intel_ringbuffer.h 35.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

5 6
#include <drm/drm_util.h>

7
#include <linux/hashtable.h>
8
#include <linux/seqlock.h>
9

10
#include "i915_gem_batch_pool.h"
11

12
#include "i915_reg.h"
13
#include "i915_pmu.h"
14
#include "i915_request.h"
15
#include "i915_selftest.h"
16
#include "i915_timeline.h"
17
#include "intel_gpu_commands.h"
18

19
struct drm_printer;
20
struct i915_sched_attr;
21

22 23
#define I915_CMD_HASH_ORDER 9

24 25 26 27 28 29
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
30
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
31

32 33 34 35
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
36 37
};

38 39
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
40

41 42
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
43

44 45
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
46

47 48
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
49

50 51
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
52

53 54
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
55

56 57 58
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
59
enum intel_engine_hangcheck_action {
60 61 62 63 64 65 66
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
67
};
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
91

92
#define I915_MAX_SLICES	3
93
#define I915_MAX_SUBSLICES 8
94 95 96 97 98 99 100

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
101
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
102 103 104 105 106 107 108 109 110

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

111 112 113 114
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
115 116
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
117 118
};

119
struct intel_engine_hangcheck {
120
	u64 acthd;
121
	u32 seqno;
122
	enum intel_engine_hangcheck_action action;
123
	unsigned long action_timestamp;
124
	int deadlock;
125
	struct intel_instdone instdone;
126
	struct i915_request *active_request;
127 128
	bool stalled:1;
	bool wedged:1;
129 130
};

131
struct intel_ring {
132
	struct i915_vma *vma;
133
	void *vaddr;
134

135
	struct i915_timeline *timeline;
136
	struct list_head request_list;
137
	struct list_head active_link;
138

139 140
	u32 head;
	u32 tail;
141
	u32 emit;
142

143 144 145
	u32 space;
	u32 size;
	u32 effective_size;
146 147
};

148
struct i915_gem_context;
149
struct drm_i915_reg_table;
150

151 152 153 154 155 156 157 158 159 160 161
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
162
struct i915_ctx_workarounds {
163 164 165 166
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
167
	struct i915_vma *vma;
168 169
};

170
struct i915_request;
171

172 173 174
#define I915_MAX_VCS	4
#define I915_MAX_VECS	2

175 176 177 178 179 180 181 182 183
/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
184 185
	VCS3,
	VCS4,
186
#define _VCS(n) (VCS + (n))
187 188 189
	VECS,
	VECS2
#define _VECS(n) (VECS + (n))
190 191
};

192 193 194 195 196 197
struct i915_priolist {
	struct rb_node node;
	struct list_head requests;
	int priority;
};

198 199 200 201 202
struct st_preempt_hang {
	struct completion completion;
	bool inject_hang;
};

203 204 205 206 207 208 209 210
/**
 * struct intel_engine_execlists - execlist submission queue and port state
 *
 * The struct intel_engine_execlists represents the combined logical state of
 * driver and the hardware state for execlist mode of submission.
 */
struct intel_engine_execlists {
	/**
211
	 * @tasklet: softirq tasklet for bottom handler
212
	 */
213
	struct tasklet_struct tasklet;
214 215 216 217 218 219 220 221 222 223 224

	/**
	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
	 */
	struct i915_priolist default_priolist;

	/**
	 * @no_priolist: priority lists disabled
	 */
	bool no_priolist;

225
	/**
226 227 228
	 * @submit_reg: gen-specific execlist submission register
	 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
	 * the ExecList Submission Queue Contents register array for Gen11+
229
	 */
230 231 232 233 234 235 236
	u32 __iomem *submit_reg;

	/**
	 * @ctrl_reg: the enhanced execlists control register, used to load the
	 * submit queue on the HW and to request preemptions to idle
	 */
	u32 __iomem *ctrl_reg;
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251
	/**
	 * @port: execlist port states
	 *
	 * For each hardware ELSP (ExecList Submission Port) we keep
	 * track of the last request and the number of times we submitted
	 * that port to hw. We then count the number of times the hw reports
	 * a context completion or preemption. As only one context can
	 * be active on hw, we limit resubmission of context to port[0]. This
	 * is called Lite Restore, of the context.
	 */
	struct execlist_port {
		/**
		 * @request_count: combined request and submission count
		 */
252
		struct i915_request *request_count;
253 254 255 256 257 258 259
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
260
#define port_index(p, execlists) ((p) - (execlists)->port)
261 262 263 264 265

