zsmalloc.c 32.1 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14
/*
N
Nitin Cupta 已提交
15 16 17 18 19 20 21
 * This allocator is designed for use with zram. Thus, the allocator is
 * supposed to work well under low memory conditions. In particular, it
 * never attempts higher order page allocation which is very likely to
 * fail under memory pressure. On the other hand, if we just use single
 * (0-order) pages, it would suffer from very high fragmentation --
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 * This was one of the major issues with its predecessor (xvmalloc).
N
Nitin Gupta 已提交
22 23 24 25 26 27 28
 *
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 * and links them together using various 'struct page' fields. These linked
 * pages act as a single higher-order page i.e. an object can span 0-order
 * page boundaries. The code refers to these linked pages as a single entity
 * called zspage.
 *
N
Nitin Cupta 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 * since this satisfies the requirements of all its current users (in the
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 * uncompressed form). For allocation requests larger than this size, failure
 * is returned (see zs_malloc).
 *
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 * location of the allocated object. The reason for this indirection is that
 * zsmalloc does not keep zspages permanently mapped since that would cause
 * issues on 32-bit systems where the VA region for kernel space mappings
 * is very small. So, before using the allocating memory, the object has to
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 * unmapped using zs_unmap_object().
 *
N
Nitin Gupta 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
90
#include <linux/vmalloc.h>
91
#include <linux/hardirq.h>
92 93
#include <linux/spinlock.h>
#include <linux/types.h>
M
Minchan Kim 已提交
94
#include <linux/zsmalloc.h>
95
#include <linux/zpool.h>
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
114
 * as single (unsigned long) handle value.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE

/*
145
 * On systems with 4K page size, this gives 255 size classes! There is a
146 147 148 149 150 151 152 153 154 155 156
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
157
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
					ZS_SIZE_CLASS_DELTA + 1)

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

173 174 175 176 177
/*
 * number of size_classes
 */
static int zs_size_classes;

178 179 180 181 182
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
183
 * f = fullness_threshold_frac
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;

	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
	void *next;
};

struct zs_pool {
222
	struct size_class **size_class;
223 224

	gfp_t flags;	/* allocation flags used when growing pool */
225
	atomic_long_t pages_allocated;
226
};
227 228 229 230 231 232 233 234 235 236

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

237
struct mapping_area {
238
#ifdef CONFIG_PGTABLE_MAPPING
239 240 241 242 243 244 245 246
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/* zpool driver */

#ifdef CONFIG_ZPOOL

static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
{
	return zs_create_pool(gfp);
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
305
	return zs_get_total_pages(pool) << PAGE_SHIFT;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

321
MODULE_ALIAS("zpool-zsmalloc");
322 323
#endif /* CONFIG_ZPOOL */

324 325 326 327 328
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
329
	return PagePrivate(page);
330 331 332 333
}

static int is_last_page(struct page *page)
{
334
	return PagePrivate2(page);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
359 360 361 362 363 364 365
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
366 367 368 369 370 371 372 373 374 375 376
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

	return idx;
}

N
Nitin Cupta 已提交
377 378 379 380 381 382 383
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
	else if (inuse <= max_objects / fullness_threshold_frac)
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
405 406 407 408 409 410
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

N
Nitin Cupta 已提交
428 429 430 431
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

N
Nitin Cupta 已提交
453 454 455 456 457 458 459 460 461
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
462 463 464 465 466 467 468 469 470 471 472 473 474 475
static enum fullness_group fix_fullness_group(struct zs_pool *pool,
						struct page *page)
{
	int class_idx;
	struct size_class *class;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

476
	class = pool->size_class[class_idx];
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
497
static int get_pages_per_zspage(int class_size)
498 499 500 501 502
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

503
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
540
		next = (struct page *)page_private(page);
541 542 543 544 545 546
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

547 548 549 550 551 552
/*
 * Encode <page, obj_idx> as a single handle value.
 * On hardware platforms with physical memory starting at 0x0 the pfn
 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 * encoded obj_idx value before encoding.
 */
553 554 555 556 557 558 559 560 561 562
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
{
	unsigned long handle;

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
563
	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
564 565 566 567

	return (void *)handle;
}

568 569 570 571 572
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
 * obj_location_to_handle().
 */
573
static void obj_handle_to_location(unsigned long handle, struct page **page,
574 575
				unsigned long *obj_idx)
{
576
	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
577
	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
578 579 580 581 582 583 584 585 586 587 588 589 590
}

static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

N
Nitin Gupta 已提交
591 592 593 594 595 596 597
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
598
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
599 600
}

601 602
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
603
	struct page *nextp, *tmp, *head_extra;
604 605 606 607

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
608
	head_extra = (struct page *)page_private(first_page);
609

N
Nitin Gupta 已提交
610
	reset_page(first_page);
611 612 613
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
614
	if (!head_extra)
615 616
		return;

