intel_ringbuffer.h 34.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

5
#include <linux/hashtable.h>
6
#include <linux/seqlock.h>
7

8
#include "i915_gem_batch_pool.h"
9

10
#include "i915_reg.h"
11
#include "i915_pmu.h"
12
#include "i915_request.h"
13
#include "i915_selftest.h"
14
#include "i915_timeline.h"
15
#include "intel_gpu_commands.h"
16

17
struct drm_printer;
18
struct i915_sched_attr;
19

20 21
#define I915_CMD_HASH_ORDER 9

22 23 24 25 26 27
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
28
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
29

30 31 32 33
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
34 35
};

36 37
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38

39 40
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41

42 43
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44

45 46
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47

48 49
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50

51 52
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53

54 55 56
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
57
enum intel_engine_hangcheck_action {
58 59 60 61 62 63 64
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
65
};
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
89

90
#define I915_MAX_SLICES	3
91
#define I915_MAX_SUBSLICES 8
92 93 94 95 96 97 98

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
99
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0])
100 101 102 103 104 105 106 107 108

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

109 110 111 112
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
113 114
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
115 116
};

117
struct intel_engine_hangcheck {
118
	u64 acthd;
119
	u32 seqno;
120
	enum intel_engine_hangcheck_action action;
121
	unsigned long action_timestamp;
122
	int deadlock;
123
	struct intel_instdone instdone;
124
	struct i915_request *active_request;
125
	bool stalled;
126 127
};

128
struct intel_ring {
129
	struct i915_vma *vma;
130
	void *vaddr;
131

132
	struct i915_timeline *timeline;
133
	struct list_head request_list;
134
	struct list_head active_link;
135

136 137
	u32 head;
	u32 tail;
138
	u32 emit;
139

140 141 142
	u32 space;
	u32 size;
	u32 effective_size;
143 144
};

145
struct i915_gem_context;
146
struct drm_i915_reg_table;
147

148 149 150 151 152 153 154 155 156 157 158
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
159
struct i915_ctx_workarounds {
160 161 162 163
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
164
	struct i915_vma *vma;
165 166
};

167
struct i915_request;
168

169 170 171
#define I915_MAX_VCS	4
#define I915_MAX_VECS	2

172 173 174 175 176 177 178 179 180
/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
181 182
	VCS3,
	VCS4,
183
#define _VCS(n) (VCS + (n))
184 185 186
	VECS,
	VECS2
#define _VECS(n) (VECS + (n))
187 188
};

189 190 191 192 193 194
struct i915_priolist {
	struct rb_node node;
	struct list_head requests;
	int priority;
};

195 196 197 198 199 200 201 202
/**
 * struct intel_engine_execlists - execlist submission queue and port state
 *
 * The struct intel_engine_execlists represents the combined logical state of
 * driver and the hardware state for execlist mode of submission.
 */
struct intel_engine_execlists {
	/**
203
	 * @tasklet: softirq tasklet for bottom handler
204
	 */
205
	struct tasklet_struct tasklet;
206 207 208 209 210 211 212 213 214 215 216

	/**
	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
	 */
	struct i915_priolist default_priolist;

	/**
	 * @no_priolist: priority lists disabled
	 */
	bool no_priolist;

217
	/**
218 219 220
	 * @submit_reg: gen-specific execlist submission register
	 * set to the ExecList Submission Port (elsp) register pre-Gen11 and to
	 * the ExecList Submission Queue Contents register array for Gen11+
221
	 */
222 223 224 225 226 227 228
	u32 __iomem *submit_reg;

	/**
	 * @ctrl_reg: the enhanced execlists control register, used to load the
	 * submit queue on the HW and to request preemptions to idle
	 */
	u32 __iomem *ctrl_reg;
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243
	/**
	 * @port: execlist port states
	 *
	 * For each hardware ELSP (ExecList Submission Port) we keep
	 * track of the last request and the number of times we submitted
	 * that port to hw. We then count the number of times the hw reports
	 * a context completion or preemption. As only one context can
	 * be active on hw, we limit resubmission of context to port[0]. This
	 * is called Lite Restore, of the context.
	 */
	struct execlist_port {
		/**
		 * @request_count: combined request and submission count
		 */
244
		struct i915_request *request_count;
245 246 247 248 249 250 251
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
252
#define port_index(p, execlists) ((p) - (execlists)->port)
253 254 255 256 257