		/**
		 * @context_id: context ID for port
		 */
		GEM_DEBUG_DECL(u32 context_id);
266 267 268 269

#define EXECLIST_MAX_PORTS 2
	} port[EXECLIST_MAX_PORTS];

C
Chris Wilson 已提交
270
	/**
271 272 273 274 275 276 277
	 * @active: is the HW active? We consider the HW as active after
	 * submitting any context for execution and until we have seen the
	 * last context completion event. After that, we do not expect any
	 * more events until we submit, and so can park the HW.
	 *
	 * As we have a small number of different sources from which we feed
	 * the HW, we track the state of each inside a single bitfield.
C
Chris Wilson 已提交
278
	 */
279 280 281
	unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1
282
#define EXECLISTS_ACTIVE_HWACK 2
C
Chris Wilson 已提交
283

284 285 286 287
	/**
	 * @port_mask: number of execlist ports - 1
	 */
	unsigned int port_mask;
288

289 290 291 292 293 294 295 296 297 298
	/**
	 * @queue_priority: Highest pending priority.
	 *
	 * When we add requests into the queue, or adjust the priority of
	 * executing requests, we compute the maximum priority of those
	 * pending requests. We can then use this value to determine if
	 * we need to preempt the executing requests to service the queue.
	 */
	int queue_priority;

299 300 301
	/**
	 * @queue: queue of requests, in priority lists
	 */
302
	struct rb_root_cached queue;
303 304

	/**
305 306 307
	 * @csb_read: control register for Context Switch buffer
	 *
	 * Note this register is always in mmio.
308
	 */
309
	u32 __iomem *csb_read;
310 311

	/**
312 313 314
	 * @csb_write: control register for Context Switch buffer
	 *
	 * Note this register may be either mmio or HWSP shadow.
315
	 */
316
	u32 *csb_write;
317 318

	/**
319 320 321
	 * @csb_status: status array for Context Switch buffer
	 *
	 * Note these register may be either mmio or HWSP shadow.
322
	 */
323
	u32 *csb_status;
324 325 326 327 328

	/**
	 * @preempt_complete_status: expected CSB upon completing preemption
	 */
	u32 preempt_complete_status;
329

330 331 332 333 334 335 336 337 338
	/**
	 * @csb_write_reset: reset value for CSB write pointer
	 *
	 * As the CSB write pointer maybe either in HWSP or as a field
	 * inside an mmio register, we want to reprogram it slightly
	 * differently to avoid later confusion.
	 */
	u32 csb_write_reset;

339 340 341 342
	/**
	 * @csb_head: context status buffer head
	 */
	u8 csb_head;
343 344

	I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
345 346
};

347 348
#define INTEL_ENGINE_CS_MAX_NAME 8

349 350
struct intel_engine_cs {
	struct drm_i915_private *i915;
351
	char name[INTEL_ENGINE_CS_MAX_NAME];
352

353 354
	enum intel_engine_id id;
	unsigned int hw_id;
355
	unsigned int guc_id;
356

357 358 359
	u8 uabi_id;
	u8 uabi_class;

360 361
	u8 class;
	u8 instance;
362 363 364
	u32 context_size;
	u32 mmio_base;

365
	struct intel_ring *buffer;
366 367

	struct i915_timeline timeline;
368

369
	struct drm_i915_gem_object *default_state;
370
	void *pinned_default_state;
371

372 373 374
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
392 393 394 395
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
396
		struct rb_root waiters; /* sorted by retirement, priority */
397
		struct list_head signals; /* sorted by retirement */
398
		struct task_struct *signaler; /* used for fence signalling */
399

400
		struct timer_list fake_irq; /* used after a missed interrupt */
401 402
		struct timer_list hangcheck; /* detect missed interrupts */

403
		unsigned int hangcheck_interrupts;
404
		unsigned int irq_enabled;
405
		unsigned int irq_count;
406

407
		bool irq_armed : 1;
408
		I915_SELFTEST_DECLARE(bool mock : 1);
409 410
	} breadcrumbs;

