intel_pm.c 261.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71

72 73
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77

78
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 80
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

V
Ville Syrjälä 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
426
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427
{
428 429
	bool ret;

430
	mutex_lock(&dev_priv->wm.wm_mutex);
431
	ret = _intel_set_memory_cxsr(dev_priv, enable);
432 433 434 435
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
436
	mutex_unlock(&dev_priv->wm.wm_mutex);
437 438

	return ret;
439
}
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
455
static const int pessimal_latency_ns = 5000;
456

457 458 459
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

460
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461
{
462
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465 466
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
467

468
	switch (pipe) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
489 490
		MISSING_CASE(pipe);
		return;
491 492
	}

493 494 495 496
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
497 498
}

499
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

514
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

530
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
547 548 549 550 551
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 553
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_cursor_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params i965_cursor_wm_info = {
575 576 577 578 579
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i945_wm_info = {
582 583 584 585 586
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i915_wm_info = {
589 590 591 592 593
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594
};
595
static const struct intel_watermark_params i830_a_wm_info = {
596 597 598 599 600
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
601
};
602 603 604 605 606 607 608
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
609
static const struct intel_watermark_params i845_wm_info = {
610 611 612 613 614
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
615 616
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

713 714
/**
 * intel_calculate_wm - calculate watermark level
715
 * @pixel_rate: pixel clock
716
 * @wm: chip FIFO params
717
 * @cpp: bytes per pixel
718 719 720 721 722 723 724 725 726 727 728 729 730
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
731 732 733 734
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
735
{
736
	int entries, wm_size;
737 738 739 740 741 742 743

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
744 745 746 747 748
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749

750 751
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752 753

	/* Don't promote wm_size to unsigned... */
754
	if (wm_size > wm->max_wm)
755 756 757
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
758 759 760 761 762 763 764 765 766 767 768

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

769 770 771
	return wm_size;
}

772 773 774 775 776 777 778 779 780 781
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

782 783 784 785 786
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

810
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811
{
812
	struct intel_crtc *crtc, *enabled = NULL;
813

814
	for_each_intel_crtc(&dev_priv->drm, crtc) {
815
		if (intel_crtc_active(crtc)) {
816 817 818 819 820 821 822 823 824
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

825
static void pineview_update_wm(struct intel_crtc *unused_crtc)
826
{
827
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828
	struct intel_crtc *crtc;
829 830
	const struct cxsr_latency *latency;
	u32 reg;
831
	unsigned int wm;
832

833 834 835 836
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
837 838
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839
		intel_set_memory_cxsr(dev_priv, false);
840 841 842
		return;
	}

843
	crtc = single_enabled_crtc(dev_priv);
844
	if (crtc) {
845 846 847 848
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
849
		int cpp = fb->format->cpp[0];
850
		int clock = adjusted_mode->crtc_clock;
851 852 853 854

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
855
					cpp, latency->display_sr);
856 857
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
858
		reg |= FW_WM(wm, SR);
859 860 861 862 863 864
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
865
					4, latency->cursor_sr);
866 867
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
868
		reg |= FW_WM(wm, CURSOR_SR);
869 870 871 872 873
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
874
					cpp, latency->display_hpll_disable);
875 876
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
877
		reg |= FW_WM(wm, HPLL_SR);
878 879 880 881 882
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
883
					4, latency->cursor_hpll_disable);
884 885
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
886
		reg |= FW_WM(wm, HPLL_CURSOR);
887 888 889
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

890
		intel_set_memory_cxsr(dev_priv, true);
891
	} else {
892
		intel_set_memory_cxsr(dev_priv, false);
893 894 895
	}
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

913 914
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
915
{
916 917 918 919 920
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
938

939
	POSTING_READ(DSPFW1);
940 941
}

942 943 944
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

945
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946 947
				const struct vlv_wm_values *wm)
{
948 949 950
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
951 952
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

953 954 955 956 957 958
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
959

960 961 962 963 964 965 966 967 968 969 970
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

971
	I915_WRITE(DSPFW1,
972
		   FW_WM(wm->sr.plane, SR) |
973 974 975
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976
	I915_WRITE(DSPFW2,
977 978 979
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980
	I915_WRITE(DSPFW3,
981
		   FW_WM(wm->sr.cursor, CURSOR_SR));
982 983 984

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
985 986
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987
		I915_WRITE(DSPFW8_CHV,
988 989
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990
		I915_WRITE(DSPFW9_CHV,
991 992
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993
		I915_WRITE(DSPHOWM,
994
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
995 996 997 998 999 1000 1001 1002 1003
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004 1005
	} else {
		I915_WRITE(DSPFW7,
1006 1007
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008
		I915_WRITE(DSPHOWM,
1009
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1010 1011 1012 1013 1014 1015
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016 1017 1018
	}

	POSTING_READ(DSPFW1);
1019 1020
}

1021 1022
#undef FW_WM_VLV

1023 1024 1025 1026 1027
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1028
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1029

1030
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;

		if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1541 1542
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1543 1544
				   unsigned int htotal,
				   unsigned int width,
1545
				   unsigned int cpp,
1546 1547 1548 1549
				   unsigned int latency)
{
	unsigned int ret;

1550 1551
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1552 1553 1554 1555 1556
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1557
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1558 1559 1560 1561
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1562 1563
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1564 1565 1566
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1567 1568

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1569 1570 1571
	}
}

1572 1573
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1574 1575
				     int level)
{
1576
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1577
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1578 1579
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1580
	int clock, htotal, cpp, width, wm;
1581 1582 1583 1584

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1585
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1586 1587
		return 0;

1588
	cpp = plane_state->base.fb->format->cpp[0];
1589 1590 1591
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1592

1593
	if (plane->id == PLANE_CURSOR) {
1594 1595 1596 1597 1598 1599 1600 1601
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1602
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1603 1604 1605 1606 1607 1608
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1609 1610 1611 1612 1613 1614
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1615
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1616
{
1617
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1618
	const struct g4x_pipe_wm *raw =
1619
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1620
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1621 1622 1623
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1624
	int fifo_extra, fifo_left = fifo_size;
1625
	int sprite0_fifo_extra = 0;
1626 1627
	unsigned int total_rate;
	enum plane_id plane_id;
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1640 1641
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1642 1643
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1644

1645 1646
	if (total_rate > fifo_size)
		return -EINVAL;
1647

1648 1649
	if (total_rate == 0)
		total_rate = 1;
1650

1651
	for_each_plane_id_on_crtc(crtc, plane_id) {
1652 1653
		unsigned int rate;

1654 1655
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1656 1657 1658
			continue;
		}

1659 1660 1661
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1662 1663
	}

1664 1665 1666
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1667 1668 1669
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1670 1671

	/* spread the remainder evenly */
1672
	for_each_plane_id_on_crtc(crtc, plane_id) {
1673 1674 1675 1676 1677
		int plane_extra;

		if (fifo_left == 0)
			break;

1678
		if ((active_planes & BIT(plane_id)) == 0)
1679 1680 1681
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1682
		fifo_state->plane[plane_id] += plane_extra;
1683 1684 1685
		fifo_left -= plane_extra;
	}

1686 1687 1688 1689 1690 1691 1692 1693 1694
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1695 1696
}

1697 1698 1699 1700 1701 1702
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1703
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1714 1715 1716 1717 1718 1719 1720 1721
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1722 1723 1724 1725
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1726
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1727
				 int level, enum plane_id plane_id, u16 value)
1728
{
1729
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1730
	int num_levels = intel_wm_num_levels(dev_priv);
1731
	bool dirty = false;
1732

1733
	for (; level < num_levels; level++) {
1734
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1735

1736
		dirty |= raw->plane[plane_id] != value;
1737
		raw->plane[plane_id] = value;
1738
	}
1739 1740

	return dirty;
1741 1742
}

1743 1744
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1745
{
1746 1747
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1748
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1749
	int level;
1750
	bool dirty = false;
1751

1752
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1753 1754
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1755
	}
1756

1757
	for (level = 0; level < num_levels; level++) {
1758
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1759 1760
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1761

1762 1763
		if (wm > max_wm)
			break;
1764

1765
		dirty |= raw->plane[plane_id] != wm;
1766 1767
		raw->plane[plane_id] = wm;
	}
1768

1769
	/* mark all higher levels as invalid */
1770
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1771

1772 1773
out:
	if (dirty)
1774
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1775 1776 1777 1778 1779 1780
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1781
}
1782

1783 1784
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1785
{
1786
	const struct g4x_pipe_wm *raw =
1787 1788 1789
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1790

1791 1792
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1793

1794
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1795
{
1796 1797 1798 1799
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1813
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1814 1815 1816 1817
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1818
	unsigned int dirty = 0;
1819 1820 1821 1822 1823 1824 1825 1826

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1827

1828
		if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1859
	}
1860

1861
	/* initially allow all levels */
1862
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1863 1864 1865 1866 1867
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1868
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1869

1870
	for (level = 0; level < wm_state->num_levels; level++) {
1871
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1872
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1873

1874
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1875
			break;
1876

1877 1878 1879 1880 1881 1882 1883 1884
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1885
						 raw->plane[PLANE_SPRITE0],
1886 1887
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1888

1889 1890 1891
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1892 1893
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1904 1905
}

1906 1907 1908
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1909 1910
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1911
{
1912
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1913
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1914 1915
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1916
	int sprite0_start, sprite1_start, fifo_size;
1917

1918 1919 1920
	if (!crtc_state->fifo_changed)
		return;

1921 1922 1923
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1924

1925 1926
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1927

1928 1929
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1940

1941 1942 1943
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1944 1945
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1957 1958
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1959 1960
		break;
	case PIPE_B:
1961 1962
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1974 1975
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1976 1977
		break;
	case PIPE_C:
1978 1979
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1991 1992
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1993 1994 1995 1996
		break;
	default:
		break;
	}
1997

1998
	POSTING_READ_FW(DSPARB);
1999

2000
	spin_unlock(&dev_priv->uncore.lock);
2001 2002 2003 2004
}

#undef VLV_FIFO

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2015 2016
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2039 2040
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2041 2042 2043 2044

	return 0;
}

2045
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2046 2047 2048 2049 2050
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2051
	wm->level = dev_priv->wm.max_level;
2052 2053
	wm->cxsr = true;

2054
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2055
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2070 2071 2072
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2073
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2074
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075 2076 2077
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2078
		if (crtc->active && wm->cxsr)
2079 2080
			wm->sr = wm_state->sr[wm->level];

2081 2082 2083 2084
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2085 2086 2087
	}
}

2088
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2089
{
2090 2091
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2092

2093
	vlv_merge_wm(dev_priv, &new_wm);
2094

2095
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2096 2097
		return;

2098
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2099 2100
		chv_set_memory_dvfs(dev_priv, false);

2101
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2102 2103
		chv_set_memory_pm5(dev_priv, false);

2104
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2105
		_intel_set_memory_cxsr(dev_priv, false);
2106

2107
	vlv_write_wm_values(dev_priv, &new_wm);
2108

2109
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2110
		_intel_set_memory_cxsr(dev_priv, true);
2111

2112
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2113 2114
		chv_set_memory_pm5(dev_priv, true);

2115
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2116 2117
		chv_set_memory_dvfs(dev_priv, true);

2118
	*old_wm = new_wm;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2144 2145 2146 2147
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2148
static void i965_update_wm(struct intel_crtc *unused_crtc)
2149
{
2150
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2151
	struct intel_crtc *crtc;
2152 2153
	int srwm = 1;
	int cursor_sr = 16;
2154
	bool cxsr_enabled;
2155 2156

	/* Calc sr entries for one plane configs */
2157
	crtc = single_enabled_crtc(dev_priv);
2158 2159 2160
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2161 2162 2163 2164
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2165
		int clock = adjusted_mode->crtc_clock;
2166
		int htotal = adjusted_mode->crtc_htotal;
2167
		int hdisplay = crtc->config->pipe_src_w;
2168
		int cpp = fb->format->cpp[0];
2169 2170
		int entries;

2171 2172
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2173 2174 2175 2176 2177 2178 2179 2180
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2181 2182 2183
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2184
		entries = DIV_ROUND_UP(entries,
2185 2186
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2187