		/**
		 * @context_id: context ID for port
		 */
		GEM_DEBUG_DECL(u32 context_id);
258 259 260 261

#define EXECLIST_MAX_PORTS 2
	} port[EXECLIST_MAX_PORTS];

C
Chris Wilson 已提交
262
	/**
263 264 265 266 267 268 269
	 * @active: is the HW active? We consider the HW as active after
	 * submitting any context for execution and until we have seen the
	 * last context completion event. After that, we do not expect any
	 * more events until we submit, and so can park the HW.
	 *
	 * As we have a small number of different sources from which we feed
	 * the HW, we track the state of each inside a single bitfield.
C
Chris Wilson 已提交
270
	 */
271 272 273
	unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1
274
#define EXECLISTS_ACTIVE_HWACK 2
C
Chris Wilson 已提交
275

276 277 278 279
	/**
	 * @port_mask: number of execlist ports - 1
	 */
	unsigned int port_mask;
280

281 282 283 284 285 286 287 288 289 290
	/**
	 * @queue_priority: Highest pending priority.
	 *
	 * When we add requests into the queue, or adjust the priority of
	 * executing requests, we compute the maximum priority of those
	 * pending requests. We can then use this value to determine if
	 * we need to preempt the executing requests to service the queue.
	 */
	int queue_priority;

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	/**
	 * @queue: queue of requests, in priority lists
	 */
	struct rb_root queue;

	/**
	 * @first: leftmost level in priority @queue
	 */
	struct rb_node *first;

	/**
	 * @fw_domains: forcewake domains for irq tasklet
	 */
	unsigned int fw_domains;

	/**
	 * @csb_head: context status buffer head
	 */
	unsigned int csb_head;

	/**
	 * @csb_use_mmio: access csb through mmio, instead of hwsp
	 */
	bool csb_use_mmio;
315 316 317 318 319

	/**
	 * @preempt_complete_status: expected CSB upon completing preemption
	 */
	u32 preempt_complete_status;
320 321
};

322 323
#define INTEL_ENGINE_CS_MAX_NAME 8

324 325
struct intel_engine_cs {
	struct drm_i915_private *i915;
326
	char name[INTEL_ENGINE_CS_MAX_NAME];
327

328 329
	enum intel_engine_id id;
	unsigned int hw_id;
330
	unsigned int guc_id;
331

332 333 334
	u8 uabi_id;
	u8 uabi_class;

335 336
	u8 class;
	u8 instance;
337 338 339
	u32 context_size;
	u32 mmio_base;

340
	struct intel_ring *buffer;
341 342

	struct i915_timeline timeline;
343

344
	struct drm_i915_gem_object *default_state;
345
	void *pinned_default_state;
346

347
	atomic_t irq_count;
348 349
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
350
#define ENGINE_IRQ_EXECLIST 1
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
369 370 371 372
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
373
		struct rb_root waiters; /* sorted by retirement, priority */
374
		struct list_head signals; /* sorted by retirement */
375
		struct task_struct *signaler; /* used for fence signalling */
376

377
		struct timer_list fake_irq; /* used after a missed interrupt */
378 379
		struct timer_list hangcheck; /* detect missed interrupts */

380
		unsigned int hangcheck_interrupts;
381
		unsigned int irq_enabled;
382

383
		bool irq_armed : 1;
384
		I915_SELFTEST_DECLARE(bool mock : 1);
385 386
	} breadcrumbs;

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	struct {
		/**
		 * @enable: Bitmask of enable sample events on this engine.
		 *
		 * Bits correspond to sample event types, for instance
		 * I915_SAMPLE_QUEUED is bit 0 etc.
		 */
		u32 enable;
		/**
		 * @enable_count: Reference count for the enabled samplers.
		 *
		 * Index number corresponds to the bit number from @enable.
		 */
		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
		/**
		 * @sample: Counter values for sampling events.
		 *
		 * Our internal timer stores the current counters in this field.
		 */
406
#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
407 408 409
		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
	} pmu;

