struct kmem_cache *s,
			      gfp_t gfpflags,
			      int node, size_t size)
{
461 462
	void *ret = kmem_cache_alloc_node(s, gfpflags, node);

463
	ret = kasan_kmalloc(s, ret, size, gfpflags);
464
	return ret;
465 466 467
}
#endif /* CONFIG_TRACING */

468
extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
469 470

#ifdef CONFIG_TRACING
471
extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
472 473 474 475 476 477
#else
static __always_inline void *
kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	return kmalloc_order(size, flags, order);
}
478 479
#endif

480 481 482 483 484 485 486 487 488
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
	unsigned int order = get_order(size);
	return kmalloc_order_trace(size, flags, order);
}

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
489
 * @flags: the type of memory to allocate.
490 491 492
 *
 * kmalloc is the normal method of allocating memory
 * for objects smaller than page size in the kernel.
493
 *
494 495 496 497
 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
 * bytes. For @size of power of two bytes, the alignment is also guaranteed
 * to be at least to the size.
 *
498 499 500
 * The @flags argument may be one of the GFP flags defined at
 * include/linux/gfp.h and described at
 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
501
 *
502
 * The recommended usage of the @flags is described at
503
 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
504
 *
505
 * Below is a brief outline of the most useful GFP flags
506
 *
507 508
 * %GFP_KERNEL
 *	Allocate normal kernel ram. May sleep.
509
 *
510 511
 * %GFP_NOWAIT
 *	Allocation will not sleep.
512
 *
513 514
 * %GFP_ATOMIC
 *	Allocation will not sleep.  May use emergency pools.
515
 *
516 517
 * %GFP_HIGHUSER
 *	Allocate memory from high memory on behalf of user.
518 519 520 521
 *
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
522 523
 * %__GFP_HIGH
 *	This allocation has high priority and may use emergency pools.
524
 *
525 526 527
 * %__GFP_NOFAIL
 *	Indicate that this allocation is in no way allowed to fail
 *	(think twice before using).
528
 *
529 530 531
 * %__GFP_NORETRY
 *	If memory is not immediately available,
 *	then give up at once.
532
 *
533 534
 * %__GFP_NOWARN
 *	If allocation fails, don't issue any warnings.
535
 *
536 537 538
 * %__GFP_RETRY_MAYFAIL
 *	Try really hard to succeed the allocation but fail
 *	eventually.
539 540 541 542
 */
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
	if (__builtin_constant_p(size)) {
543 544 545
#ifndef CONFIG_SLOB
		unsigned int index;
#endif
546 547 548
		if (size > KMALLOC_MAX_CACHE_SIZE)
			return kmalloc_large(size, flags);
#ifndef CONFIG_SLOB
549
		index = kmalloc_index(size);
550

551 552
		if (!index)
			return ZERO_SIZE_PTR;
553

554 555 556
		return kmem_cache_alloc_trace(
				kmalloc_caches[kmalloc_type(flags)][index],
				flags, size);
557 558 559 560 561 562 563 564 565
#endif
	}
	return __kmalloc(size, flags);
}

static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
#ifndef CONFIG_SLOB
	if (__builtin_constant_p(size) &&
566
		size <= KMALLOC_MAX_CACHE_SIZE) {
567
		unsigned int i = kmalloc_index(size);
568 569 570 571

		if (!i)
			return ZERO_SIZE_PTR;

572 573
		return kmem_cache_alloc_node_trace(
				kmalloc_caches[kmalloc_type(flags)][i],
574 575 576 577 578 579
						flags, node, size);
	}
#endif
	return __kmalloc_node(size, flags, node);
}

580 581 582 583 584
/**
 * kmalloc_array - allocate memory for an array.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
585
 */
X
Xi Wang 已提交
586
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
L
Linus Torvalds 已提交
587
{
588 589 590
	size_t bytes;

	if (unlikely(check_mul_overflow(n, size, &bytes)))
P
Paul Mundt 已提交
591
		return NULL;
592
	if (__builtin_constant_p(n) && __builtin_constant_p(size))
593 594
		return kmalloc(bytes, flags);
	return __kmalloc(bytes, flags);
X
Xi Wang 已提交
595 596 597 598 599 600 601 602 603 604 605
}

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	return kmalloc_array(n, size, flags | __GFP_ZERO);
L
Linus Torvalds 已提交
606 607
}

608 609 610 611 612 613 614 615
/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
616
extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
617
#define kmalloc_track_caller(size, flags) \
618
	__kmalloc_track_caller(size, flags, _RET_IP_)
L
Linus Torvalds 已提交
619

620 621 622
static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
				       int node)
{
623 624 625
	size_t bytes;

	if (unlikely(check_mul_overflow(n, size, &bytes)))
626 627
		return NULL;
	if (__builtin_constant_p(n) && __builtin_constant_p(size))
628 629
		return kmalloc_node(bytes, flags, node);
	return __kmalloc_node(bytes, flags, node);
630 631 632 633 634 635 636 637
}

static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
{
	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
}


638
#ifdef CONFIG_NUMA
639
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
640 641
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
642
			_RET_IP_)
643

644 645 646 647
#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)
648

P
Pascal Terjan 已提交
649
#endif /* CONFIG_NUMA */
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
/*
 * Shortcuts
 */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
{
	return kmem_cache_alloc(k, flags | __GFP_ZERO);
}

/**
 * kzalloc - allocate memory. The memory is set to zero.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 */
static inline void *kzalloc(size_t size, gfp_t flags)
{
	return kmalloc(size, flags | __GFP_ZERO);
}

J
Jeff Layton 已提交
669 670 671 672 673 674 675 676 677 678 679
/**
 * kzalloc_node - allocate zeroed memory from a particular memory node.
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kmalloc).
 * @node: memory node from which to allocate
 */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc_node(size, flags | __GFP_ZERO, node);
}

680
unsigned int kmem_cache_size(struct kmem_cache *s);
681 682
void __init kmem_cache_init_late(void);

683 684 685 686 687 688 689 690
#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
int slab_prepare_cpu(unsigned int cpu);
int slab_dead_cpu(unsigned int cpu);
#else
#define slab_prepare_cpu	NULL
#define slab_dead_cpu		NULL
#endif

L
Linus Torvalds 已提交
691
#endif	/* _LINUX_SLAB_H */