2188
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2189 2190 2191 2192 2193 2194
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2195
		cxsr_enabled = true;
2196
	} else {
2197
		cxsr_enabled = false;
2198
		/* Turn off self refresh if both pipes are enabled */
2199
		intel_set_memory_cxsr(dev_priv, false);
2200 2201 2202 2203 2204 2205
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2206 2207 2208 2209 2210 2211
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2212
	/* update cursor SR watermark */
2213
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2214 2215 2216

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2217 2218
}

2219 2220
#undef FW_WM

2221
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2222
{
2223
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224 2225 2226 2227 2228 2229
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2230
	struct intel_crtc *crtc, *enabled = NULL;
2231

2232
	if (IS_I945GM(dev_priv))
2233
		wm_info = &i945_wm_info;
2234
	else if (!IS_GEN2(dev_priv))
2235 2236
		wm_info = &i915_wm_info;
	else
2237
		wm_info = &i830_a_wm_info;
2238

2239
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2240
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2241 2242 2243 2244 2245 2246 2247
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2248
		if (IS_GEN2(dev_priv))
2249
			cpp = 4;
2250
		else
2251
			cpp = fb->format->cpp[0];
2252

2253
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2254
					       wm_info, fifo_size, cpp,
2255
					       pessimal_latency_ns);
2256
		enabled = crtc;
2257
	} else {
2258
		planea_wm = fifo_size - wm_info->guard_size;
2259 2260 2261 2262
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2263
	if (IS_GEN2(dev_priv))
2264
		wm_info = &i830_bc_wm_info;
2265

2266
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2267
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2268 2269 2270 2271 2272 2273 2274
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2275
		if (IS_GEN2(dev_priv))
2276
			cpp = 4;
2277
		else
2278
			cpp = fb->format->cpp[0];
2279

2280
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2281
					       wm_info, fifo_size, cpp,
2282
					       pessimal_latency_ns);
2283 2284 2285 2286
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2287
	} else {
2288
		planeb_wm = fifo_size - wm_info->guard_size;
2289 2290 2291
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2292 2293 2294

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2295
	if (IS_I915GM(dev_priv) && enabled) {
2296
		struct drm_i915_gem_object *obj;
2297

2298
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2299 2300

		/* self-refresh seems busted with untiled */
2301
		if (!i915_gem_object_is_tiled(obj))
2302 2303 2304
			enabled = NULL;
	}

2305 2306 2307 2308 2309 2310
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2311
	intel_set_memory_cxsr(dev_priv, false);
2312 2313

	/* Calc sr entries for one plane configs */
2314
	if (HAS_FW_BLC(dev_priv) && enabled) {
2315 2316
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2317 2318 2319 2320
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2321
		int clock = adjusted_mode->crtc_clock;
2322
		int htotal = adjusted_mode->crtc_htotal;
2323 2324
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2325 2326
		int entries;

2327
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2328
			cpp = 4;
2329
		else
2330
			cpp = fb->format->cpp[0];
2331

2332 2333
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2334 2335 2336 2337 2338 2339
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2340
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2341 2342
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2343
		else
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2360 2361
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2362 2363
}

2364
static void i845_update_wm(struct intel_crtc *unused_crtc)
2365
{
2366
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2367
	struct intel_crtc *crtc;
2368
	const struct drm_display_mode *adjusted_mode;
2369 2370 2371
	uint32_t fwater_lo;
	int planea_wm;

2372
	crtc = single_enabled_crtc(dev_priv);
2373 2374 2375
	if (crtc == NULL)
		return;

2376
	adjusted_mode = &crtc->config->base.adjusted_mode;
2377
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2378
				       &i845_wm_info,
2379
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2380
				       4, pessimal_latency_ns);
2381 2382 2383 2384 2385 2386 2387 2388
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2389
/* latency must be in 0.1us units. */
2390 2391 2392
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2393
{
2394
	unsigned int ret;
2395

2396 2397
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2398 2399 2400 2401

	return ret;
}

2402
/* latency must be in 0.1us units. */
2403 2404 2405 2406 2407
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2408
{
2409
	unsigned int ret;
2410

2411 2412
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2413
	ret = DIV_ROUND_UP(ret, 64) + 2;
2414

2415 2416 2417
	return ret;
}

2418
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2419
			   uint8_t cpp)
2420
{
2421 2422 2423 2424 2425 2426
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2427
	if (WARN_ON(!cpp))
2428 2429 2430 2431
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2432
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2433 2434
}

2435
struct ilk_wm_maximums {
2436 2437 2438 2439 2440 2441
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2442 2443 2444 2445
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2446
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2447
				   const struct intel_plane_state *pstate,
2448 2449
				   uint32_t mem_value,
				   bool is_lp)
2450
{
2451
	uint32_t method1, method2;
2452
	int cpp;
2453

2454
	if (!intel_wm_plane_visible(cstate, pstate))
2455 2456
		return 0;

2457
	cpp = pstate->base.fb->format->cpp[0];
2458

2459
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2460 2461 2462 2463

	if (!is_lp)
		return method1;

2464
	method2 = ilk_wm_method2(cstate->pixel_rate,
2465
				 cstate->base.adjusted_mode.crtc_htotal,
2466
				 drm_rect_width(&pstate->base.dst),
2467
				 cpp, mem_value);
2468 2469

	return min(method1, method2);
2470 2471
}

2472 2473 2474 2475
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2476
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2477
				   const struct intel_plane_state *pstate,
2478 2479 2480
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2481
	int cpp;
2482

2483
	if (!intel_wm_plane_visible(cstate, pstate))
2484 2485
		return 0;

2486
	cpp = pstate->base.fb->format->cpp[0];
2487

2488 2489
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2490
				 cstate->base.adjusted_mode.crtc_htotal,
2491
				 drm_rect_width(&pstate->base.dst),
2492
				 cpp, mem_value);
2493 2494 2495
	return min(method1, method2);
}

2496 2497 2498 2499
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2500
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2501
				   const struct intel_plane_state *pstate,
2502 2503
				   uint32_t mem_value)
{
2504 2505
	int cpp;

2506
	if (!intel_wm_plane_visible(cstate, pstate))
2507 2508
		return 0;

2509 2510
	cpp = pstate->base.fb->format->cpp[0];

2511
	return ilk_wm_method2(cstate->pixel_rate,
2512
			      cstate->base.adjusted_mode.crtc_htotal,
2513
			      pstate->base.crtc_w, cpp, mem_value);
2514 2515
}

2516
/* Only for WM_LP. */
2517
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2518
				   const struct intel_plane_state *pstate,
2519
				   uint32_t pri_val)
2520
{
2521
	int cpp;
2522

2523
	if (!intel_wm_plane_visible(cstate, pstate))
2524 2525
		return 0;

2526
	cpp = pstate->base.fb->format->cpp[0];
2527

2528
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2529 2530
}

2531 2532
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2533
{
2534
	if (INTEL_GEN(dev_priv) >= 8)
2535
		return 3072;
2536
	else if (INTEL_GEN(dev_priv) >= 7)
2537 2538 2539 2540 2541
		return 768;
	else
		return 512;
}

2542 2543 2544
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2545
{
2546
	if (INTEL_GEN(dev_priv) >= 8)
2547 2548
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2549
	else if (INTEL_GEN(dev_priv) >= 7)
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2560 2561
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2562
{
2563
	if (INTEL_GEN(dev_priv) >= 7)
2564 2565 2566 2567 2568
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2569
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572 2573 2574 2575 2576
		return 31;
	else
		return 15;
}

2577 2578 2579
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2580
				     const struct intel_wm_config *config,
2581 2582 2583
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2584 2585
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2586 2587

	/* if sprites aren't enabled, sprites get nothing */
2588
	if (is_sprite && !config->sprites_enabled)
2589 2590 2591
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2592
	if (level == 0 || config->num_pipes_active > 1) {
2593
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2594 2595 2596 2597 2598 2599

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2600
		if (INTEL_GEN(dev_priv) <= 6)
2601 2602 2603
			fifo_size /= 2;
	}

2604
	if (config->sprites_enabled) {
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2616
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2617 2618 2619 2620
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2621 2622
				      int level,
				      const struct intel_wm_config *config)
2623 2624
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2625
	if (level > 0 && config->num_pipes_active > 1)
2626 2627 2628
		return 64;

	/* otherwise just report max that registers can hold */
2629
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2630 2631
}

2632
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2633 2634 2635
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2636
				    struct ilk_wm_maximums *max)
2637
{
2638 2639 2640
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2641
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2642 2643
}

2644
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2645 2646 2647
					int level,
					struct ilk_wm_maximums *max)
{
2648 2649 2650 2651
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2652 2653
}

2654
static bool ilk_validate_wm_level(int level,
2655
				  const struct ilk_wm_maximums *max,
2656
				  struct intel_wm_level *result)
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2695
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2696
				 const struct intel_crtc *intel_crtc,
2697
				 int level,
2698
				 struct intel_crtc_state *cstate,
2699 2700 2701
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2702
				 struct intel_wm_level *result)
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2727 2728 2729
	result->enable = true;
}

2730
static uint32_t
2731
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2732
{
2733 2734
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2735 2736
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2737
	u32 linetime, ips_linetime;
2738

2739 2740 2741 2742
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2743
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2744
		return 0;
2745

2746 2747 2748
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2749 2750 2751
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2752
					 intel_state->cdclk.logical.cdclk);
2753

2754 2755
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2756 2757
}

2758 2759
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2760
{
2761
	if (IS_GEN9(dev_priv)) {
2762
		uint32_t val;
2763
		int ret, i;
2764
		int level, max_level = ilk_wm_max_level(dev_priv);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2820
		/*
2821
		 * WaWmMemoryReadLatency:skl,glk
2822
		 *
2823
		 * punit doesn't take into account the read latency so we need
2824 2825
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2826
		 */
2827 2828 2829 2830 2831
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2832
				wm[level] += 2;
2833
			}
2834 2835
		}

2836
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2837 2838 2839 2840 2841
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2842 2843 2844 2845
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2846
	} else if (INTEL_GEN(dev_priv) >= 6) {
2847 2848 2849 2850 2851 2852
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2853
	} else if (INTEL_GEN(dev_priv) >= 5) {
2854 2855 2856 2857 2858 2859
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2860 2861 2862
	}
}

2863 2864
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2865 2866
{
	/* ILK sprite LP0 latency is 1300 ns */
2867
	if (IS_GEN5(dev_priv))
2868 2869 2870
		wm[0] = 13;
}

2871 2872
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2873 2874
{
	/* ILK cursor LP0 latency is 1300 ns */
2875
	if (IS_GEN5(dev_priv))
2876 2877 2878
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2879
	if (IS_IVYBRIDGE(dev_priv))
2880 2881 2882
		wm[3] *= 2;
}

2883
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2884 2885
{
	/* how many WM levels are we expecting */
2886
	if (INTEL_GEN(dev_priv) >= 9)
2887
		return 7;
2888
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2889
		return 4;
2890
	else if (INTEL_GEN(dev_priv) >= 6)
2891
		return 3;
2892
	else
2893 2894
		return 2;
}
2895

2896
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2897
				   const char *name,
2898
				   const uint16_t wm[8])
2899
{
2900
	int level, max_level = ilk_wm_max_level(dev_priv);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2911 2912 2913 2914
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2915
		if (IS_GEN9(dev_priv))
2916 2917
			latency *= 10;
		else if (level > 0)
2918 2919 2920 2921 2922 2923 2924 2925
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2926 2927 2928
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2929
	int level, max_level = ilk_wm_max_level(dev_priv);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2941
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2957 2958 2959
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2960 2961
}

2962
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2963
{
2964
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2965 2966 2967 2968 2969 2970

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2971
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2972
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2973

2974 2975 2976
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2977

2978
	if (IS_GEN6(dev_priv))
2979
		snb_wm_latency_quirk(dev_priv);
2980 2981
}

2982
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2983
{
2984
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2985
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3011
/* Compute new watermarks for the pipe */
3012
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3013
{
3014 3015
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3016
	struct intel_pipe_wm *pipe_wm;
3017
	struct drm_device *dev = state->dev;
3018
	const struct drm_i915_private *dev_priv = to_i915(dev);
3019
	struct intel_plane *intel_plane;
3020
	struct intel_plane_state *pristate = NULL;
3021
	struct intel_plane_state *sprstate = NULL;
3022
	struct intel_plane_state *curstate = NULL;
3023
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3024
	struct ilk_wm_maximums max;
3025