410 411 412 413 414 415 416
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

417
	struct intel_hw_status_page status_page;
418
	struct i915_ctx_workarounds wa_ctx;
419
	struct i915_vma *scratch;
420

421 422
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
423 424
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
425

426
	int		(*init_hw)(struct intel_engine_cs *engine);
427 428 429 430 431 432 433

	struct {
		struct i915_request *(*prepare)(struct intel_engine_cs *engine);
		void (*reset)(struct intel_engine_cs *engine,
			      struct i915_request *rq);
		void (*finish)(struct intel_engine_cs *engine);
	} reset;
434

435 436 437
	void		(*park)(struct intel_engine_cs *engine);
	void		(*unpark)(struct intel_engine_cs *engine);

438 439
	void		(*set_default_submission)(struct intel_engine_cs *engine);

440 441 442
	struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
					     struct i915_gem_context *ctx);

443 444
	int		(*request_alloc)(struct i915_request *rq);
	int		(*init_context)(struct i915_request *rq);
445

446
	int		(*emit_flush)(struct i915_request *request, u32 mode);
447 448 449
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
450
	int		(*emit_bb_start)(struct i915_request *rq,
451 452 453 454 455
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
456
	void		(*emit_breadcrumb)(struct i915_request *rq, u32 *cs);
457
	int		emit_breadcrumb_sz;
458 459 460 461 462 463 464

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
465
	void		(*submit_request)(struct i915_request *rq);
466

467 468 469 470 471 472
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
473 474
	void		(*schedule)(struct i915_request *request,
				    const struct i915_sched_attr *attr);
475

476 477 478 479 480 481 482 483
	/*
	 * Cancel all requests on the hardware, or queued for execution.
	 * This should only cancel the ready requests that have been
	 * submitted to the engine (via the engine->submit_request callback).
	 * This is called when marking the device as wedged.
	 */
	void		(*cancel_requests)(struct intel_engine_cs *engine);

484 485 486 487 488 489
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
490 491
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
492

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
530
	struct {
531 532 533
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
534 535 536 537 538 539
		struct {
			/* our mbox written by others */
			u32		wait[GEN6_NUM_SEMAPHORES];
			/* mboxes this ring signals to */
			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
		} mbox;
540 541

		/* AKA wait() */
542 543 544
		int	(*sync_to)(struct i915_request *rq,
				   struct i915_request *signal);
		u32	*(*signal)(struct i915_request *rq, u32 *cs);
545
	} semaphore;
546

547
	struct intel_engine_execlists execlists;
548

549 550 551 552 553 554 555 556 557
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
558
	struct intel_context *last_retired_context;
559

560 561 562
	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

563
	struct intel_engine_hangcheck hangcheck;
564

565
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
566
#define I915_ENGINE_SUPPORTS_STATS   BIT(1)
567
#define I915_ENGINE_HAS_PREEMPTION   BIT(2)
568
	unsigned int flags;
569

570
	/*
571
	 * Table of commands the command parser needs to know about
572
	 * for this engine.
573
	 */
574
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
575 576 577 578

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
579 580
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
581 582 583 584 585

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
586
	 * If the command parser finds an entry for a command in the engine's
587
	 * cmd_tables, it gets the command's length based on the table entry.
588 589 590
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
591 592
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
593 594 595 596 597

	struct {
		/**
		 * @lock: Lock protecting the below fields.
		 */
598
		seqlock_t lock;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		/**
		 * @enabled: Reference count indicating number of listeners.
		 */
		unsigned int enabled;
		/**
		 * @active: Number of contexts currently scheduled in.
		 */
		unsigned int active;
		/**
		 * @enabled_at: Timestamp when busy stats were enabled.
		 */
		ktime_t enabled_at;
		/**
		 * @start: Timestamp of the last idle to active transition.
		 *
		 * Idle is defined as active == 0, active is active > 0.
		 */
		ktime_t start;
		/**
		 * @total: Total time this engine was busy.
		 *
		 * Accumulated time not counting the most recent block in cases
		 * where engine is currently busy (active > 0).
		 */
		ktime_t total;
	} stats;
625 626
};

