phy.c 90.3 KB
Newer Older
1 2 3
/*
 * PHY functions
 *
N
Nick Kossifidis 已提交
4
 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
N
Nick Kossifidis 已提交
5
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
N
Nick Kossifidis 已提交
6
 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include <linux/delay.h>
24
#include <linux/slab.h>
25 26 27 28

#include "ath5k.h"
#include "reg.h"
#include "base.h"
N
Nick Kossifidis 已提交
29 30
#include "rfbuffer.h"
#include "rfgain.h"
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

/******************\
* Helper functions *
\******************/

/*
 * Get the PHY Chip revision
 */
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
	unsigned int i;
	u32 srev;
	u16 ret;

	/*
	 * Set the radio chip access register
	 */
	switch (chan) {
	case CHANNEL_2GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
		break;
	case CHANNEL_5GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
		break;
	default:
		return 0;
	}

	mdelay(2);

	/* ...wait until PHY is ready and read the selected radio revision */
	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));

	for (i = 0; i < 8; i++)
		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));

	if (ah->ah_version == AR5K_AR5210) {
		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
	} else {
		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
				((srev & 0x0f) << 4), 8);
	}

	/* Reset to the 5GHz mode */
	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));

	return ret;
}

/*
 * Check if a channel is supported
 */
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
	/* Check if the channel is in our supported range */
	if (flags & CHANNEL_2GHZ) {
		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
			return true;
	} else if (flags & CHANNEL_5GHZ)
		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
			return true;

	return false;
}

bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	u8 refclk_freq;

	if ((ah->ah_radio == AR5K_RF5112) ||
	(ah->ah_radio == AR5K_RF5413) ||
	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
		refclk_freq = 40;
	else
		refclk_freq = 32;

	if ((channel->center_freq % refclk_freq != 0) &&
	((channel->center_freq % refclk_freq < 10) ||
	(channel->center_freq % refclk_freq > 22)))
		return true;
	else
		return false;
}

121 122 123
/*
 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 */
124 125 126
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
					const struct ath5k_rf_reg *rf_regs,
					u32 val, u8 reg_id, bool set)
127
{
128 129 130 131 132 133
	const struct ath5k_rf_reg *rfreg = NULL;
	u8 offset, bank, num_bits, col, position;
	u16 entry;
	u32 mask, data, last_bit, bits_shifted, first_bit;
	u32 *rfb;
	s32 bits_left;
134 135 136
	int i;

	data = 0;
137
	rfb = ah->ah_rf_banks;
138

139 140 141 142 143 144 145 146 147
	for (i = 0; i < ah->ah_rf_regs_count; i++) {
		if (rf_regs[i].index == reg_id) {
			rfreg = &rf_regs[i];
			break;
		}
	}

	if (rfb == NULL || rfreg == NULL) {
		ATH5K_PRINTF("Rf register not found!\n");
148 149
		/* should not happen */
		return 0;
150 151 152 153 154 155 156 157 158 159 160 161
	}

	bank = rfreg->bank;
	num_bits = rfreg->field.len;
	first_bit = rfreg->field.pos;
	col = rfreg->field.col;

	/* first_bit is an offset from bank's
	 * start. Since we have all banks on
	 * the same array, we use this offset
	 * to mark each bank's start */
	offset = ah->ah_offset[bank];
162

163 164
	/* Boundary check */
	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165 166 167 168
		ATH5K_PRINTF("invalid values at offset %u\n", offset);
		return 0;
	}

169 170
	entry = ((first_bit - 1) / 8) + offset;
	position = (first_bit - 1) % 8;
171

172
	if (set)
173
		data = ath5k_hw_bitswap(val, num_bits);
174

175 176 177 178 179 180 181 182
	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
	position = 0, entry++) {

		last_bit = (position + bits_left > 8) ? 8 :
					position + bits_left;

		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
								(col * 8);
183

184
		if (set) {
185 186
			rfb[entry] &= ~mask;
			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187 188
			data >>= (8 - position);
		} else {
189 190 191
			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
				<< bits_shifted;
			bits_shifted += last_bit - position;
192 193
		}

194
		bits_left -= 8 - position;
195 196
	}

197
	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198 199 200 201

	return data;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/**
 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
 *
 * @ah: the &struct ath5k_hw
 * @channel: the currently set channel upon reset
 *
 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 *
 * Since delta slope is floating point we split it on its exponent and
 * mantissa and provide these values on hw.
 *
 * For more infos i think this patent is related
 * http://www.freepatentsonline.com/7184495.html
 */
static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
	struct ieee80211_channel *channel)
{
	/* Get exponent and mantissa and set it */
	u32 coef_scaled, coef_exp, coef_man,
		ds_coef_exp, ds_coef_man, clock;