3026
	pipe_wm = &cstate->wm.ilk.optimal;
3027

3028
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3029 3030 3031 3032 3033 3034
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
3035 3036

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3037
			pristate = ps;
3038
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3039
			sprstate = ps;
3040
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3041
			curstate = ps;
3042 3043
	}

3044
	pipe_wm->pipe_enabled = cstate->base.active;
3045
	if (sprstate) {
3046 3047 3048 3049
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3050 3051
	}

3052 3053
	usable_level = max_level;

3054
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3055
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3056
		usable_level = 1;
3057 3058

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3059
	if (pipe_wm->sprites_scaled)
3060
		usable_level = 0;
3061

3062
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3063 3064 3065 3066
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3067

3068
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3069
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3070

3071
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3072
		return -EINVAL;
3073

3074
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3075 3076

	for (level = 1; level <= max_level; level++) {
3077
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3078

3079
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3080
				     pristate, sprstate, curstate, wm);
3081 3082 3083 3084 3085 3086

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3087 3088 3089 3090 3091 3092
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
3093
			usable_level = level;
3094 3095
	}

3096
	return 0;
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3108
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3109
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3110
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3111 3112 3113 3114 3115 3116

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3117
	*a = newstate->wm.ilk.optimal;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3146 3147
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3148 3149 3150 3151

	return 0;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3161 3162
	ret_wm->enable = true;

3163
	for_each_intel_crtc(dev, intel_crtc) {
3164
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3165 3166 3167 3168
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3169

3170 3171 3172 3173 3174
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3175
		if (!wm->enable)
3176
			ret_wm->enable = false;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3189
			 const struct intel_wm_config *config,
3190
			 const struct ilk_wm_maximums *max,
3191 3192
			 struct intel_pipe_wm *merged)
{
3193
	struct drm_i915_private *dev_priv = to_i915(dev);
3194
	int level, max_level = ilk_wm_max_level(dev_priv);
3195
	int last_enabled_level = max_level;
3196

3197
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3198
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3199
	    config->num_pipes_active > 1)
3200
		last_enabled_level = 0;
3201

3202
	/* ILK: FBC WM must be disabled always */
3203
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3204 3205 3206 3207 3208 3209 3210

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3211 3212 3213 3214 3215
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3216 3217 3218 3219 3220 3221

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3222 3223
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3224 3225 3226
			wm->fbc_val = 0;
		}
	}
3227 3228 3229 3230 3231 3232 3233

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3234
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3235
	    intel_fbc_is_active(dev_priv)) {
3236 3237 3238 3239 3240 3241
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3242 3243
}

3244 3245 3246 3247 3248 3249
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3250 3251 3252
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3253
	struct drm_i915_private *dev_priv = to_i915(dev);
3254

3255
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3256 3257 3258 3259 3260
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3261
static void ilk_compute_wm_results(struct drm_device *dev,
3262
				   const struct intel_pipe_wm *merged,
3263
				   enum intel_ddb_partitioning partitioning,
3264
				   struct ilk_wm_values *results)
3265
{
3266
	struct drm_i915_private *dev_priv = to_i915(dev);
3267 3268
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3269

3270
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3271
	results->partitioning = partitioning;
3272

3273
	/* LP1+ register values */
3274
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3275
		const struct intel_wm_level *r;
3276

3277
		level = ilk_wm_lp_to_level(wm_lp, merged);
3278

3279
		r = &merged->wm[level];
3280

3281 3282 3283 3284 3285
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3286
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3287 3288 3289
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3290 3291 3292
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3293
		if (INTEL_GEN(dev_priv) >= 8)
3294 3295 3296 3297 3298 3299
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3300 3301 3302 3303
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3304
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3305 3306 3307 3308
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3309
	}
3310

3311
	/* LP0 register values */
3312
	for_each_intel_crtc(dev, intel_crtc) {
3313
		enum pipe pipe = intel_crtc->pipe;
3314 3315
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3316 3317 3318 3319

		if (WARN_ON(!r->enable))
			continue;

3320
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3321

3322 3323 3324 3325
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3326 3327 3328
	}
}

3329 3330
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3331
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3332 3333
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3334
{
3335
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3336
	int level1 = 0, level2 = 0;
3337

3338 3339 3340 3341 3342
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3343 3344
	}

3345 3346
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3347 3348 3349
			return r2;
		else
			return r1;
3350
	} else if (level1 > level2) {
3351 3352 3353 3354 3355 3356
		return r1;
	} else {
		return r2;
	}
}

3357 3358 3359 3360 3361 3362 3363 3364
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3365
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3366 3367
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3368 3369 3370 3371 3372
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3373
	for_each_pipe(dev_priv, pipe) {
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3417 3418
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3419
{
3420
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3421
	bool changed = false;
3422

3423 3424 3425
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3426
		changed = true;
3427 3428 3429 3430
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3431
		changed = true;
3432 3433 3434 3435
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3436
		changed = true;
3437
	}
3438

3439 3440 3441 3442
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3443

3444 3445 3446 3447 3448 3449 3450
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3451 3452
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3453
{
3454
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3455 3456 3457
	unsigned int dirty;
	uint32_t val;

3458
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3459 3460 3461 3462 3463
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3464
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3465
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3466
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3467
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3468
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3469 3470
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3471
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3472
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3473
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3474
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3475
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3476 3477
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3478
	if (dirty & WM_DIRTY_DDB) {
3479
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3494 3495
	}

3496
	if (dirty & WM_DIRTY_FBC) {
3497 3498 3499 3500 3501 3502 3503 3504
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3505 3506 3507 3508
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3509
	if (INTEL_GEN(dev_priv) >= 7) {
3510 3511 3512 3513 3514
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3515

3516
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3517
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3518
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3519
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3520
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3521
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3522 3523

	dev_priv->wm.hw = *results;
3524 3525
}

3526
bool ilk_disable_lp_wm(struct drm_device *dev)
3527
{
3528
	struct drm_i915_private *dev_priv = to_i915(dev);
3529 3530 3531 3532

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3533
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3534

3535 3536 3537 3538 3539 3540 3541 3542
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3543
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3544 3545 3546 3547 3548
		return true;

	return false;
}

3549 3550 3551
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3552
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
3553 3554 3555 3556 3557 3558 3559
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3560 3561
}

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3574
intel_enable_sagv(struct drm_i915_private *dev_priv)
3575 3576 3577
{
	int ret;

3578 3579 3580 3581
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3597
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3598
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3599
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3600 3601 3602 3603 3604 3605
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3606
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3607 3608 3609 3610
	return 0;
}

int
3611
intel_disable_sagv(struct drm_i915_private *dev_priv)
3612
{
3613
	int ret;
3614

3615 3616 3617 3618
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3619 3620 3621 3622 3623 3624
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3625 3626 3627 3628
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3629 3630 3631 3632 3633 3634
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3635
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3636
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3637
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3638
		return 0;
3639 3640 3641
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3642 3643
	}

3644
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3645 3646 3647
	return 0;
}

3648
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3649 3650 3651 3652
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3653 3654
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3655
	struct intel_crtc_state *cstate;
3656
	enum pipe pipe;
3657
	int level, latency;
3658

3659 3660 3661
	if (!intel_has_sagv(dev_priv))
		return false;

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3675
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3676
	cstate = to_intel_crtc_state(crtc->base.state);
3677

3678
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3679 3680
		return false;

3681
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3682 3683
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3684

3685
		/* Skip this plane if it's not enabled */
3686
		if (!wm->wm[0].plane_en)
3687 3688 3689
			continue;

		/* Find the highest enabled wm level for this plane */
3690
		for (level = ilk_wm_max_level(dev_priv);
3691
		     !wm->wm[level].plane_en; --level)
3692 3693
		     { }

3694 3695 3696
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3697
		    plane->base.state->fb->modifier ==
3698 3699 3700
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3701 3702 3703 3704 3705
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3706
		if (latency < SKL_SAGV_BLOCK_TIME)
3707 3708 3709 3710 3711 3712
			return false;
	}

	return true;
}

3713 3714
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3715
				   const struct intel_crtc_state *cstate,
3716 3717
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3718
{
3719 3720 3721
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3722
	struct drm_crtc *for_crtc = cstate->base.crtc;
3723 3724
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3725

3726
	if (WARN_ON(!state) || !cstate->base.active) {
3727 3728
		alloc->start = 0;
		alloc->end = 0;
3729
		*num_active = hweight32(dev_priv->active_crtcs);
3730 3731 3732
		return;
	}

3733 3734 3735 3736 3737
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3738 3739
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3740 3741 3742

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3743
	/*
3744 3745 3746 3747 3748 3749
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3750
	 */
3751
	if (!intel_state->active_pipe_changes) {
3752 3753 3754 3755 3756
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3757
		return;
3758
	}
3759 3760 3761 3762 3763 3764

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3765 3766
}

3767
static unsigned int skl_cursor_allocation(int num_active)
3768
{
3769
	if (num_active == 1)
3770 3771 3772 3773 3774
		return 32;

	return 8;
}

3775 3776 3777 3778
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3779 3780
	if (entry->end)
		entry->end += 1;
3781 3782
}

3783 3784
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3785
{
3786
	struct intel_crtc *crtc;
3787

3788 3789
	memset(ddb, 0, sizeof(*ddb));

3790
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3791
		enum intel_display_power_domain power_domain;
3792 3793
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3794 3795 3796

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3797 3798
			continue;

3799 3800 3801 3802 3803 3804 3805
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3806

3807 3808
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3809 3810

		intel_display_power_put(dev_priv, power_domain);
3811 3812 3813
	}
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3830
static uint_fixed_16_16_t
3831 3832
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3833
{
3834
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3835
	uint32_t src_w, src_h, dst_w, dst_h;
3836 3837
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3838

3839
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3840
		return u32_to_fixed_16_16(0);
3841 3842

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3843
	if (plane->id == PLANE_CURSOR) {
3844 3845 3846 3847
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3848 3849
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3850 3851 3852
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3853 3854 3855 3856 3857
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3858 3859
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3860 3861 3862 3863
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3864 3865 3866 3867
	fp_w_ratio = fixed_16_16_div(src_w, dst_w);
	fp_h_ratio = fixed_16_16_div(src_h, dst_h);
	downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
	downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));
3868

3869
	return mul_fixed16(downscale_w, downscale_h);
3870 3871
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed_16_16(1);

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

		fp_w_ratio = fixed_16_16_div(src_w, dst_w);
		fp_h_ratio = fixed_16_16_div(src_h, dst_h);
		downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
		downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3913
	int crtc_clock, dotclk;
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
	uint_fixed_16_16_t max_downscale = u32_to_fixed_16_16(1);

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
		uint_fixed_16_16_t fp_9_div_8 = fixed_16_16_div(9, 8);
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

		max_downscale = max_fixed_16_16(plane_downscale, max_downscale);
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3948 3949 3950 3951 3952 3953
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

	if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3954 3955

	if (pipe_max_pixel_rate < crtc_clock) {
3956
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3957 3958 3959 3960 3961 3962
		return -EINVAL;
	}

	return 0;
}

3963
static unsigned int
3964 3965 3966
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3967
{
3968
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3969
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3970
	uint32_t data_rate;
3971
	uint32_t width = 0, height = 0;
3972 3973
	struct drm_framebuffer *fb;
	u32 format;
3974
	uint_fixed_16_16_t down_scale_amount;
3975

3976
	if (!intel_pstate->base.visible)
3977
		return 0;
3978 3979

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3980
	format = fb->format->format;
3981

3982
	if (plane->id == PLANE_CURSOR)
3983 3984 3985
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3986

3987 3988 3989 3990 3991
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
3992 3993
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3994

3995
	/* for planar format */
3996
	if (format == DRM_FORMAT_NV12) {
3997
		if (y)  /* y-plane data rate */
3998
			data_rate = width * height *
3999
				fb->format->cpp[0];
4000
		else    /* uv-plane data rate */
4001
			data_rate = (width / 2) * (height / 2) *
4002
				fb->format->cpp[1];
4003 4004
	} else {
		/* for packed formats */
4005
		data_rate = width * height * fb->format->cpp[0];
4006 4007
	}