N
Nitin Gupta 已提交
617
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
618
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
619
		reset_page(nextp);
620 621
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
622 623
	reset_page(head_extra);
	__free_page(head_extra);
624 625 626 627 628 629 630 631 632 633 634 635
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
636
		unsigned int i = 1;
637
		void *vaddr;
638 639 640 641 642 643 644 645 646 647

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

648 649
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
650 651 652 653

		while ((off += class->size) < PAGE_SIZE) {
			link->next = obj_location_to_handle(page, i++);
			link += class->size / sizeof(*link);
654 655 656 657 658 659 660 661 662
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
		link->next = obj_location_to_handle(next_page, 0);
663
		kunmap_atomic(vaddr);
664
		page = next_page;
665
		off %= PAGE_SIZE;
666 667 668 669 670 671 672 673 674
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
675
	struct page *first_page = NULL, *uninitialized_var(prev_page);
676 677 678 679 680 681 682 683 684 685 686 687 688

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
689
	for (i = 0; i < class->pages_per_zspage; i++) {
690
		struct page *page;
691 692 693 694 695 696 697

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
698
			SetPagePrivate(page);
699 700 701 702 703
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
704
			set_page_private(first_page, (unsigned long)page);
705 706 707 708
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
709
		if (i == class->pages_per_zspage - 1)	/* last page */
710
			SetPagePrivate2(page);
711 712 713 714 715 716 717
		prev_page = page;
	}

	init_zspage(first_page, class);

	first_page->freelist = obj_location_to_handle(first_page, 0);
	/* Maximum number of objects we can store in this zspage */
718
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

745
#ifdef CONFIG_PGTABLE_MAPPING
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
770
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
771 772 773 774 775 776 777 778 779
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

780
	unmap_kernel_range(addr, PAGE_SIZE * 2);
781 782
}

783
#else /* CONFIG_PGTABLE_MAPPING */
784 785 786 787 788 789 790 791 792

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
793
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
794 795 796 797 798 799 800
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
801
	kfree(area->vm_buf);
802 803 804 805 806
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
807 808 809
{
	int sizes[2];
	void *addr;
810
	char *buf = area->vm_buf;
811

812 813 814 815 816 817
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
818 819 820 821 822 823 824 825 826 827 828

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
829 830
out:
	return area->vm_buf;
831 832
}

833 834
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
835 836 837
{
	int sizes[2];
	void *addr;
838
	char *buf = area->vm_buf;
839

840 841 842
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
843 844 845 846 847 848 849 850 851 852 853

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
854 855 856 857

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
858
}
859

860
#endif /* CONFIG_PGTABLE_MAPPING */
861

862 863 864
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
865
	int ret, cpu = (long)pcpu;
866 867 868 869 870
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
871 872 873
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
874 875 876 877
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
878
		__zs_cpu_down(area);
879 880 881 882 883 884 885 886 887 888
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

889
static void zs_unregister_cpu_notifier(void)
890 891 892
{
	int cpu;

893 894
	cpu_notifier_register_begin();

895 896
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
897 898 899
	__unregister_cpu_notifier(&zs_cpu_nb);

	cpu_notifier_register_done();
900 901
}

902
static int zs_register_cpu_notifier(void)
903
{
904
	int cpu, uninitialized_var(ret);
905

906 907 908
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
909 910
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
911 912
		if (notifier_to_errno(ret))
			break;
913
	}
914 915

	cpu_notifier_register_done();
916 917
	return notifier_to_errno(ret);
}
918

919 920 921 922 923 924 925 926 927 928 929
static void init_zs_size_classes(void)
{
	int nr;

	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;

	zs_size_classes = nr;
}

930 931
static void __exit zs_exit(void)
{
932
#ifdef CONFIG_ZPOOL
933
	zpool_unregister_driver(&zs_zpool_driver);
934
#endif
935 936 937 938 939 940 941 942 943 944 945
	zs_unregister_cpu_notifier();
}

static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

	if (ret) {
		zs_unregister_cpu_notifier();
		return ret;
	}
946

947 948
	init_zs_size_classes();

949 950 951
#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
952 953 954
	return 0;
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

972 973
/**
 * zs_create_pool - Creates an allocation pool to work from.
974
 * @flags: allocation flags used to allocate pool metadata
975 976 977 978 979 980 981
 *
 * This function must be called before anything when using
 * the zsmalloc allocator.
 *
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
 */
982
struct zs_pool *zs_create_pool(gfp_t flags)
983
{
984
	int i, ovhd_size;
985 986 987 988 989 990 991
	struct zs_pool *pool;

	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
	pool = kzalloc(ovhd_size, GFP_KERNEL);
	if (!pool)
		return NULL;

992 993 994 995 996 997 998
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}

999 1000 1001 1002
	/*
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
	 */
1003
	for (i = zs_size_classes - 1; i >= 0; i--) {
1004
		int size;
1005
		int pages_per_zspage;
1006
		struct size_class *class;
1007
		struct size_class *prev_class;
1008 1009 1010 1011

		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		pages_per_zspage = get_pages_per_zspage(size);