	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
		!(channel->hw_value & CHANNEL_OFDM));

	/* Get coefficient
	 * ALGO: coef = (5 * clock / carrier_freq) / 2
	 * we scale coef by shifting clock value by 24 for
	 * better precision since we use integers */
231 232 233 234 235 236 237 238 239 240 241 242 243 244
	switch (ah->ah_bwmode) {
	case AR5K_BWMODE_40MHZ:
		clock = 40 * 2;
		break;
	case AR5K_BWMODE_10MHZ:
		clock = 40 / 2;
		break;
	case AR5K_BWMODE_5MHZ:
		clock = 40 / 4;
		break;
	default:
		clock = 40;
		break;
	}
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;

	/* Get exponent
	 * ALGO: coef_exp = 14 - highest set bit position */
	coef_exp = ilog2(coef_scaled);

	/* Doesn't make sense if it's zero*/
	if (!coef_scaled || !coef_exp)
		return -EINVAL;

	/* Note: we've shifted coef_scaled by 24 */
	coef_exp = 14 - (coef_exp - 24);


	/* Get mantissa (significant digits)
	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
	coef_man = coef_scaled +
		(1 << (24 - coef_exp - 1));

	/* Calculate delta slope coefficient exponent
	 * and mantissa (remove scaling) and set them on hw */
	ds_coef_man = coef_man >> (24 - coef_exp);
	ds_coef_exp = coef_exp - 16;

	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);

	return 0;
}

int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
	/*Just a try M.F.*/
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);

	return 0;
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 * Wait for synth to settle
 */
static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
			struct ieee80211_channel *channel)
{
	/*
	 * On 5211+ read activation -> rx delay
	 * and use it (100ns steps).
	 */
	if (ah->ah_version != AR5K_AR5210) {
		u32 delay;
		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
			AR5K_PHY_RX_DELAY_M;
		delay = (channel->hw_value & CHANNEL_CCK) ?
			((delay << 2) / 22) : (delay / 10);
		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
			delay = delay << 1;
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
			delay = delay << 2;
		/* XXX: /2 on turbo ? Let's be safe
		 * for now */
		udelay(100 + delay);
	} else {
		mdelay(1);
	}
}

313

314 315 316 317 318
/**********************\
* RF Gain optimization *
\**********************/

/*
B
Bob Copeland 已提交
319
 * This code is used to optimize RF gain on different environments
320
 * (temperature mostly) based on feedback from a power detector.
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
 *
 * It's only used on RF5111 and RF5112, later RF chips seem to have
 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 * no gain optimization ladder-.
 *
 * For more infos check out this patent doc
 * http://www.freepatentsonline.com/7400691.html
 *
 * This paper describes power drops as seen on the receiver due to
 * probe packets
 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 * %20of%20Power%20Control.pdf
 *
 * And this is the MadWiFi bug entry related to the above
 * http://madwifi-project.org/ticket/1659
 * with various measurements and diagrams
 *
L
Lucas De Marchi 已提交
338
 * TODO: Deal with power drops due to probes by setting an appropriate
339 340 341
 * tx power on the probe packets ! Make this part of the calibration process.
 */

L
Lucas De Marchi 已提交
342
/* Initialize ah_gain during attach */
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
	/* Initialize the gain optimization values */
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 35;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	case AR5K_RF5112:
		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 85;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/* Schedule a gain probe check on the next transmited packet.
 * That means our next packet is going to be sent with lower
 * tx power and a Peak to Average Power Detector (PAPD) will try
 * to measure the gain.
 *
 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 * just after we enable the probe so that we don't mess with
 * standard traffic ? Maybe it's time to use sw interrupts and
 * a probe tasklet !!!
 */
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{

	/* Skip if gain calibration is inactive or
	 * we already handle a probe request */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
		return;

384 385
	/* Send the packet with 2dB below max power as
	 * patent doc suggest */
386
	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387 388 389 390 391 392 393 394 395 396
			AR5K_PHY_PAPD_PROBE_TXPOWER) |
			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);

	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;

}

/* Calculate gain_F measurement correction
 * based on the current step for RF5112 rev. 2 */
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397 398 399
{
	u32 mix, step;
	u32 *rf;
400 401
	const struct ath5k_gain_opt *go;
	const struct ath5k_gain_opt_step *g_step;
402
	const struct ath5k_rf_reg *rf_regs;
403 404 405 406 407 408 409