4008
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4009

4010
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4011 4012 4013 4014 4015 4016 4017 4018
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4019 4020 4021
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4022
{
4023 4024
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4025 4026
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4027
	unsigned int total_data_rate = 0;
4028 4029 4030

	if (WARN_ON(!state))
		return 0;
4031

4032
	/* Calculate and cache data rate for each plane */
4033
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4034 4035
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4036 4037 4038 4039

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4040
		plane_data_rate[plane_id] = rate;
4041 4042

		total_data_rate += rate;
4043 4044 4045 4046

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4047
		plane_y_data_rate[plane_id] = rate;
4048

4049
		total_data_rate += rate;
4050 4051 4052 4053 4054
	}

	return total_data_rate;
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4069
	if (y && fb->format->format != DRM_FORMAT_NV12)
4070 4071 4072
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4073 4074
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
4075 4076
		return 8;

4077 4078 4079 4080 4081
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4082 4083
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4084 4085

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4086
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4087 4088 4089 4090
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4091
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4092
		plane_bpp = fb->format->cpp[1];
4093
	else
4094
		plane_bpp = fb->format->cpp[0];
4095

4096
	if (drm_rotation_90_or_270(pstate->rotation)) {
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4120 4121 4122 4123 4124 4125 4126 4127
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4128
		enum plane_id plane_id = to_intel_plane(plane)->id;
4129

4130
		if (plane_id == PLANE_CURSOR)
4131 4132 4133 4134 4135
			continue;

		if (!pstate->visible)
			continue;

4136 4137
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4138 4139 4140 4141 4142
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4143
static int
4144
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4145 4146
		      struct skl_ddb_allocation *ddb /* out */)
{
4147
	struct drm_atomic_state *state = cstate->base.state;
4148
	struct drm_crtc *crtc = cstate->base.crtc;
4149 4150 4151
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4152
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4153
	uint16_t alloc_size, start;
4154 4155
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4156
	unsigned int total_data_rate;
4157
	enum plane_id plane_id;
4158
	int num_active;
4159 4160
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4161
	uint16_t total_min_blocks = 0;
4162

4163 4164 4165 4166
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4167 4168 4169
	if (WARN_ON(!state))
		return 0;

4170
	if (!cstate->base.active) {
4171
		alloc->start = alloc->end = 0;
4172 4173 4174
		return 0;
	}

4175
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4176
	alloc_size = skl_ddb_entry_size(alloc);
4177
	if (alloc_size == 0)
4178
		return 0;
4179

4180
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4181

4182 4183 4184 4185 4186
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4187

4188
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4189 4190
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4191 4192
	}

4193 4194 4195 4196 4197 4198 4199
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4200 4201
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4202 4203
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4204
	/*
4205 4206
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4207 4208 4209
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4210 4211 4212
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4213
	if (total_data_rate == 0)
4214
		return 0;
4215

4216
	start = alloc->start;
4217
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4218
		unsigned int data_rate, y_data_rate;
4219
		uint16_t plane_blocks, y_plane_blocks = 0;
4220

4221
		if (plane_id == PLANE_CURSOR)
4222 4223
			continue;

4224
		data_rate = plane_data_rate[plane_id];
4225 4226

		/*
4227
		 * allocation for (packed formats) or (uv-plane part of planar format):
4228 4229 4230
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4231 4232 4233
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4234

4235 4236
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4237 4238
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4239
		}
4240

4241 4242
		start += plane_blocks;

4243 4244 4245
		/*
		 * allocation for y_plane part of planar format:
		 */
4246
		y_data_rate = plane_y_data_rate[plane_id];
4247

4248 4249 4250 4251
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4252
		if (y_data_rate) {
4253 4254
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4255
		}
4256 4257

		start += y_plane_blocks;
4258 4259
	}

4260
	return 0;
4261 4262
}

4263 4264
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4265
 * for the read latency) and cpp should always be <= 8, so that
4266 4267 4268
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4269 4270
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
4271
{
4272 4273
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4274 4275

	if (latency == 0)
4276
		return FP_16_16_MAX;
4277

4278
	wm_intermediate_val = latency * pixel_rate * cpp;
4279
	ret = fixed_16_16_div_u64(wm_intermediate_val, 1000 * 512);
4280 4281 4282
	return ret;
}

4283 4284 4285 4286
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4287
{
4288
	uint32_t wm_intermediate_val;
4289
	uint_fixed_16_16_t ret;
4290 4291

	if (latency == 0)
4292
		return FP_16_16_MAX;
4293 4294

	wm_intermediate_val = latency * pixel_rate;
4295 4296 4297
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
4298 4299 4300
	return ret;
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
		return u32_to_fixed_16_16(0);

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
		return u32_to_fixed_16_16(0);

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
	linetime_us = fixed_16_16_div_u64(crtc_htotal * 1000, pixel_rate);

	return linetime_us;
}

4322 4323 4324
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4325 4326
{
	uint64_t adjusted_pixel_rate;
4327
	uint_fixed_16_16_t downscale_amount;
4328 4329

	/* Shouldn't reach here on disabled planes... */
4330
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4331 4332 4333 4334 4335 4336
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4337
	adjusted_pixel_rate = cstate->pixel_rate;
4338
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4339

4340 4341
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4342 4343
}

4344 4345
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
4346
				const struct intel_plane_state *intel_pstate,
4347
				uint16_t ddb_allocation,
4348 4349
				int level,
				uint16_t *out_blocks, /* out */
4350 4351
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
4352
{
4353
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4354 4355
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4356
	uint32_t latency = dev_priv->wm.skl_latency[level];
4357 4358 4359 4360 4361
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
4362
	uint32_t res_blocks, res_lines;
4363
	uint8_t cpp;
4364
	uint32_t width = 0, height = 0;
4365
	uint32_t plane_pixel_rate;
4366 4367
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
4368 4369 4370
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4371
	bool y_tiled, x_tiled;
4372

4373
	if (latency == 0 ||
4374 4375
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
4376
		return 0;
4377
	}
4378

4379 4380 4381 4382
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

4383 4384 4385
	/* Display WA #1141: kbl,cfl */
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
4386 4387
		latency += 4;

4388
	if (apply_memory_bw_wa && x_tiled)
4389 4390
		latency += 15;

4391 4392 4393 4394
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
		height = intel_pstate->base.crtc_h;
	} else {
4395 4396 4397 4398 4399
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4400 4401 4402
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
		height = drm_rect_height(&intel_pstate->base.src) >> 16;
	}
4403

4404
	cpp = fb->format->cpp[0];
4405 4406
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

4407
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
4408
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
4409 4410
			fb->format->cpp[1] :
			fb->format->cpp[0];
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
4422 4423 4424
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
4425 4426 4427 4428 4429
		}
	} else {
		y_min_scanlines = 4;
	}

4430 4431 4432
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

4433
	plane_bytes_per_line = width * cpp;
4434
	if (y_tiled) {
4435 4436
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
4437 4438
		plane_blocks_per_line = fixed_16_16_div(interm_pbpl,
							y_min_scanlines);
4439
	} else if (x_tiled) {
4440 4441
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4442
	} else {
4443 4444
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4445 4446
	}

4447 4448
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
4449
				 cstate->base.adjusted_mode.crtc_htotal,
4450
				 latency,
4451
				 plane_blocks_per_line);
4452

4453 4454
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
4455

4456
	if (y_tiled) {
4457
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
4458
	} else {
4459 4460 4461 4462
		uint32_t linetime_us;

		linetime_us = fixed_16_16_to_u32_round_up(
				intel_get_linetime_us(cstate));
4463 4464 4465
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
4466 4467
		else if (ddb_allocation >=
			 fixed_16_16_to_u32_round_up(plane_blocks_per_line))
4468
			selected_result = min_fixed_16_16(method1, method2);
4469 4470
		else if (latency >= linetime_us)
			selected_result = min_fixed_16_16(method1, method2);
4471 4472 4473
		else
			selected_result = method1;
	}
4474

4475
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
4476 4477
	res_lines = div_round_up_fixed16(selected_result,
					 plane_blocks_per_line);
4478

4479
	if (level >= 1 && level <= 7) {
4480
		if (y_tiled) {
4481
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
4482
			res_lines += y_min_scanlines;
4483
		} else {
4484
			res_blocks++;
4485
		}
4486
	}
4487

4488 4489
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4490

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4506
	}
4507 4508 4509

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4510
	*enabled = true;
4511

4512
	return 0;
4513 4514
}

4515
static int
4516
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4517
		      struct skl_ddb_allocation *ddb,
4518 4519 4520
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
		      struct skl_plane_wm *wm)
4521
{
4522 4523 4524 4525 4526
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4527
	int level, max_level = ilk_wm_max_level(dev_priv);
4528
	int ret;
L
Lyude 已提交
4529

4530 4531
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4532

4533 4534
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4535 4536 4537 4538 4539 4540
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4541
					   ddb_blocks,
4542 4543
					   level,
					   &result->plane_res_b,
4544 4545
					   &result->plane_res_l,
					   &result->plane_en);
4546 4547 4548
		if (ret)
			return ret;
	}
4549 4550

	return 0;
4551 4552
}

4553
static uint32_t
4554
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4555
{
M
Mahesh Kumar 已提交
4556 4557
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4558
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4559
	uint32_t linetime_wm;
4560

4561
	linetime_us = intel_get_linetime_us(cstate);
4562

4563
	if (is_fixed16_zero(linetime_us))
4564
		return 0;
4565

4566 4567
	linetime_wm = fixed_16_16_to_u32_round_up(mul_u32_fixed_16_16(8,
				linetime_us));
M
Mahesh Kumar 已提交
4568 4569 4570 4571 4572 4573

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
4574 4575
}

4576
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4577
				      struct skl_wm_level *trans_wm /* out */)
4578
{
4579
	if (!cstate->base.active)
4580
		return;
4581 4582

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
4583
	trans_wm->plane_en = false;
4584 4585
}

4586 4587 4588
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4589
{
4590
	struct drm_device *dev = cstate->base.crtc->dev;
4591
	struct drm_crtc_state *crtc_state = &cstate->base;
4592
	const struct drm_i915_private *dev_priv = to_i915(dev);
4593 4594
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4595
	struct skl_plane_wm *wm;
4596
	int ret;
4597

L
Lyude 已提交
4598 4599 4600 4601 4602 4603
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4604 4605 4606 4607 4608 4609
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;

		wm = &pipe_wm->planes[plane_id];
L
Lyude 已提交
4610

4611 4612
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
					    intel_pstate, wm);
4613 4614
		if (ret)
			return ret;
L
Lyude 已提交
4615
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4616
	}
4617
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4618

4619
	return 0;
4620 4621
}

4622 4623
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4624 4625 4626 4627 4628 4629 4630 4631
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4647 4648 4649
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4650
			       enum plane_id plane_id)
4651 4652 4653 4654
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4655
	int level, max_level = ilk_wm_max_level(dev_priv);
4656 4657 4658
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4659
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4660
				   &wm->wm[level]);
4661
	}
4662
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4663
			   &wm->trans_wm);
4664

4665 4666 4667 4668
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4669 4670
}

4671 4672 4673
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4674 4675 4676 4677
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4678
	int level, max_level = ilk_wm_max_level(dev_priv);
4679 4680 4681
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4682 4683
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4684
	}
4685
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4686

4687
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4688
			    &ddb->plane[pipe][PLANE_CURSOR]);
4689 4690
}

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4705 4706
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4707
{
4708
	return a->start < b->end && b->start < a->end;
4709 4710
}

4711 4712 4713
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4714
{
4715
	int i;
4716

4717 4718 4719
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4720
			return true;
4721

4722
	return false;
4723 4724
}

4725
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4726
			      const struct skl_pipe_wm *old_pipe_wm,
4727
			      struct skl_pipe_wm *pipe_wm, /* out */
4728
			      struct skl_ddb_allocation *ddb, /* out */
4729
			      bool *changed /* out */)
4730
{
4731
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4732
	int ret;
4733

4734 4735 4736
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4737

4738
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4739 4740 4741
		*changed = false;
	else
		*changed = true;
4742