		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (i < ZS_SIZE_CLASSES - 1) {
			prev_class = pool->size_class[i + 1];
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;
1034 1035 1036

		class->size = size;
		class->index = i;
1037
		class->pages_per_zspage = pages_per_zspage;
1038
		spin_lock_init(&class->lock);
1039
		pool->size_class[i] = class;
1040 1041 1042 1043 1044
	}

	pool->flags = flags;

	return pool;
1045 1046 1047 1048

err:
	zs_destroy_pool(pool);
	return NULL;
1049 1050 1051 1052 1053 1054 1055
}
EXPORT_SYMBOL_GPL(zs_create_pool);

void zs_destroy_pool(struct zs_pool *pool)
{
	int i;

1056
	for (i = 0; i < zs_size_classes; i++) {
1057
		int fg;
1058 1059 1060 1061 1062 1063 1064
		struct size_class *class = pool->size_class[i];

		if (!class)
			continue;

		if (class->index != i)
			continue;
1065 1066 1067

		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
1068
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1069 1070 1071
					class->size, fg);
			}
		}
1072
		kfree(class);
1073
	}
1074 1075

	kfree(pool->size_class);
1076 1077 1078 1079 1080 1081 1082 1083 1084
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);

/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1085
 * On success, handle to the allocated object is returned,
1086
 * otherwise 0.
1087 1088
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1089
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1090
{
1091
	unsigned long obj;
1092 1093
	struct link_free *link;
	struct size_class *class;
1094
	void *vaddr;
1095 1096 1097 1098 1099

	struct page *first_page, *m_page;
	unsigned long m_objidx, m_offset;

	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1100
		return 0;
1101

1102
	class = pool->size_class[get_size_class_index(size)];
1103 1104 1105 1106 1107 1108 1109 1110

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
		if (unlikely(!first_page))
1111
			return 0;
1112 1113

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1114 1115
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1116 1117 1118
		spin_lock(&class->lock);
	}

1119
	obj = (unsigned long)first_page->freelist;
1120 1121 1122
	obj_handle_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

1123 1124
	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1125 1126
	first_page->freelist = link->next;
	memset(link, POISON_INUSE, sizeof(*link));
1127
	kunmap_atomic(vaddr);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	first_page->inuse++;
	/* Now move the zspage to another fullness group, if required */
	fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

	return obj;
}
EXPORT_SYMBOL_GPL(zs_malloc);

1138
void zs_free(struct zs_pool *pool, unsigned long obj)
1139 1140 1141 1142
{
	struct link_free *link;
	struct page *first_page, *f_page;
	unsigned long f_objidx, f_offset;
1143
	void *vaddr;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!obj))
		return;

	obj_handle_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
1156
	class = pool->size_class[class_idx];
1157 1158 1159 1160 1161
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

	spin_lock(&class->lock);

	/* Insert this object in containing zspage's freelist */
1162 1163
	vaddr = kmap_atomic(f_page);
	link = (struct link_free *)(vaddr + f_offset);
1164
	link->next = first_page->freelist;
1165
	kunmap_atomic(vaddr);
1166
	first_page->freelist = (void *)obj;
1167 1168 1169 1170 1171

	first_page->inuse--;
	fullness = fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

1172 1173 1174
	if (fullness == ZS_EMPTY) {
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
1175
		free_zspage(first_page);
1176
	}
1177 1178 1179
}
EXPORT_SYMBOL_GPL(zs_free);

1180 1181 1182 1183 1184 1185 1186
/**
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
 *
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
1187 1188 1189 1190 1191 1192
 * zs_unmap_object.
 *
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1193
 */
1194 1195
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1196 1197 1198 1199 1200 1201 1202 1203
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1204
	struct page *pages[2];
1205 1206 1207

	BUG_ON(!handle);

1208 1209 1210 1211 1212 1213 1214
	/*
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
	 */
	BUG_ON(in_interrupt());

1215 1216
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1217
	class = pool->size_class[class_idx];
1218 1219 1220
	off = obj_idx_to_offset(page, obj_idx, class->size);

	area = &get_cpu_var(zs_map_area);
1221
	area->vm_mm = mm;
1222 1223 1224
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1225
		return area->vm_addr + off;
1226 1227
	}

1228 1229 1230 1231
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1232

1233
	return __zs_map_object(area, pages, off, class->size);
1234 1235 1236
}
EXPORT_SYMBOL_GPL(zs_map_object);

1237
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

	BUG_ON(!handle);

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1251
	class = pool->size_class[class_idx];
1252 1253
	off = obj_idx_to_offset(page, obj_idx, class->size);

1254
	area = this_cpu_ptr(&zs_map_area);
1255 1256 1257 1258 1259 1260 1261 1262
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];

		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);
1263

1264 1265
		__zs_unmap_object(area, pages, off, class->size);
	}
1266 1267 1268 1269
	put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

1270
unsigned long zs_get_total_pages(struct zs_pool *pool)
1271
{
1272
	return atomic_long_read(&pool->pages_allocated);
1273
}
1274
EXPORT_SYMBOL_GPL(zs_get_total_pages);
1275 1276 1277 1278 1279 1280

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");