627 628
static inline bool
intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
629 630 631 632
{
	return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
}

633 634
static inline bool
intel_engine_supports_stats(const struct intel_engine_cs *engine)
635 636 637 638
{
	return engine->flags & I915_ENGINE_SUPPORTS_STATS;
}

639 640 641 642 643 644 645 646 647 648 649
static inline bool
intel_engine_has_preemption(const struct intel_engine_cs *engine)
{
	return engine->flags & I915_ENGINE_HAS_PREEMPTION;
}

static inline bool __execlists_need_preempt(int prio, int last)
{
	return prio > max(0, last);
}

650 651 652 653 654 655 656
static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
		     unsigned int bit)
{
	__set_bit(bit, (unsigned long *)&execlists->active);
}

657 658 659 660 661 662 663
static inline bool
execlists_set_active_once(struct intel_engine_execlists *execlists,
			  unsigned int bit)
{
	return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677
static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
		       unsigned int bit)
{
	__clear_bit(bit, (unsigned long *)&execlists->active);
}

static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
		    unsigned int bit)
{
	return test_bit(bit, (unsigned long *)&execlists->active);
}

678 679 680 681
void execlists_user_begin(struct intel_engine_execlists *execlists,
			  const struct execlist_port *port);
void execlists_user_end(struct intel_engine_execlists *execlists);

682 683 684 685 686 687
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);

void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);

688 689 690 691 692 693
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
	return execlists->port_mask + 1;
}

694
static inline struct execlist_port *
695 696 697
execlists_port_complete(struct intel_engine_execlists * const execlists,
			struct execlist_port * const port)
{
698
	const unsigned int m = execlists->port_mask;
699 700

	GEM_BUG_ON(port_index(port, execlists) != 0);
701
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
702

703 704
	memmove(port, port + 1, m * sizeof(struct execlist_port));
	memset(port + m, 0, sizeof(struct execlist_port));
705 706

	return port;
707 708
}

709
static inline unsigned int
710
intel_engine_flag(const struct intel_engine_cs *engine)
711
{
712
	return BIT(engine->id);
713 714
}

715
static inline u32
716
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
717
{
718
	/* Ensure that the compiler doesn't optimize away the load. */
719
	return READ_ONCE(engine->status_page.page_addr[reg]);
720 721
}

M
Mika Kuoppala 已提交
722
static inline void
723
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
M
Mika Kuoppala 已提交
724
{
725 726 727 728 729 730 731 732 733 734 735 736 737 738
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
M
Mika Kuoppala 已提交
739 740
}

741
/*
C
Chris Wilson 已提交
742 743 744 745 746 747 748 749 750 751 752
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
753
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
754
 *
755
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
756
 */
757
#define I915_GEM_HWS_INDEX		0x30
758
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
759 760
#define I915_GEM_HWS_PREEMPT_INDEX	0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
761
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
762
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
763

764
#define I915_HWS_CSB_BUF0_INDEX		0x10
765 766
#define I915_HWS_CSB_WRITE_INDEX	0x1f
#define CNL_HWS_CSB_WRITE_INDEX		0x2f
767

768
struct intel_ring *
769
intel_engine_create_ring(struct intel_engine_cs *engine,
770
			 struct i915_timeline *timeline,
771
			 int size);
772 773 774
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
775
void intel_ring_reset(struct intel_ring *ring, u32 tail);
776
unsigned int intel_ring_update_space(struct intel_ring *ring);
777
void intel_ring_unpin(struct intel_ring *ring);
778
void intel_ring_free(struct intel_ring *ring);
779

780 781
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
782

783 784
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

785
int __must_check intel_ring_cacheline_align(struct i915_request *rq);
786

787
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
788
u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
789

790
static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
791
{
792 793 794 795 796 797 798
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
799
	 */
800
	GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
801 802
}

803
static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
804 805 806 807
{
	return pos & (ring->size - 1);
}