4743
	return 0;
4744 4745
}

4746 4747 4748 4749 4750 4751 4752
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4753
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4754 4755 4756 4757 4758
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4759
static int
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4795 4796 4797 4798 4799
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4800
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4801
	uint32_t realloc_pipes = pipes_modified(state);
4802 4803 4804 4805 4806 4807 4808 4809
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4810 4811 4812 4813 4814 4815
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4816 4817
		intel_state->active_pipe_changes = ~0;

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4841
	if (intel_state->active_pipe_changes) {
4842
		realloc_pipes = ~0;
4843 4844
		intel_state->wm_results.dirty_pipes = ~0;
	}
4845

4846 4847 4848 4849 4850 4851
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4852 4853 4854 4855 4856 4857
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
4858 4859 4860 4861 4862 4863 4864 4865

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
4866 4867 4868 4869 4870
	}

	return 0;
}

4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4894
	int i;
4895

4896
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4897 4898
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4899

4900
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4901
			enum plane_id plane_id = intel_plane->id;
4902 4903
			const struct skl_ddb_entry *old, *new;

4904 4905
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4906 4907 4908 4909

			if (skl_ddb_entry_equal(old, new))
				continue;

4910 4911 4912 4913 4914
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4915 4916 4917 4918
		}
	}
}

4919 4920 4921 4922 4923
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4924 4925
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
4926
	struct drm_device *dev = state->dev;
4927
	struct skl_pipe_wm *pipe_wm;
4928
	bool changed = false;
4929
	int ret, i;
4930

4931 4932 4933 4934 4935 4936 4937
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

4938 4939 4940 4941 4942 4943 4944 4945
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4946
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4947
		changed = true;
4948

4949 4950 4951
	if (!changed)
		return 0;

4952 4953 4954
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4955
	ret = skl_compute_ddb(state);
4956 4957 4958
	if (ret)
		return ret;

4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4969
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4970 4971
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4972 4973
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4974 4975

		pipe_wm = &intel_cstate->wm.skl.optimal;
4976 4977
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4991 4992
	skl_print_wm_changes(state);

4993 4994 4995
	return 0;
}

4996 4997 4998 4999 5000 5001
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5002
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5003
	enum pipe pipe = crtc->pipe;
5004
	enum plane_id plane_id;
5005 5006 5007

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5008 5009

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5010

5011 5012 5013 5014 5015 5016 5017 5018
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5019 5020
}

5021 5022
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5023
{
5024
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5025
	struct drm_device *dev = intel_crtc->base.dev;
5026
	struct drm_i915_private *dev_priv = to_i915(dev);
5027
	struct skl_wm_values *results = &state->wm_results;
5028
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5029
	enum pipe pipe = intel_crtc->pipe;
5030

5031
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5032 5033
		return;

5034
	mutex_lock(&dev_priv->wm.wm_mutex);
5035

5036 5037
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5038 5039

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5040 5041

	mutex_unlock(&dev_priv->wm.wm_mutex);
5042 5043
}

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5062
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5063
{
5064
	struct drm_device *dev = &dev_priv->drm;
5065
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5066
	struct ilk_wm_maximums max;
5067
	struct intel_wm_config config = {};
5068
	struct ilk_wm_values results = {};
5069
	enum intel_ddb_partitioning partitioning;
5070

5071 5072 5073 5074
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5075 5076

	/* 5/6 split only in single pipe config on IVB+ */
5077
	if (INTEL_GEN(dev_priv) >= 7 &&
5078 5079 5080
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5081

5082
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5083
	} else {
5084
		best_lp_wm = &lp_wm_1_2;
5085 5086
	}

5087
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5088
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5089

5090
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5091

5092
	ilk_write_wm_values(dev_priv, &results);
5093 5094
}

5095 5096
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5097
{
5098 5099
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5100

5101
	mutex_lock(&dev_priv->wm.wm_mutex);
5102
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5103 5104 5105
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5106

5107 5108
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5109 5110 5111
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5112

5113 5114
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5115
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5116 5117 5118
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5119 5120
}

5121 5122
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5123
{
5124 5125 5126 5127
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5128 5129
}

5130 5131
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5132
{
5133
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5134 5135
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5136 5137
	int level, max_level;
	enum plane_id plane_id;
5138
	uint32_t val;
5139

5140
	max_level = ilk_wm_max_level(dev_priv);
5141

5142 5143
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5144

5145
		for (level = 0; level <= max_level; level++) {
5146 5147
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5148 5149
			else
				val = I915_READ(CUR_WM(pipe, level));
5150

5151
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5152 5153
		}

5154 5155
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5156 5157 5158 5159
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5160 5161
	}

5162 5163
	if (!intel_crtc->active)
		return;
5164

5165
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5166 5167 5168 5169
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5170
	struct drm_i915_private *dev_priv = to_i915(dev);
5171
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5172
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5173
	struct drm_crtc *crtc;
5174 5175
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5176

5177
	skl_ddb_get_hw_state(dev_priv, ddb);
5178 5179 5180 5181 5182 5183
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5184
		if (intel_crtc->active)
5185 5186
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5187

5188 5189 5190 5191 5192 5193 5194
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5195 5196
}

5197 5198 5199
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5200
	struct drm_i915_private *dev_priv = to_i915(dev);
5201
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5202
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5204
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5205
	enum pipe pipe = intel_crtc->pipe;
5206
	static const i915_reg_t wm0_pipe_reg[] = {
5207 5208 5209 5210 5211 5212
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5213
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5214
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5215

5216 5217
	memset(active, 0, sizeof(*active));

5218
	active->pipe_enabled = intel_crtc->active;
5219 5220

	if (active->pipe_enabled) {
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5235
		int level, max_level = ilk_wm_max_level(dev_priv);
5236 5237 5238 5239 5240 5241 5242 5243 5244

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5245 5246

	intel_crtc->wm.active.ilk = *active;
5247 5248
}

5249 5250 5251 5252 5253
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5280 5281 5282 5283 5284 5285 5286 5287 5288
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5289
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5290
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5291
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5292
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5293
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5294
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5295
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5296 5297 5298 5299 5300
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5301 5302 5303
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5304 5305

	tmp = I915_READ(DSPFW2);
5306 5307 5308
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5309 5310 5311 5312 5313 5314

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5315 5316
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5317 5318

		tmp = I915_READ(DSPFW8_CHV);
5319 5320
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5321 5322

		tmp = I915_READ(DSPFW9_CHV);
5323 5324
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5325 5326 5327

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5328 5329 5330 5331 5332 5333 5334 5335 5336
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5337 5338
	} else {
		tmp = I915_READ(DSPFW7);
5339 5340
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5341 5342 5343

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5344 5345 5346 5347 5348 5349
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5350 5351 5352 5353 5354 5355
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5497 5498 5499 5500
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5501
	struct intel_crtc *crtc;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5516 5517 5518 5519 5520 5521 5522 5523 5524
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5525
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5539 5540 5541 5542

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5559
			struct g4x_pipe_wm *raw =
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5581
		crtc_state->wm.vlv.intermediate = *active;
5582

5583
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5584 5585 5586 5587 5588
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5589
	}
5590 5591 5592 5593 5594

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5619
			struct g4x_pipe_wm *raw =
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5644 5645
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5646
	struct drm_i915_private *dev_priv = to_i915(dev);
5647
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5648 5649
	struct drm_crtc *crtc;

5650
	for_each_crtc(dev, crtc)
5651 5652 5653 5654 5655 5656 5657
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5658
	if (INTEL_GEN(dev_priv) >= 7) {
5659 5660 5661
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5662

5663
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5664 5665
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5666
	else if (IS_IVYBRIDGE(dev_priv))
5667 5668
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5669 5670 5671 5672 5673

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5706
void intel_update_watermarks(struct intel_crtc *crtc)
5707
{
5708
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5709 5710

	if (dev_priv->display.update_wm)
5711
		dev_priv->display.update_wm(crtc);
5712 5713
}

5714
/*
5715 5716 5717 5718 5719 5720 5721 5722
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5723
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5724 5725 5726
{
	u16 rgvswctl;

5727
	lockdep_assert_held(&mchdev_lock);
5728

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5746
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5747
{
5748
	u32 rgvmodectl;
5749 5750
	u8 fmax, fmin, fstart, vstart;

5751 5752
	spin_lock_irq(&mchdev_lock);

5753 5754
	rgvmodectl = I915_READ(MEMMODECTL);

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5775
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5776 5777
		PXVFREQ_PX_SHIFT;

5778 5779
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5780

5781 5782 5783
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5800
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5801
		DRM_ERROR("stuck trying to change perf mode\n");
5802
	mdelay(1);
5803

5804
	ironlake_set_drps(dev_priv, fstart);
5805

5806 5807
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5808
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5809
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5810
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5811 5812

	spin_unlock_irq(&mchdev_lock);
5813 5814
}

5815
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5816
{
5817 5818 5819 5820 5821
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5822 5823 5824 5825 5826 5827 5828 5829 5830

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5831
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5832
	mdelay(1);
5833 5834
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5835
	mdelay(1);
5836

5837
	spin_unlock_irq(&mchdev_lock);
5838 5839
}

5840 5841 5842 5843 5844
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5845
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5846
{
5847
	u32 limits;
5848

5849 5850 5851 5852 5853 5854
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5855
	if (IS_GEN9(dev_priv)) {
5856 5857 5858 5859 5860 5861 5862 5863
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5864 5865 5866 5867

	return limits;
}

5868 5869 5870
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5871 5872
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5873 5874 5875 5876

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5877 5878
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5879 5880 5881 5882
			new_power = BETWEEN;
		break;

	case BETWEEN:
5883 5884
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5885
			new_power = LOW_POWER;
5886 5887
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5888 5889 5890 5891
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5892 5893
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5894 5895 5896 5897
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5898
	if (val <= dev_priv->rps.min_freq_softlimit)
5899
		new_power = LOW_POWER;
5900
	if (val >= dev_priv->rps.max_freq_softlimit)
5901 5902 5903 5904 5905 5906 5907 5908
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5909 5910
		ei_up = 16000;
		threshold_up = 95;
5911 5912

		/* Downclock if less than 85% busy over 32ms */
5913 5914
		ei_down = 32000;
		threshold_down = 85;
5915 5916 5917 5918
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5919 5920
		ei_up = 13000;
		threshold_up = 90;
5921 5922

		/* Downclock if less than 75% busy over 32ms */
5923 5924
		ei_down = 32000;
		threshold_down = 75;
5925 5926 5927 5928
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5929 5930
		ei_up = 10000;
		threshold_up = 85;
5931 5932

		/* Downclock if less than 60% busy over 32ms */
5933 5934
		ei_down = 32000;
		threshold_down = 60;
5935 5936 5937
		break;
	}

5938 5939 5940 5941 5942 5943
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5944
	I915_WRITE(GEN6_RP_UP_EI,
5945
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5946
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5947 5948
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5949 5950

	I915_WRITE(GEN6_RP_DOWN_EI,
5951
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5952
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5963

5964
skip_hw_write:
5965
	dev_priv->rps.power = new_power;
5966 5967
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5968 5969 5970
	dev_priv->rps.last_adj = 0;
}

5971 5972 5973 5974
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5975
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5976
	if (val > dev_priv->rps.min_freq_softlimit)
5977
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5978
	if (val < dev_priv->rps.max_freq_softlimit)
5979
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5980

5981 5982
	mask &= dev_priv->pm_rps_events;

5983
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5984 5985
}

5986 5987 5988
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5989
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5990
{
C
Chris Wilson 已提交
5991 5992 5993 5994 5995
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5996

5997
		if (IS_GEN9(dev_priv))
5998 5999
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6000
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6001 6002 6003 6004 6005 6006 6007
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6008
	}
6009 6010 6011 6012

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6013
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6014
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6015

6016
	dev_priv->rps.cur_freq = val;
6017
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6018 6019

	return 0;
6020 6021
}

6022
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6023
{
6024 6025
	int err;

6026
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6027 6028 6029
		      "Odd GPU freq value\n"))
		val &= ~1;

6030 6031
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6032
	if (val != dev_priv->rps.cur_freq) {
6033 6034 6035 6036
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6037
		gen6_set_rps_thresholds(dev_priv, val);
6038
	}
6039 6040 6041