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	struct {
		/**
		 * @enable: Bitmask of enable sample events on this engine.
		 *
		 * Bits correspond to sample event types, for instance
		 * I915_SAMPLE_QUEUED is bit 0 etc.
		 */
		u32 enable;
		/**
		 * @enable_count: Reference count for the enabled samplers.
		 *
		 * Index number corresponds to the bit number from @enable.
		 */
		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
		/**
		 * @sample: Counter values for sampling events.
		 *
		 * Our internal timer stores the current counters in this field.
		 */
430
#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
431 432 433
		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
	} pmu;

434 435 436 437 438 439 440
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

441
	struct intel_hw_status_page status_page;
442
	struct i915_ctx_workarounds wa_ctx;
443
	struct i915_vma *scratch;
444

445 446
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
447 448
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
449

450
	int		(*init_hw)(struct intel_engine_cs *engine);
451 452 453 454 455 456 457

	struct {
		struct i915_request *(*prepare)(struct intel_engine_cs *engine);
		void (*reset)(struct intel_engine_cs *engine,
			      struct i915_request *rq);
		void (*finish)(struct intel_engine_cs *engine);
	} reset;
458

459 460 461
	void		(*park)(struct intel_engine_cs *engine);
	void		(*unpark)(struct intel_engine_cs *engine);

462 463
	void		(*set_default_submission)(struct intel_engine_cs *engine);

464 465 466
	struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
					     struct i915_gem_context *ctx);

467 468
	int		(*request_alloc)(struct i915_request *rq);
	int		(*init_context)(struct i915_request *rq);
469

470
	int		(*emit_flush)(struct i915_request *request, u32 mode);
471 472 473
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
474
	int		(*emit_bb_start)(struct i915_request *rq,
475 476 477 478 479
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
480
	void		(*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
481
	int		emit_breadcrumb_sz;
482 483 484 485 486 487 488

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
489
	void		(*submit_request)(struct i915_request *rq);
490

491 492 493 494 495 496
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
497 498
	void		(*schedule)(struct i915_request *request,
				    const struct i915_sched_attr *attr);
499

500 501 502 503 504 505 506 507
	/*
	 * Cancel all requests on the hardware, or queued for execution.
	 * This should only cancel the ready requests that have been
	 * submitted to the engine (via the engine->submit_request callback).
	 * This is called when marking the device as wedged.
	 */
	void		(*cancel_requests)(struct intel_engine_cs *engine);

508 509 510 511 512 513
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
514 515
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
554
	struct {
555 556 557
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
558 559 560 561 562 563
		struct {
			/* our mbox written by others */
			u32		wait[GEN6_NUM_SEMAPHORES];
			/* mboxes this ring signals to */
			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
		} mbox;
564 565

		/* AKA wait() */
566 567 568
		int	(*sync_to)(struct i915_request *rq,
				   struct i915_request *signal);
		u32	*(*signal)(struct i915_request *rq, u32 *cs);
569
	} semaphore;
570

571
	struct intel_engine_execlists execlists;
572

573 574 575 576 577 578 579 580 581
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
582
	struct intel_context *last_retired_context;
583

584 585 586
	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

587
	struct intel_engine_hangcheck hangcheck;
588

589
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
590
#define I915_ENGINE_SUPPORTS_STATS   BIT(1)
591
#define I915_ENGINE_HAS_PREEMPTION   BIT(2)
592
	unsigned int flags;
593

594
	/*
595
	 * Table of commands the command parser needs to know about
596
	 * for this engine.
597
	 */
598
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
599 600 601 602

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
603 604
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
605 606 607 608 609

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
610
	 * If the command parser finds an entry for a command in the engine's
611
	 * cmd_tables, it gets the command's length based on the table entry.
612 613 614
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
615 616
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
617 618 619 620 621

	struct {
		/**
		 * @lock: Lock protecting the below fields.
		 */
622
		seqlock_t lock;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
		/**
		 * @enabled: Reference count indicating number of listeners.
		 */
		unsigned int enabled;
		/**
		 * @active: Number of contexts currently scheduled in.
		 */
		unsigned int active;
		/**
		 * @enabled_at: Timestamp when busy stats were enabled.
		 */
		ktime_t enabled_at;
		/**
		 * @start: Timestamp of the last idle to active transition.
		 *
		 * Idle is defined as active == 0, active is active > 0.
		 */
		ktime_t start;
		/**
		 * @total: Total time this engine was busy.
		 *
		 * Accumulated time not counting the most recent block in cases
		 * where engine is currently busy (active > 0).
		 */
		ktime_t total;
	} stats;
649 650
};

