zsmalloc.c 31.7 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

N
Nitin Gupta 已提交
14
/*
N
Nitin Cupta 已提交
15 16 17 18 19 20 21
 * This allocator is designed for use with zram. Thus, the allocator is
 * supposed to work well under low memory conditions. In particular, it
 * never attempts higher order page allocation which is very likely to
 * fail under memory pressure. On the other hand, if we just use single
 * (0-order) pages, it would suffer from very high fragmentation --
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 * This was one of the major issues with its predecessor (xvmalloc).
N
Nitin Gupta 已提交
22 23 24 25 26 27 28
 *
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 * and links them together using various 'struct page' fields. These linked
 * pages act as a single higher-order page i.e. an object can span 0-order
 * page boundaries. The code refers to these linked pages as a single entity
 * called zspage.
 *
N
Nitin Cupta 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 * since this satisfies the requirements of all its current users (in the
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 * uncompressed form). For allocation requests larger than this size, failure
 * is returned (see zs_malloc).
 *
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 * location of the allocated object. The reason for this indirection is that
 * zsmalloc does not keep zspages permanently mapped since that would cause
 * issues on 32-bit systems where the VA region for kernel space mappings
 * is very small. So, before using the allocating memory, the object has to
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 * unmapped using zs_unmap_object().
 *
N
Nitin Gupta 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
90
#include <linux/vmalloc.h>
91
#include <linux/hardirq.h>
92 93
#include <linux/spinlock.h>
#include <linux/types.h>
M
Minchan Kim 已提交
94
#include <linux/zsmalloc.h>
95
#include <linux/zpool.h>
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
114
 * as single (unsigned long) handle value.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE

/*
145
 * On systems with 4K page size, this gives 255 size classes! There is a
146 147 148 149 150 151 152 153 154 155 156
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
157
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define ZS_SIZE_CLASSES		((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
					ZS_SIZE_CLASS_DELTA + 1)

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
178
 * f = fullness_threshold_frac
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;

	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
	void *next;
};

struct zs_pool {
217
	struct size_class *size_class[ZS_SIZE_CLASSES];
218 219

	gfp_t flags;	/* allocation flags used when growing pool */
220
	atomic_long_t pages_allocated;
221
};
222 223 224 225 226 227 228 229 230 231

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

232
struct mapping_area {
233
#ifdef CONFIG_PGTABLE_MAPPING
234 235 236 237 238 239 240 241
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* zpool driver */

#ifdef CONFIG_ZPOOL

static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
{
	return zs_create_pool(gfp);
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
300
	return zs_get_total_pages(pool) << PAGE_SHIFT;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

316
MODULE_ALIAS("zpool-zsmalloc");
317 318
#endif /* CONFIG_ZPOOL */

319 320 321 322 323
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
324
	return PagePrivate(page);
325 326 327 328
}

static int is_last_page(struct page *page)
{
329
	return PagePrivate2(page);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
354 355 356 357 358 359 360
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
361 362 363 364 365 366 367 368 369 370 371
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

	return idx;
}

N
Nitin Cupta 已提交
372 373 374 375 376 377 378
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
	else if (inuse <= max_objects / fullness_threshold_frac)
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
400 401 402 403 404 405
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

N
Nitin Cupta 已提交
423 424 425 426
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

N
Nitin Cupta 已提交
448 449 450 451 452 453 454 455 456
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
457 458 459 460 461 462 463 464 465 466 467 468 469 470
static enum fullness_group fix_fullness_group(struct zs_pool *pool,
						struct page *page)
{
	int class_idx;
	struct size_class *class;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

471
	class = pool->size_class[class_idx];
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
492
static int get_pages_per_zspage(int class_size)
493 494 495 496 497
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

498
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
535
		next = (struct page *)page_private(page);
536 537 538 539 540 541
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

542 543 544 545 546 547
/*
 * Encode <page, obj_idx> as a single handle value.
 * On hardware platforms with physical memory starting at 0x0 the pfn
 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 * encoded obj_idx value before encoding.
 */
548 549 550 551 552 553 554 555 556 557
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
{
	unsigned long handle;

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
558
	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
559 560 561 562

	return (void *)handle;
}

563 564 565 566 567
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
 * obj_location_to_handle().
 */
568
static void obj_handle_to_location(unsigned long handle, struct page **page,
569 570
				unsigned long *obj_idx)
{
571
	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
572
	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
573 574 575 576 577 578 579 580 581 582 583 584 585
}

static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

N
Nitin Gupta 已提交
586 587 588 589 590 591 592
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
593
	page_mapcount_reset(page);
N
Nitin Gupta 已提交
594 595
}

596 597
static void free_zspage(struct page *first_page)
{
N
Nitin Gupta 已提交
598
	struct page *nextp, *tmp, *head_extra;
599 600 601 602

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

N
Nitin Gupta 已提交
603
	head_extra = (struct page *)page_private(first_page);
604

N
Nitin Gupta 已提交
605
	reset_page(first_page);
606 607 608
	__free_page(first_page);