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6042 6043

	return 0;
6044 6045
}

6046
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6047 6048
 *
 * * If Gfx is Idle, then
6049 6050 6051
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6052 6053 6054
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6055
	u32 val = dev_priv->rps.idle_freq;
6056
	int err;
6057

6058
	if (dev_priv->rps.cur_freq <= val)
6059 6060
		return;

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6073
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6074
	err = valleyview_set_rps(dev_priv, val);
6075
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6076 6077 6078

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6079 6080
}

6081 6082 6083 6084
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
6085 6086
		u8 freq;

6087
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6088 6089 6090
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6091

6092 6093
		gen6_enable_rps_interrupts(dev_priv);

6094 6095 6096 6097 6098 6099
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

6100
		if (intel_set_rps(dev_priv,
6101
				  clamp(freq,
6102 6103 6104
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6105 6106 6107 6108
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

6109 6110
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6111 6112 6113 6114 6115 6116 6117
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6118
	mutex_lock(&dev_priv->rps.hw_lock);
6119
	if (dev_priv->rps.enabled) {
6120
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6121
			vlv_set_rps_idle(dev_priv);
6122
		else
6123
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6124
		dev_priv->rps.last_adj = 0;
6125 6126
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6127
	}
6128
	mutex_unlock(&dev_priv->rps.hw_lock);
6129

6130
	spin_lock(&dev_priv->rps.client_lock);
6131 6132
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
6133
	spin_unlock(&dev_priv->rps.client_lock);
6134 6135
}

6136
void gen6_rps_boost(struct drm_i915_private *dev_priv,
6137 6138
		    struct intel_rps_client *rps,
		    unsigned long submitted)
6139
{
6140 6141 6142
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6143
	if (!(dev_priv->gt.awake &&
6144
	      dev_priv->rps.enabled &&
6145
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
6146
		return;
6147

6148 6149 6150
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
6151
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
6152 6153
		rps = NULL;

6154 6155 6156 6157 6158
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
6159
			schedule_work(&dev_priv->rps.work);
6160 6161
		}
		spin_unlock_irq(&dev_priv->irq_lock);
6162

6163 6164 6165
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
6166 6167
		} else
			dev_priv->rps.boosts++;
6168
	}
6169
	spin_unlock(&dev_priv->rps.client_lock);
6170 6171
}

6172
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6173
{
6174 6175
	int err;

6176 6177 6178 6179
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

6180 6181 6182 6183 6184
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

6185
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6186
		err = valleyview_set_rps(dev_priv, val);
6187
	else
6188 6189 6190
		err = gen6_set_rps(dev_priv, val);

	return err;
6191 6192
}

6193
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6194 6195
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6196
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6197 6198
}

6199
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6200 6201 6202 6203
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6204
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6205 6206
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6207
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6208
	I915_WRITE(GEN6_RP_CONTROL, 0);
6209 6210
}

6211
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6212 6213 6214 6215
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6216
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6217
{
6218 6219
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
6220
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6221

6222
	I915_WRITE(GEN6_RC_CONTROL, 0);
6223

6224
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6225 6226
}

6227
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6228
{
6229
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6230 6231 6232 6233 6234
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6235
	if (HAS_RC6p(dev_priv))
6236 6237 6238 6239 6240
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6241 6242

	else
6243 6244
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6245 6246
}

6247
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6248
{
6249
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6250 6251
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6263 6264

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6265
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6266 6267 6268 6269 6270 6271 6272 6273
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6274 6275 6276
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6277
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6278 6279 6280 6281 6282 6283 6284
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6285
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6286 6287 6288
		enable_rc6 = false;
	}

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6303 6304 6305 6306 6307 6308
		enable_rc6 = false;
	}

	return enable_rc6;
}

6309
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6310
{
6311
	/* No RC6 before Ironlake and code is gone for ilk. */
6312
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6313 6314
		return 0;

6315 6316 6317
	if (!enable_rc6)
		return 0;

6318
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6319 6320 6321 6322
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6323
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6324 6325 6326
	if (enable_rc6 >= 0) {
		int mask;

6327
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6328 6329 6330 6331 6332 6333
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6334 6335 6336
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6337 6338 6339

		return enable_rc6 & mask;
	}
6340

6341
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6342
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6343 6344

	return INTEL_RC6_ENABLE;
6345 6346
}

6347
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6348 6349
{
	/* All of these values are in units of 50MHz */
6350

6351
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6352
	if (IS_GEN9_LP(dev_priv)) {
6353
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6354 6355 6356 6357
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
6358
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6359 6360 6361 6362
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
6363
	/* hw_max = RP0 until we check for overclocking */
6364
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6365

6366
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6367
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6368
	    IS_GEN9_BC(dev_priv)) {
6369 6370 6371 6372 6373
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6374
			dev_priv->rps.efficient_freq =
6375 6376 6377 6378
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
6379 6380
	}

6381
	if (IS_GEN9_BC(dev_priv)) {
6382
		/* Store the frequency values in 16.66 MHZ units, which is
6383 6384
		 * the natural hardware unit for SKL
		 */
6385 6386 6387 6388 6389 6390
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
6391 6392
}

6393
static void reset_rps(struct drm_i915_private *dev_priv,
6394
		      int (*set)(struct drm_i915_private *, u8))
6395 6396 6397 6398 6399 6400 6401
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

6402 6403
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6404 6405
}

J
Jesse Barnes 已提交
6406
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6407
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6408 6409 6410
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6411 6412 6413 6414 6415 6416 6417 6418
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6419 6420
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6421 6422 6423
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6424
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6425 6426 6427 6428

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6429
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6430
{
6431
	struct intel_engine_cs *engine;
6432
	enum intel_engine_id id;
Z
Zhe Wang 已提交
6433 6434 6435 6436 6437 6438 6439
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6440
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6441 6442 6443 6444 6445

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
6446 6447

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6448
	if (IS_SKYLAKE(dev_priv))
6449 6450 6451
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
6452 6453
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6454
	for_each_engine(engine, dev_priv, id)
6455
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6456

6457
	if (HAS_GUC(dev_priv))
6458 6459
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6460 6461
	I915_WRITE(GEN6_RC_SLEEP, 0);

6462 6463 6464 6465
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6466
	/* 3a: Enable RC6 */
6467
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6468
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6469
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6470 6471 6472
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
6473

6474 6475
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6476
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6477
	 */
6478
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6479 6480 6481 6482
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6483

6484
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6485 6486
}

6487
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6488
{
6489
	struct intel_engine_cs *engine;
6490
	enum intel_engine_id id;
6491
	uint32_t rc6_mask = 0;
6492 6493 6494 6495 6496 6497

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6498
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6499 6500 6501 6502 6503 6504 6505 6506

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6507
	for_each_engine(engine, dev_priv, id)
6508
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6509
	I915_WRITE(GEN6_RC_SLEEP, 0);
6510
	if (IS_BROADWELL(dev_priv))
6511 6512 6513
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6514 6515

	/* 3: Enable RC6 */
6516
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6517
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6518 6519
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
6520 6521 6522 6523 6524 6525 6526
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
6527 6528

	/* 4 Program defaults and thresholds for RPS*/
6529 6530 6531 6532
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6547 6548

	/* 5: Enable RPS */
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

6559
	reset_rps(dev_priv, gen6_set_rps);
6560

6561
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6562 6563
}

6564
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6565
{
6566
	struct intel_engine_cs *engine;
6567
	enum intel_engine_id id;
6568
	u32 rc6vids, rc6_mask = 0;
6569 6570
	u32 gtfifodbg;
	int rc6_mode;
6571
	int ret;
6572

6573
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6574

6575 6576 6577 6578 6579 6580 6581 6582 6583
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6584 6585
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6586 6587 6588 6589
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6590
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6601
	for_each_engine(engine, dev_priv, id)
6602
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6603 6604 6605

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6606
	if (IS_IVYBRIDGE(dev_priv))
6607 6608 6609
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6610
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6611 6612
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6613
	/* Check if we are enabling RC6 */
6614
	rc6_mode = intel_enable_rc6();
6615 6616 6617
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6618
	/* We don't use those on Haswell */
6619
	if (!IS_HASWELL(dev_priv)) {
6620 6621
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6622

6623 6624 6625
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6626

6627
	intel_print_rc6_info(dev_priv, rc6_mask);
6628 6629 6630 6631 6632 6633

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6634 6635
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6636 6637
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

6638
	reset_rps(dev_priv, gen6_set_rps);
6639

6640 6641
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6642
	if (IS_GEN6(dev_priv) && ret) {
6643
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6644
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6645 6646 6647 6648 6649 6650 6651 6652 6653
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6654
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6655 6656
}

6657
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6658 6659
{
	int min_freq = 15;
6660 6661
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6662
	unsigned int max_gpu_freq, min_gpu_freq;
6663
	int scaling_factor = 180;
6664
	struct cpufreq_policy *policy;
6665

6666
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6667

6668 6669 6670 6671 6672 6673 6674 6675 6676
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6677
		max_ia_freq = tsc_khz;
6678
	}
6679 6680 6681 6682

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6683
	min_ring_freq = I915_READ(DCLK) & 0xf;
6684 6685
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6686

6687
	if (IS_GEN9_BC(dev_priv)) {
6688 6689 6690 6691 6692 6693 6694 6695
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

6696 6697 6698 6699 6700
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6701 6702
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6703 6704
		unsigned int ia_freq = 0, ring_freq = 0;

6705
		if (IS_GEN9_BC(dev_priv)) {
6706 6707 6708 6709 6710
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6711
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6712 6713
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6714
		} else if (IS_HASWELL(dev_priv)) {
6715
			ring_freq = mult_frac(gpu_freq, 5, 4);
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6732

B
Ben Widawsky 已提交
6733 6734
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6735 6736 6737
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6738 6739 6740
	}
}

6741
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6742 6743 6744
{
	u32 val, rp0;

6745
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6746

6747
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6762
	}
6763 6764 6765

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6779 6780 6781 6782
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6783 6784 6785
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6786 6787 6788
	return rp1;
}

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6811
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6812 6813 6814
{
	u32 val, rp0;

6815
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6828
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6829
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6830
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6831 6832 6833 6834 6835
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6836
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6837
{
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6849 6850
}

6851 6852 6853 6854 6855 6856 6857 6858 6859
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6860 6861 6862 6863 6864 6865 6866 6867 6868

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6869
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6870
{
6871
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6872
	unsigned long pctx_paddr, paddr;
6873 6874 6875 6876 6877
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6878
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6879
		paddr = (dev_priv->mm.stolen_base +
6880
			 (ggtt->stolen_size - pctx_size));
6881 6882 6883 6884

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6885 6886

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6887 6888
}

6889
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6902
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6903
								      pcbr_offset,
6904
								      I915_GTT_OFFSET_NONE,
6905 6906 6907 6908
								      pctx_size);
		goto out;
	}

6909 6910
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6911 6912 6913 6914 6915 6916 6917 6918
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6919
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6920 6921
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6922
		goto out;
6923 6924 6925 6926 6927 6928
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6929
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6930 6931 6932
	dev_priv->vlv_pctx = pctx;
}

6933
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6934 6935 6936 6937
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6938
	i915_gem_object_put(dev_priv->vlv_pctx);
6939 6940 6941
	dev_priv->vlv_pctx = NULL;
}

6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6953
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6954
{
6955
	u32 val;
6956

6957
	valleyview_setup_pctx(dev_priv);
6958

6959 6960
	vlv_init_gpll_ref_freq(dev_priv);

6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6974
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6975

6976 6977 6978
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6979
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6980 6981 6982 6983
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6984
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6985 6986
			 dev_priv->rps.efficient_freq);

6987 6988
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6989
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6990 6991
			 dev_priv->rps.rp1_freq);

6992 6993
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6994
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6995 6996 6997
			 dev_priv->rps.min_freq);
}

6998
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6999
{
7000
	u32 val;
7001

7002
	cherryview_setup_pctx(dev_priv);
7003

7004 7005
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7006
	mutex_lock(&dev_priv->sb_lock);
7007
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7008
	mutex_unlock(&dev_priv->sb_lock);
7009

7010 7011 7012 7013
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7014
	default:
7015 7016 7017
		dev_priv->mem_freq = 1600;
		break;
	}
7018
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7019