651 652
static inline bool
intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
653 654 655 656
{
	return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
}

657 658
static inline bool
intel_engine_supports_stats(const struct intel_engine_cs *engine)
659 660 661 662
{
	return engine->flags & I915_ENGINE_SUPPORTS_STATS;
}

663 664 665 666 667 668 669 670 671 672 673
static inline bool
intel_engine_has_preemption(const struct intel_engine_cs *engine)
{
	return engine->flags & I915_ENGINE_HAS_PREEMPTION;
}

static inline bool __execlists_need_preempt(int prio, int last)
{
	return prio > max(0, last);
}

674 675 676 677 678 679 680
static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
		     unsigned int bit)
{
	__set_bit(bit, (unsigned long *)&execlists->active);
}

681 682 683 684 685 686 687
static inline bool
execlists_set_active_once(struct intel_engine_execlists *execlists,
			  unsigned int bit)
{
	return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
}

688 689 690 691 692 693 694
static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
		       unsigned int bit)
{
	__clear_bit(bit, (unsigned long *)&execlists->active);
}

695 696 697 698 699 700
static inline void
execlists_clear_all_active(struct intel_engine_execlists *execlists)
{
	execlists->active = 0;
}

701 702 703 704 705 706 707
static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
		    unsigned int bit)
{
	return test_bit(bit, (unsigned long *)&execlists->active);
}

708 709 710 711
void execlists_user_begin(struct intel_engine_execlists *execlists,
			  const struct execlist_port *port);
void execlists_user_end(struct intel_engine_execlists *execlists);

712 713 714 715 716 717
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);

void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);

718 719 720 721 722 723
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
	return execlists->port_mask + 1;
}

724
static inline struct execlist_port *
725 726 727
execlists_port_complete(struct intel_engine_execlists * const execlists,
			struct execlist_port * const port)
{
728
	const unsigned int m = execlists->port_mask;
729 730

	GEM_BUG_ON(port_index(port, execlists) != 0);
731
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
732

733 734
	memmove(port, port + 1, m * sizeof(struct execlist_port));
	memset(port + m, 0, sizeof(struct execlist_port));
735 736

	return port;
737 738
}

739
static inline unsigned int
740
intel_engine_flag(const struct intel_engine_cs *engine)
741
{
742
	return BIT(engine->id);
743 744
}

745
static inline u32
746
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
747
{
748
	/* Ensure that the compiler doesn't optimize away the load. */
749
	return READ_ONCE(engine->status_page.page_addr[reg]);
750 751
}

M
Mika Kuoppala 已提交
752
static inline void
753
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
M
Mika Kuoppala 已提交
754
{
755 756 757 758 759 760 761 762 763 764 765 766 767 768
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
M
Mika Kuoppala 已提交
769 770
}

771
/*
C
Chris Wilson 已提交
772 773 774 775 776 777 778 779 780 781 782
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
783
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
784
 *
785
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
786
 */
787
#define I915_GEM_HWS_INDEX		0x30
788
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
789 790
#define I915_GEM_HWS_PREEMPT_INDEX	0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
791
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
792
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
793

794
#define I915_HWS_CSB_BUF0_INDEX		0x10
795 796
#define I915_HWS_CSB_WRITE_INDEX	0x1f
#define CNL_HWS_CSB_WRITE_INDEX		0x2f
797

798
struct intel_ring *
799
intel_engine_create_ring(struct intel_engine_cs *engine,
800
			 struct i915_timeline *timeline,
801
			 int size);
802 803 804
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
805
void intel_ring_reset(struct intel_ring *ring, u32 tail);
806
unsigned int intel_ring_update_space(struct intel_ring *ring);
807
void intel_ring_unpin(struct intel_ring *ring);
808
void intel_ring_free(struct intel_ring *ring);
809

810 811
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
812

813 814
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

815
int __must_check intel_ring_cacheline_align(struct i915_request *rq);
816

817
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
818
u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
819

820
static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
821
{
822 823 824 825 826 827 828
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
829
	 */
830
	GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
831 832
}

833
static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
834 835 836 837
{
	return pos & (ring->size - 1);
}