808
static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
809 810
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
811 812 813
	u32 offset = addr - rq->ring->vaddr;
	GEM_BUG_ON(offset > rq->ring->size);
	return intel_ring_wrap(rq->ring, offset);
814
}
815

816 817 818 819 820 821 822 823 824
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
	/* We could combine these into a single tail operation, but keeping
	 * them as seperate tests will help identify the cause should one
	 * ever fire.
	 */
	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
	GEM_BUG_ON(tail >= ring->size);
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	/*
	 * "Ring Buffer Use"
	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 *
	 * We use ring->head as the last known location of the actual RING_HEAD,
	 * it may have advanced but in the worst case it is equally the same
	 * as ring->head and so we should never program RING_TAIL to advance
	 * into the same cacheline as ring->head.
	 */
#define cacheline(a) round_down(a, CACHELINE_BYTES)
	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
		   tail < ring->head);
#undef cacheline
844 845
}

846 847 848 849 850
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
851
	 * read by i915_request_retire() just as it is being updated
852 853 854 855 856 857 858
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}
859

860
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
861

862 863
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
864
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
865
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
866

867 868 869 870
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
871

872 873
int intel_engine_stop_cs(struct intel_engine_cs *engine);

874 875
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
876

877 878 879 880
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
881

882 883 884 885 886 887 888 889 890
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
891
	return READ_ONCE(engine->timeline.seqno);
892 893
}

894 895 896
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

897 898 899
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
900 901 902
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
903
 */
904
#define MIN_SPACE_FOR_ADD_REQUEST 336
905

906 907
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
908
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
909 910
}

911 912 913 914 915
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}

916 917 918
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

919
static inline void intel_wait_init(struct intel_wait *wait,
920
				   struct i915_request *rq)
921 922
{
	wait->tsk = current;
923
	wait->request = rq;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
940
	wait->seqno = seqno;
941 942 943 944 945
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
946
			  const struct i915_request *rq)
947
{
948
	return intel_wait_update_seqno(wait, i915_request_global_seqno(rq));
949 950 951 952 953 954 955 956 957 958
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
959
			 const struct i915_request *rq)
960
{
961
	return intel_wait_check_seqno(wait, i915_request_global_seqno(rq));
962 963 964 965 966 967 968 969 970 971 972
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
973
bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup);
974
void intel_engine_cancel_signaling(struct i915_request *request);
975

976
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
977
{
978
	return READ_ONCE(engine->breadcrumbs.irq_wait);
979 980
}

981 982
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
983 984
#define ENGINE_WAKEUP_ASLEEP BIT(1)

985 986 987
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);

988 989
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
990

991
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
992 993
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);

994 995 996 997 998 999 1000 1001 1002 1003 1004
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
	/* We're using qword write, offset should be aligned to 8 bytes. */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = gtt_offset;
	*cs++ = 0;
	*cs++ = value;
	/* We're thrashing one dword of HWS. */
	*cs++ = 0;

	return cs;
}

static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	GEM_BUG_ON(gtt_offset & (1 << 5));
	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = value;

	return cs;
}

1043
bool intel_engine_is_idle(struct intel_engine_cs *engine);
1044
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
1045

1046
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
1047
void intel_engine_lost_context(struct intel_engine_cs *engine);
1048

1049 1050 1051
void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);

1052
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1053
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1054

1055
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1056

1057 1058 1059 1060
__printf(3, 4)
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...);
1061

1062 1063 1064
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);

1065 1066 1067 1068 1069 1070 1071
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

1072
	write_seqlock_irqsave(&engine->stats.lock, flags);
1073 1074 1075 1076 1077 1078 1079

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

1080
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1081 1082 1083 1084 1085 1086 1087 1088 1089
}

static inline void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

1090
	write_seqlock_irqsave(&engine->stats.lock, flags);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

1117
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1118 1119 1120 1121 1122 1123 1124
}

int intel_enable_engine_stats(struct intel_engine_cs *engine);
void intel_disable_engine_stats(struct intel_engine_cs *engine);

ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);

1125
#endif /* _INTEL_RINGBUFFER_H_ */