7020 7021 7022
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7023
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7024 7025 7026 7027
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7028
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7029 7030
			 dev_priv->rps.efficient_freq);

7031 7032
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7033
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7034 7035
			 dev_priv->rps.rp1_freq);

7036
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7037
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7038
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7039 7040
			 dev_priv->rps.min_freq);

7041 7042 7043 7044 7045
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
7046 7047
}

7048
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7049
{
7050
	valleyview_cleanup_pctx(dev_priv);
7051 7052
}

7053
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7054
{
7055
	struct intel_engine_cs *engine;
7056
	enum intel_engine_id id;
7057
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7058 7059 7060

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7061 7062
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7073
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7074

7075 7076 7077
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7078 7079 7080 7081 7082
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7083
	for_each_engine(engine, dev_priv, id)
7084
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7085 7086
	I915_WRITE(GEN6_RC_SLEEP, 0);

7087 7088
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7100 7101
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7102
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7103 7104 7105

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7106
	/* 4 Program defaults and thresholds for RPS*/
7107
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7118
		   GEN6_RP_MEDIA_IS_GFX |
7119 7120 7121 7122
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7123 7124 7125 7126 7127 7128
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7129 7130
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7131 7132 7133
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7134
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7135 7136
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7137
	reset_rps(dev_priv, valleyview_set_rps);
7138

7139
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7140 7141
}

7142
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7143
{
7144
	struct intel_engine_cs *engine;
7145
	enum intel_engine_id id;
7146
	u32 gtfifodbg, val, rc6_mode = 0;
7147 7148 7149

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7150 7151
	valleyview_check_pctx(dev_priv);

7152 7153
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7154 7155
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7156 7157 7158
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7159
	/* If VLV, Forcewake all wells, else re-direct to regular path */
7160
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7161

7162 7163 7164
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7165
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7185
	for_each_engine(engine, dev_priv, id)
7186
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7187

7188
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7189 7190

	/* allows RC6 residency counter to work */
7191
	I915_WRITE(VLV_COUNTER_CONTROL,
7192 7193
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7194
				      VLV_RENDER_RC0_COUNT_EN |
7195 7196
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7197

7198
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7199
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7200

7201
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7202

7203
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7204

D
Deepak S 已提交
7205 7206 7207 7208 7209 7210
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7211
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7212

7213 7214 7215
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7216
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7217 7218
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7219
	reset_rps(dev_priv, valleyview_set_rps);
7220

7221
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7222 7223
}

7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7253
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7254 7255 7256 7257 7258 7259
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7260
	lockdep_assert_held(&mchdev_lock);
7261

7262
	diff1 = now - dev_priv->ips.last_time1;
7263 7264 7265 7266 7267 7268 7269

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7270
		return dev_priv->ips.chipset_power;
7271 7272 7273 7274 7275 7276 7277 7278

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7279 7280
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7281 7282
		diff += total_count;
	} else {
7283
		diff = total_count - dev_priv->ips.last_count1;
7284 7285 7286
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7287 7288
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7299 7300
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7301

7302
	dev_priv->ips.chipset_power = ret;
7303 7304 7305 7306

	return ret;
}

7307 7308 7309 7310
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7311
	if (INTEL_INFO(dev_priv)->gen != 5)
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7350
{
7351 7352 7353
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7354
	if (INTEL_INFO(dev_priv)->is_mobile)
7355 7356 7357
		return vm > 0 ? vm : 0;

	return vd;
7358 7359
}

7360
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7361
{
7362
	u64 now, diff, diffms;
7363 7364
	u32 count;

7365
	lockdep_assert_held(&mchdev_lock);
7366

7367 7368 7369
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7370 7371 7372 7373 7374 7375 7376

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7377 7378
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7379 7380
		diff += count;
	} else {
7381
		diff = count - dev_priv->ips.last_count2;
7382 7383
	}

7384 7385
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7386 7387 7388 7389

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7390
	dev_priv->ips.gfx_power = diff;
7391 7392
}

7393 7394
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7395
	if (INTEL_INFO(dev_priv)->gen != 5)
7396 7397
		return;

7398
	spin_lock_irq(&mchdev_lock);
7399 7400 7401

	__i915_update_gfx_val(dev_priv);

7402
	spin_unlock_irq(&mchdev_lock);
7403 7404
}

7405
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7406 7407 7408 7409
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7410
	lockdep_assert_held(&mchdev_lock);
7411

7412
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7432
	corr2 = (corr * dev_priv->ips.corr);
7433 7434 7435 7436

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7437
	__i915_update_gfx_val(dev_priv);
7438

7439
	return dev_priv->ips.gfx_power + state2;
7440 7441
}

7442 7443 7444 7445
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7446
	if (INTEL_INFO(dev_priv)->gen != 5)
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7469
	spin_lock_irq(&mchdev_lock);
7470 7471 7472 7473
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7474 7475
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7476 7477 7478 7479

	ret = chipset_val + graphics_val;

out_unlock:
7480
	spin_unlock_irq(&mchdev_lock);
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7496
	spin_lock_irq(&mchdev_lock);
7497 7498 7499 7500 7501 7502
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7503 7504
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7505 7506

out_unlock:
7507
	spin_unlock_irq(&mchdev_lock);
7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7524
	spin_lock_irq(&mchdev_lock);
7525 7526 7527 7528 7529 7530
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7531 7532
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7533 7534

out_unlock:
7535
	spin_unlock_irq(&mchdev_lock);
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7550
	spin_lock_irq(&mchdev_lock);
7551 7552
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7553
	spin_unlock_irq(&mchdev_lock);
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7570
	spin_lock_irq(&mchdev_lock);
7571 7572 7573 7574 7575 7576
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7577
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7578

7579
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7580 7581 7582
		ret = false;

out_unlock:
7583
	spin_unlock_irq(&mchdev_lock);
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7611 7612
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7613
	spin_lock_irq(&mchdev_lock);
7614
	i915_mch_dev = dev_priv;
7615
	spin_unlock_irq(&mchdev_lock);
7616 7617 7618 7619 7620 7621

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7622
	spin_lock_irq(&mchdev_lock);
7623
	i915_mch_dev = NULL;
7624
	spin_unlock_irq(&mchdev_lock);
7625
}
7626

7627
static void intel_init_emon(struct drm_i915_private *dev_priv)
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7644
		I915_WRITE(PEW(i), 0);
7645
	for (i = 0; i < 3; i++)
7646
		I915_WRITE(DEW(i), 0);
7647 7648 7649

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7650
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7671
		I915_WRITE(PXW(i), val);
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7687
		I915_WRITE(PXWL(i), 0);
7688 7689 7690 7691 7692 7693

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7694
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7695 7696
}

7697
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7698
{
7699 7700 7701 7702 7703 7704 7705 7706
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7707

7708
	mutex_lock(&dev_priv->drm.struct_mutex);
7709 7710 7711
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
7712 7713 7714 7715
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7716
	else if (INTEL_GEN(dev_priv) >= 6)
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7746 7747 7748
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7749
	mutex_unlock(&dev_priv->rps.hw_lock);
7750
	mutex_unlock(&dev_priv->drm.struct_mutex);
7751 7752

	intel_autoenable_gt_powersave(dev_priv);
7753 7754
}

7755
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7756
{
7757
	if (IS_VALLEYVIEW(dev_priv))
7758
		valleyview_cleanup_gt_powersave(dev_priv);
7759 7760 7761

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
7762 7763
}

7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7783 7784 7785 7786
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7787 7788

	gen6_reset_rps_interrupts(dev_priv);
7789 7790
}

7791
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7792
{
7793 7794
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7795

7796
	mutex_lock(&dev_priv->rps.hw_lock);
7797

7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7809
	}
7810 7811 7812

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7813 7814
}

7815
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7816
{
7817 7818 7819
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7820 7821
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7822

7823 7824 7825
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7826

7827
	mutex_lock(&dev_priv->rps.hw_lock);
7828 7829 7830 7831 7832

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7833
	} else if (INTEL_GEN(dev_priv) >= 9) {
7834 7835
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7836
		if (IS_GEN9_BC(dev_priv))
7837
			gen6_update_ring_freq(dev_priv);
7838 7839
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7840
		gen6_update_ring_freq(dev_priv);
7841
	} else if (INTEL_GEN(dev_priv) >= 6) {
7842
		gen6_enable_rps(dev_priv);
7843
		gen6_update_ring_freq(dev_priv);
7844 7845 7846
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7847
	}
7848 7849 7850 7851 7852 7853 7854

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7855
	dev_priv->rps.enabled = true;
7856 7857
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7858

7859 7860 7861 7862 7863 7864 7865 7866 7867 7868
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7869
	rcs = dev_priv->engine[RCS];
7870
	if (rcs->last_retired_context)
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7886
	i915_add_request(req);
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7922
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7923 7924 7925 7926 7927 7928 7929 7930 7931
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7932
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7933
{
7934
	enum pipe pipe;
7935

7936
	for_each_pipe(dev_priv, pipe) {
7937 7938 7939
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7940 7941 7942

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7943 7944 7945
	}
}

7946
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7958
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7959
{
7960
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7961

7962 7963 7964 7965
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7966 7967 7968
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7986
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7987 7988 7989
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7990

7991
	ilk_init_lp_watermarks(dev_priv);
7992 7993 7994 7995 7996 7997 7998 7999

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8000
	if (IS_IRONLAKE_M(dev_priv)) {
8001
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8002 8003 8004 8005 8006 8007 8008 8009
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8010 8011
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8012 8013 8014 8015 8016 8017
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8018

8019
	/* WaDisableRenderCachePipelinedFlush:ilk */
8020 8021
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8022

8023 8024 8025
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8026
	g4x_disable_trickle_feed(dev_priv);
8027

8028
	ibx_init_clock_gating(dev_priv);
8029 8030
}

8031
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8032 8033
{
	int pipe;
8034
	uint32_t val;
8035 8036 8037 8038 8039 8040

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8041 8042 8043
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8044 8045
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8046 8047 8048
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8049
	for_each_pipe(dev_priv, pipe) {
8050 8051 8052
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8053
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8054
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8055 8056 8057
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8058 8059
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8060
	/* WADP0ClockGatingDisable */
8061
	for_each_pipe(dev_priv, pipe) {
8062 8063 8064
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8065 8066
}

8067
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8068 8069 8070 8071
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8072 8073 8074
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8075 8076
}

8077
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8078
{
8079
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8080

8081
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8082 8083 8084 8085 8086

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8087
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8088 8089 8090
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8091 8092 8093
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8094 8095 8096
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8097 8098 8099 8100
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8101 8102
	 */
	I915_WRITE(GEN6_GT_MODE,
8103
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8104

8105
	ilk_init_lp_watermarks(dev_priv);
8106 8107

	I915_WRITE(CACHE_MODE_0,
8108
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8124
	 *
8125 8126
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8127 8128 8129 8130 8131
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8132
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8133 8134
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8135

8136 8137 8138 8139 8140 8141 8142 8143
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8144 8145 8146 8147 8148 8149 8150 8151
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8152 8153
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8154 8155 8156 8157 8158 8159 8160
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8161 8162 8163 8164
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8165

8166
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8167

8168
	cpt_init_clock_gating(dev_priv);
8169

8170
	gen6_check_mch_setup(dev_priv);
8171 8172 8173 8174 8175 8176
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8177
	/*
8178
	 * WaVSThreadDispatchOverride:ivb,vlv
8179 8180 8181 8182
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8183 8184 8185 8186 8187 8188 8189 8190
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8191
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8192 8193 8194 8195 8196
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8197
	if (HAS_PCH_LPT_LP(dev_priv))
8198 8199 8200
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8201 8202

	/* WADPOClockGatingDisable:hsw */
8203 8204
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8205
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8206 8207
}

8208
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8209
{
8210
	if (HAS_PCH_LPT_LP(dev_priv)) {
8211 8212 8213 8214 8215 8216 8217
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8241
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8242
{
8243
	gen9_init_clock_gating(dev_priv);
8244 8245 8246 8247 8248

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8249 8250 8251 8252 8253

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8254

8255
	/* WaFbcNukeOnHostModify:kbl,cfl */
8256 8257
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8258 8259
}

8260
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8261
{
8262
	gen9_init_clock_gating(dev_priv);
8263 8264 8265 8266