838 839 840 841 842 843 844 845 846 847 848 849 850
static inline bool
intel_ring_offset_valid(const struct intel_ring *ring,
			unsigned int pos)
{
	if (pos & -ring->size) /* must be strictly within the ring */
		return false;

	if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
		return false;

	return true;
}

851
static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
852 853
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
854 855 856
	u32 offset = addr - rq->ring->vaddr;
	GEM_BUG_ON(offset > rq->ring->size);
	return intel_ring_wrap(rq->ring, offset);
857
}
858

859 860 861
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
862
	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

	/*
	 * "Ring Buffer Use"
	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 *
	 * We use ring->head as the last known location of the actual RING_HEAD,
	 * it may have advanced but in the worst case it is equally the same
	 * as ring->head and so we should never program RING_TAIL to advance
	 * into the same cacheline as ring->head.
	 */
#define cacheline(a) round_down(a, CACHELINE_BYTES)
	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
		   tail < ring->head);
#undef cacheline
882 883
}

884 885 886 887 888
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
889
	 * read by i915_request_retire() just as it is being updated
890 891 892 893 894 895 896
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}
897

898
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
899

900 901
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
902
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
903

904 905 906 907
int intel_engine_create_scratch(struct intel_engine_cs *engine,
				unsigned int size);
void intel_engine_cleanup_scratch(struct intel_engine_cs *engine);

908 909 910 911
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
912

913 914
int intel_engine_stop_cs(struct intel_engine_cs *engine);

915 916
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
917

918 919 920 921
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
922

923 924 925 926 927 928 929 930 931
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
932
	return READ_ONCE(engine->timeline.seqno);
933 934
}

935 936 937
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

938 939 940
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
941 942 943
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
944
 */
945
#define MIN_SPACE_FOR_ADD_REQUEST 336
946

947 948
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
949
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
950 951
}

952 953 954 955 956
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}

957 958 959
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

960
static inline void intel_wait_init(struct intel_wait *wait)
961 962
{
	wait->tsk = current;
963
	wait->request = NULL;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
980
	wait->seqno = seqno;
981 982 983 984 985
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
986
			  const struct i915_request *rq)
987
{
988
	return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
989 990 991 992 993 994 995 996 997 998
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
999
			 const struct i915_request *rq)
1000
{
1001
	return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
1013
bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
1014
void intel_engine_cancel_signaling(struct i915_request *request);
1015

1016
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
1017
{
1018
	return READ_ONCE(engine->breadcrumbs.irq_wait);
1019 1020
}

1021 1022
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
1023 1024
#define ENGINE_WAKEUP_ASLEEP BIT(1)

1025 1026 1027
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);

1028 1029
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
1030

1031
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
1032 1033
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
	/* We're using qword write, offset should be aligned to 8 bytes. */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = gtt_offset;
	*cs++ = 0;
	*cs++ = value;
	/* We're thrashing one dword of HWS. */
	*cs++ = 0;

	return cs;
}

static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	GEM_BUG_ON(gtt_offset & (1 << 5));
	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = value;

	return cs;
}

1083 1084
void intel_engines_sanitize(struct drm_i915_private *i915);

1085
bool intel_engine_is_idle(struct intel_engine_cs *engine);
1086
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1087

1088
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1089
void intel_engine_lost_context(struct intel_engine_cs *engine);
1090

1091 1092 1093
void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);

1094
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1095
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1096

1097
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1098

1099 1100 1101 1102
__printf(3, 4)
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...);
1103

1104 1105 1106
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);

1107 1108 1109 1110 1111 1112 1113
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

1114
	write_seqlock_irqsave(&engine->stats.lock, flags);
1115 1116 1117 1118 1119 1120 1121

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

1122
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1123 1124 1125 1126 1127 1128 1129 1130 1131
}

static inline void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

1132
	write_seqlock_irqsave(&engine->stats.lock, flags);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

1159
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1160 1161 1162 1163 1164 1165 1166
}

int intel_enable_engine_stats(struct intel_engine_cs *engine);
void intel_disable_engine_stats(struct intel_engine_cs *engine);

ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)

static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
{
	if (!execlists->preempt_hang.inject_hang)
		return false;

	complete(&execlists->preempt_hang.completion);
	return true;
}

#else

static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
{
	return false;
}

#endif

1187
#endif /* _INTEL_RINGBUFFER_H_ */