	/* zspage with only 1 system page */
N
Nitin Gupta 已提交
609
	if (!head_extra)
610 611
		return;

N
Nitin Gupta 已提交
612
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
613
		list_del(&nextp->lru);
N
Nitin Gupta 已提交
614
		reset_page(nextp);
615 616
		__free_page(nextp);
	}
N
Nitin Gupta 已提交
617 618
	reset_page(head_extra);
	__free_page(head_extra);
619 620 621 622 623 624 625 626 627 628 629 630
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
631
		unsigned int i = 1;
632
		void *vaddr;
633 634 635 636 637 638 639 640 641 642

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

643 644
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
645 646 647 648

		while ((off += class->size) < PAGE_SIZE) {
			link->next = obj_location_to_handle(page, i++);
			link += class->size / sizeof(*link);
649 650 651 652 653 654 655 656 657
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
		link->next = obj_location_to_handle(next_page, 0);
658
		kunmap_atomic(vaddr);
659
		page = next_page;
660
		off %= PAGE_SIZE;
661 662 663 664 665 666 667 668 669
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
670
	struct page *first_page = NULL, *uninitialized_var(prev_page);
671 672 673 674 675 676 677 678 679 680 681 682 683

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
684
	for (i = 0; i < class->pages_per_zspage; i++) {
685
		struct page *page;
686 687 688 689 690 691 692

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
693
			SetPagePrivate(page);
694 695 696 697 698
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
699
			set_page_private(first_page, (unsigned long)page);
700 701 702 703
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
704
		if (i == class->pages_per_zspage - 1)	/* last page */
705
			SetPagePrivate2(page);
706 707 708 709 710 711 712
		prev_page = page;
	}

	init_zspage(first_page, class);

	first_page->freelist = obj_location_to_handle(first_page, 0);
	/* Maximum number of objects we can store in this zspage */
713
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

740
#ifdef CONFIG_PGTABLE_MAPPING
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
765
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
766 767 768 769 770 771 772 773 774
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

775
	unmap_kernel_range(addr, PAGE_SIZE * 2);
776 777
}

778
#else /* CONFIG_PGTABLE_MAPPING */
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
	area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm_buf)
		free_page((unsigned long)area->vm_buf);
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
803 804 805
{
	int sizes[2];
	void *addr;
806
	char *buf = area->vm_buf;
807

808 809 810 811 812 813
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
814 815 816 817 818 819 820 821 822 823 824

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
825 826
out:
	return area->vm_buf;
827 828
}

829 830
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
831 832 833
{
	int sizes[2];
	void *addr;
834
	char *buf = area->vm_buf;
835

836 837 838
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
839 840 841 842 843 844 845 846 847 848 849

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
850 851 852 853

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
854
}
855

856
#endif /* CONFIG_PGTABLE_MAPPING */
857

858 859 860
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
861
	int ret, cpu = (long)pcpu;
862 863 864 865 866
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
867 868 869
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
870 871 872 873
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
874
		__zs_cpu_down(area);
875 876 877 878 879 880 881 882 883 884
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

885
static void zs_unregister_cpu_notifier(void)
886 887 888
{
	int cpu;

889 890
	cpu_notifier_register_begin();

891 892
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
893 894 895
	__unregister_cpu_notifier(&zs_cpu_nb);

	cpu_notifier_register_done();
896 897
}

898
static int zs_register_cpu_notifier(void)
899
{
900
	int cpu, uninitialized_var(ret);
901

902 903 904
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
905 906
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
907 908
		if (notifier_to_errno(ret))
			break;
909
	}
910 911

	cpu_notifier_register_done();
912 913
	return notifier_to_errno(ret);
}
914

915 916
static void __exit zs_exit(void)
{
917
#ifdef CONFIG_ZPOOL
918
	zpool_unregister_driver(&zs_zpool_driver);
919
#endif
920 921 922 923 924 925 926 927 928 929 930
	zs_unregister_cpu_notifier();
}

static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

	if (ret) {
		zs_unregister_cpu_notifier();
		return ret;
	}
931

932 933 934
#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
935 936 937
	return 0;
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

955 956
/**
 * zs_create_pool - Creates an allocation pool to work from.
957
 * @flags: allocation flags used to allocate pool metadata
958 959 960 961 962 963 964
 *
 * This function must be called before anything when using
 * the zsmalloc allocator.
 *
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
 */
965
struct zs_pool *zs_create_pool(gfp_t flags)
966
{
967
	int i, ovhd_size;
968 969 970 971 972 973 974
	struct zs_pool *pool;

	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
	pool = kzalloc(ovhd_size, GFP_KERNEL);
	if (!pool)
		return NULL;

975 976 977 978 979
	/*
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
	 */
	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
980
		int size;
981
		int pages_per_zspage;
982
		struct size_class *class;
983
		struct size_class *prev_class;
984 985 986 987