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8267 8268 8269 8270

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8271 8272
}

8273
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8274
{
8275
	enum pipe pipe;
B
Ben Widawsky 已提交
8276

8277
	ilk_init_lp_watermarks(dev_priv);
8278

8279
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8280
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8281

8282
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8283 8284 8285
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8286
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8287
	for_each_pipe(dev_priv, pipe) {
8288
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8289
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8290
			   BDW_DPRS_MASK_VBLANK_SRD);
8291
	}
8292

8293 8294 8295 8296 8297
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8298

8299 8300
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8301 8302 8303 8304

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8305

8306 8307
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8308

8309 8310 8311 8312 8313 8314 8315
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

8316 8317 8318 8319
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8320
	lpt_init_clock_gating(dev_priv);
8321 8322 8323 8324 8325 8326 8327 8328

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8329 8330
}

8331
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8332
{
8333
	ilk_init_lp_watermarks(dev_priv);
8334

8335 8336 8337 8338 8339
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8340
	/* This is required by WaCatErrorRejectionIssue:hsw */
8341 8342 8343 8344
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8345 8346 8347
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8348

8349 8350 8351
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8352 8353 8354 8355
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8356
	/* WaDisable4x2SubspanOptimization:hsw */
8357 8358
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8359

8360 8361 8362
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8363 8364 8365 8366
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8367 8368
	 */
	I915_WRITE(GEN7_GT_MODE,
8369
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8370

8371 8372 8373 8374
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8375
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8376 8377
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8378 8379 8380
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8381

8382
	lpt_init_clock_gating(dev_priv);
8383 8384
}

8385
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8386
{
8387
	uint32_t snpcr;
8388

8389
	ilk_init_lp_watermarks(dev_priv);
8390

8391
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8392

8393
	/* WaDisableEarlyCull:ivb */
8394 8395 8396
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8397
	/* WaDisableBackToBackFlipFix:ivb */
8398 8399 8400 8401
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8402
	/* WaDisablePSDDualDispatchEnable:ivb */
8403
	if (IS_IVB_GT1(dev_priv))
8404 8405 8406
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8407 8408 8409
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8410
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8411 8412 8413
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8414
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8415 8416 8417
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8418
		   GEN7_WA_L3_CHICKEN_MODE);
8419
	if (IS_IVB_GT1(dev_priv))
8420 8421
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8422 8423 8424 8425
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8426 8427
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8428
	}
8429

8430
	/* WaForceL3Serialization:ivb */
8431 8432 8433
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8434
	/*
8435
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8436
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8437 8438
	 */
	I915_WRITE(GEN6_UCGCTL2,
8439
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8440

8441
	/* This is required by WaCatErrorRejectionIssue:ivb */
8442 8443 8444 8445
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8446
	g4x_disable_trickle_feed(dev_priv);
8447 8448

	gen7_setup_fixed_func_scheduler(dev_priv);
8449

8450 8451 8452 8453 8454
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8455

8456
	/* WaDisable4x2SubspanOptimization:ivb */
8457 8458
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8459

8460 8461 8462
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8463 8464 8465 8466
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8467 8468
	 */
	I915_WRITE(GEN7_GT_MODE,
8469
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8470

8471 8472 8473 8474
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8475

8476
	if (!HAS_PCH_NOP(dev_priv))
8477
		cpt_init_clock_gating(dev_priv);
8478

8479
	gen6_check_mch_setup(dev_priv);
8480 8481
}

8482
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8483
{
8484
	/* WaDisableEarlyCull:vlv */
8485 8486 8487
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8488
	/* WaDisableBackToBackFlipFix:vlv */
8489 8490 8491 8492
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8493
	/* WaPsdDispatchEnable:vlv */
8494
	/* WaDisablePSDDualDispatchEnable:vlv */
8495
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8496 8497
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8498

8499 8500 8501
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8502
	/* WaForceL3Serialization:vlv */
8503 8504 8505
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8506
	/* WaDisableDopClockGating:vlv */
8507 8508 8509
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8510
	/* This is required by WaCatErrorRejectionIssue:vlv */
8511 8512 8513 8514
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8515 8516
	gen7_setup_fixed_func_scheduler(dev_priv);

8517
	/*
8518
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8519
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8520 8521
	 */
	I915_WRITE(GEN6_UCGCTL2,
8522
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8523

8524 8525 8526 8527 8528
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8529

8530 8531 8532 8533
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8534 8535
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8536

8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8548 8549 8550 8551 8552 8553
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8554
	/*
8555
	 * WaDisableVLVClockGating_VBIIssue:vlv
8556 8557 8558
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8559
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8560 8561
}

8562
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8563
{
8564 8565 8566 8567 8568
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8569 8570 8571 8572

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8573 8574 8575 8576

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8577 8578 8579 8580

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8581

8582 8583 8584 8585 8586 8587 8588
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8589 8590 8591 8592 8593
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8594 8595
}

8596
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8608
	if (IS_GM45(dev_priv))
8609 8610
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8611 8612 8613 8614

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8615

8616 8617 8618
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8619
	g4x_disable_trickle_feed(dev_priv);
8620 8621
}

8622
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8623 8624 8625 8626 8627 8628
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8629 8630
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8631 8632 8633

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8634 8635
}

8636
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8637 8638 8639 8640 8641 8642 8643
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8644 8645
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8646 8647 8648

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8649 8650
}

8651
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8652 8653 8654 8655 8656 8657
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8658

8659
	if (IS_PINEVIEW(dev_priv))
8660
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8661 8662 8663

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8664 8665

	/* interrupts should cause a wake up from C3 */
8666
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8667 8668 8669

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8670 8671 8672

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8673 8674
}

8675
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8676 8677
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8678 8679 8680 8681

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8682 8683 8684

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8685 8686
}

8687
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8688
{
8689 8690 8691
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8692 8693
}

8694
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8695
{
8696
	dev_priv->display.init_clock_gating(dev_priv);
8697 8698
}

8699
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8700
{
8701 8702
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8703 8704
}

8705
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
8722
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8723
	else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8724
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8725
	else if (IS_BROXTON(dev_priv))
8726
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8727 8728
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8745
	else if (IS_I965GM(dev_priv))
8746
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8747
	else if (IS_I965G(dev_priv))
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8761
/* Set up chip specific power management-related functions */
8762
void intel_init_pm(struct drm_i915_private *dev_priv)
8763
{
8764
	intel_fbc_init(dev_priv);
8765

8766
	/* For cxsr */
8767
	if (IS_PINEVIEW(dev_priv))
8768
		i915_pineview_get_mem_freq(dev_priv);
8769
	else if (IS_GEN5(dev_priv))
8770
		i915_ironlake_get_mem_freq(dev_priv);
8771

8772
	/* For FIFO watermark updates */
8773
	if (INTEL_GEN(dev_priv) >= 9) {
8774
		skl_setup_wm_latency(dev_priv);
8775
		dev_priv->display.initial_watermarks = skl_initial_wm;
8776
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8777
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8778
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8779
		ilk_setup_wm_latency(dev_priv);
8780

8781
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8782
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8783
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8784
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8785
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8786 8787 8788 8789 8790 8791
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8792 8793 8794 8795
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8796
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8797
		vlv_setup_wm_latency(dev_priv);
8798
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8799
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8800
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8801
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8802
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8803 8804 8805 8806 8807 8808
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8809
	} else if (IS_PINEVIEW(dev_priv)) {
8810
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8811 8812 8813 8814 8815 8816 8817 8818 8819
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8820
			intel_set_memory_cxsr(dev_priv, false);
8821 8822 8823
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8824
	} else if (IS_GEN4(dev_priv)) {
8825
		dev_priv->display.update_wm = i965_update_wm;
8826
	} else if (IS_GEN3(dev_priv)) {
8827 8828
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8829
	} else if (IS_GEN2(dev_priv)) {
8830
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8831
			dev_priv->display.update_wm = i845_update_wm;
8832
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8833 8834
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8835
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8836 8837 8838
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8839 8840 8841
	}
}

8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8854
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8855 8856 8857 8858
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8859
		MISSING_CASE(flags);
8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8886
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8887
{
8888 8889
	int status;

8890
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8891

8892 8893 8894 8895 8896 8897
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8898 8899 8900 8901
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8902 8903 8904
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8905

8906 8907 8908
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8909 8910 8911 8912
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8913 8914
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8915

8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8927 8928 8929
	return 0;
}

8930
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8931
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8932
{
8933 8934
	int status;

8935
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8936

8937 8938 8939 8940 8941 8942
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8943 8944 8945 8946
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8947
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8948
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8949
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8950

8951 8952 8953
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8954 8955 8956 8957
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8958
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8959

8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8971 8972
	return 0;
}
8973

8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8995
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8996 8997
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8998
 * for @timeout_base_ms and if this times out for another 50 ms with
8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9034
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9035
	 * account for interrupts that could reduce the number of these
9036 9037
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9038 9039 9040 9041
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9042
	ret = wait_for_atomic(COND, 50);
9043 9044 9045 9046 9047 9048 9049
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9050 9051
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9052 9053 9054 9055 9056
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9057 9058
}

9059
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9060
{
9061
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9062 9063
}

9064
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9065
{
9066 9067 9068 9069 9070
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9071 9072
}

9073
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9074
{
9075
	/* CHV needs even values */
9076
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9077 9078
}

9079
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9080
{
9081
	if (IS_GEN9(dev_priv))
9082 9083
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9084
	else if (IS_CHERRYVIEW(dev_priv))
9085
		return chv_gpu_freq(dev_priv, val);
9086
	else if (IS_VALLEYVIEW(dev_priv))
9087 9088 9089
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9090 9091
}

9092 9093
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9094
	if (IS_GEN9(dev_priv))
9095 9096
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9097
	else if (IS_CHERRYVIEW(dev_priv))
9098
		return chv_freq_opcode(dev_priv, val);
9099
	else if (IS_VALLEYVIEW(dev_priv))
9100 9101
		return byt_freq_opcode(dev_priv, val);
	else
9102
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9103
}
9104

9105 9106
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
9107
	struct drm_i915_gem_request *req;
9108 9109 9110 9111 9112
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
9113
	struct drm_i915_gem_request *req = boost->req;
9114

9115
	if (!i915_gem_request_completed(req))
9116
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
9117

9118
	i915_gem_request_put(req);
9119 9120 9121
	kfree(boost);
}

9122
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
9123 9124 9125
{
	struct request_boost *boost;

9126
	if (req == NULL || INTEL_GEN(req->i915) < 6)
9127 9128
		return;

9129
	if (i915_gem_request_completed(req))
9130 9131
		return;

9132 9133 9134 9135
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

9136
	boost->req = i915_gem_request_get(req);
9137 9138

	INIT_WORK(&boost->work, __intel_rps_boost_work);
9139
	queue_work(req->i915->wq, &boost->work);
9140 9141
}

9142
void intel_pm_setup(struct drm_i915_private *dev_priv)
9143
{
D
Daniel Vetter 已提交
9144
	mutex_init(&dev_priv->rps.hw_lock);
9145
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
9146

9147 9148
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
9149
	INIT_LIST_HEAD(&dev_priv->rps.clients);
9150

9151
	dev_priv->pm.suspended = false;
9152
	atomic_set(&dev_priv->pm.wakeref_count, 0);
9153
}
9154

9155 9156 9157
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9158
	u32 lower, upper, tmp;
9159
	int loop = 2;
9160 9161 9162 9163 9164 9165 9166 9167 9168

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9169 9170 9171 9172 9173
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9174
	 */
9175 9176
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9188
	} while (upper != tmp && --loop);
9189

9190 9191 9192 9193 9194
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9195 9196 9197 9198 9199
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9200 9201
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9202
{
9203
	u64 time_hw, units, div;
9204 9205 9206 9207 9208 9209 9210 9211

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9212
		units = 1000;
9213 9214
		div = dev_priv->czclk_freq;

9215
		time_hw = vlv_residency_raw(dev_priv, reg);
9216
	} else if (IS_GEN9_LP(dev_priv)) {
9217
		units = 1000;
9218 9219
		div = 1200;		/* 833.33ns */

9220 9221 9222 9223 9224 9225 9226
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9227 9228

	intel_runtime_pm_put(dev_priv);
9229
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9230
}