		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		pages_per_zspage = get_pages_per_zspage(size);

		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
		if (i < ZS_SIZE_CLASSES - 1) {
			prev_class = pool->size_class[i + 1];
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;
1010 1011 1012

		class->size = size;
		class->index = i;
1013
		class->pages_per_zspage = pages_per_zspage;
1014
		spin_lock_init(&class->lock);
1015
		pool->size_class[i] = class;
1016 1017 1018 1019 1020
	}

	pool->flags = flags;

	return pool;
1021 1022 1023 1024

err:
	zs_destroy_pool(pool);
	return NULL;
1025 1026 1027 1028 1029 1030 1031 1032 1033
}
EXPORT_SYMBOL_GPL(zs_create_pool);

void zs_destroy_pool(struct zs_pool *pool)
{
	int i;

	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
		int fg;
1034 1035 1036 1037 1038 1039 1040
		struct size_class *class = pool->size_class[i];

		if (!class)
			continue;

		if (class->index != i)
			continue;
1041 1042 1043

		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
1044
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1045 1046 1047
					class->size, fg);
			}
		}
1048
		kfree(class);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	}
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);

/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1059
 * On success, handle to the allocated object is returned,
1060
 * otherwise 0.
1061 1062
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1063
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1064
{
1065
	unsigned long obj;
1066 1067
	struct link_free *link;
	struct size_class *class;
1068
	void *vaddr;
1069 1070 1071 1072 1073

	struct page *first_page, *m_page;
	unsigned long m_objidx, m_offset;

	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1074
		return 0;
1075

1076
	class = pool->size_class[get_size_class_index(size)];
1077 1078 1079 1080 1081 1082 1083 1084

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
		if (unlikely(!first_page))
1085
			return 0;
1086 1087

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1088 1089
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1090 1091 1092
		spin_lock(&class->lock);
	}

1093
	obj = (unsigned long)first_page->freelist;
1094 1095 1096
	obj_handle_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

1097 1098
	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1099 1100
	first_page->freelist = link->next;
	memset(link, POISON_INUSE, sizeof(*link));
1101
	kunmap_atomic(vaddr);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

	first_page->inuse++;
	/* Now move the zspage to another fullness group, if required */
	fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

	return obj;
}
EXPORT_SYMBOL_GPL(zs_malloc);

1112
void zs_free(struct zs_pool *pool, unsigned long obj)
1113 1114 1115 1116
{
	struct link_free *link;
	struct page *first_page, *f_page;
	unsigned long f_objidx, f_offset;
1117
	void *vaddr;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!obj))
		return;

	obj_handle_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
1130
	class = pool->size_class[class_idx];
1131 1132 1133 1134 1135
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

	spin_lock(&class->lock);

	/* Insert this object in containing zspage's freelist */
1136 1137
	vaddr = kmap_atomic(f_page);
	link = (struct link_free *)(vaddr + f_offset);
1138
	link->next = first_page->freelist;
1139
	kunmap_atomic(vaddr);
1140
	first_page->freelist = (void *)obj;
1141 1142 1143 1144 1145

	first_page->inuse--;
	fullness = fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

1146 1147 1148
	if (fullness == ZS_EMPTY) {
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
1149
		free_zspage(first_page);
1150
	}
1151 1152 1153
}
EXPORT_SYMBOL_GPL(zs_free);

1154 1155 1156 1157 1158 1159 1160
/**
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
 *
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
1161 1162 1163 1164 1165 1166
 * zs_unmap_object.
 *
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1167
 */
1168 1169
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1170 1171 1172 1173 1174 1175 1176 1177
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1178
	struct page *pages[2];
1179 1180 1181

	BUG_ON(!handle);

1182 1183 1184 1185 1186 1187 1188
	/*
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
	 */
	BUG_ON(in_interrupt());

1189 1190
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1191
	class = pool->size_class[class_idx];
1192 1193 1194
	off = obj_idx_to_offset(page, obj_idx, class->size);

	area = &get_cpu_var(zs_map_area);
1195
	area->vm_mm = mm;
1196 1197 1198
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1199
		return area->vm_addr + off;
1200 1201
	}

1202 1203 1204 1205
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1206

1207
	return __zs_map_object(area, pages, off, class->size);
1208 1209 1210
}
EXPORT_SYMBOL_GPL(zs_map_object);

1211
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

	BUG_ON(!handle);

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1225
	class = pool->size_class[class_idx];
1226 1227
	off = obj_idx_to_offset(page, obj_idx, class->size);

1228
	area = this_cpu_ptr(&zs_map_area);
1229 1230 1231 1232 1233 1234 1235 1236
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];

		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);
1237

1238 1239
		__zs_unmap_object(area, pages, off, class->size);
	}
1240 1241 1242 1243
	put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

1244
unsigned long zs_get_total_pages(struct zs_pool *pool)
1245
{
1246
	return atomic_long_read(&pool->pages_allocated);
1247
}
1248
EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249 1250 1251 1252 1253 1254

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");