	/* Only RF5112 Rev. 2 supports it */
	if ((ah->ah_radio != AR5K_RF5112) ||
	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
		return 0;

	go = &rfgain_opt_5112;
410 411
	rf_regs = rf_regs_5112a;
	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412 413

	g_step = &go->go_step[ah->ah_gain.g_step_idx];
414 415 416 417 418 419 420

	if (ah->ah_rf_banks == NULL)
		return 0;

	rf = ah->ah_rf_banks;
	ah->ah_gain.g_f_corr = 0;

421
	/* No VGA (Variable Gain Amplifier) override, skip */
422
	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423 424
		return 0;

425
	/* Mix gain stepping */
426
	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427 428 429

	/* Mix gain override */
	mix = g_step->gos_param[0];
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

	switch (mix) {
	case 3:
		ah->ah_gain.g_f_corr = step * 2;
		break;
	case 2:
		ah->ah_gain.g_f_corr = (step - 5) * 2;
		break;
	case 1:
		ah->ah_gain.g_f_corr = step;
		break;
	default:
		ah->ah_gain.g_f_corr = 0;
		break;
	}

	return ah->ah_gain.g_f_corr;
}

449 450 451 452 453
/* Check if current gain_F measurement is in the range of our
 * power detector windows. If we get a measurement outside range
 * we know it's not accurate (detectors can't measure anything outside
 * their detection window) so we must ignore it */
static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454
{
455
	const struct ath5k_rf_reg *rf_regs;
456
	u32 step, mix_ovr, level[4];
457 458 459 460 461 462 463 464
	u32 *rf;

	if (ah->ah_rf_banks == NULL)
		return false;

	rf = ah->ah_rf_banks;

	if (ah->ah_radio == AR5K_RF5111) {
465 466 467 468 469 470 471

		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);

		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
			false);

472
		level[0] = 0;
473 474 475
		level[1] = (step == 63) ? 50 : step + 4;
		level[2] = (step != 63) ? 64 : level[0];
		level[3] = level[2] + 50 ;
476 477

		ah->ah_gain.g_high = level[3] -
478
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479
		ah->ah_gain.g_low = level[0] +
480
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481
	} else {
482 483 484 485 486 487 488

		rf_regs = rf_regs_5112;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);

		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
			false);

489 490
		level[0] = level[2] = 0;

491
		if (mix_ovr == 1) {
492 493 494 495 496 497 498 499 500 501 502 503 504
			level[1] = level[3] = 83;
		} else {
			level[1] = level[3] = 107;
			ah->ah_gain.g_high = 55;
		}
	}

	return (ah->ah_gain.g_current >= level[0] &&
			ah->ah_gain.g_current <= level[1]) ||
		(ah->ah_gain.g_current >= level[2] &&
			ah->ah_gain.g_current <= level[3]);
}

505
/* Perform gain_F adjustment by choosing the right set
B
Bob Copeland 已提交
506
 * of parameters from RF gain optimization ladder */
507
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508 509
{
	const struct ath5k_gain_opt *go;
510
	const struct ath5k_gain_opt_step *g_step;
511 512 513 514 515 516 517 518 519 520 521 522 523
	int ret = 0;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		go = &rfgain_opt_5112;
		break;
	default:
		return 0;
	}

524
	g_step = &go->go_step[ah->ah_gain.g_step_idx];
525 526

	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527 528

		/* Reached maximum */
529 530
		if (ah->ah_gain.g_step_idx == 0)
			return -1;
531

532 533 534
		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
				ah->ah_gain.g_step_idx > 0;
535
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
536 537
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538
			    g_step->gos_gain);
539 540 541 542 543 544

		ret = 1;
		goto done;
	}

	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545 546

		/* Reached minimum */
547 548
		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
			return -2;
549

550 551 552
		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
				ah->ah_gain.g_step_idx < go->go_steps_count-1;
553
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
554 555
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556
			    g_step->gos_gain);
557 558 559 560 561 562 563 564 565 566 567 568 569 570

		ret = 2;
		goto done;
	}

done:
	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
		"ret %d, gain step %u, current gain %u, target gain %u\n",
		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
		ah->ah_gain.g_target);

	return ret;
}

B
Bob Copeland 已提交
571
/* Main callback for thermal RF gain calibration engine
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
 * Check for a new gain reading and schedule an adjustment
 * if needed.
 *
 * TODO: Use sw interrupt to schedule reset if gain_F needs
 * adjustment */
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
	u32 data, type;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;

	if (ah->ah_rf_banks == NULL ||
	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
		return AR5K_RFGAIN_INACTIVE;

	/* No check requested, either engine is inactive
	 * or an adjustment is already requested */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
		goto done;

	/* Read the PAPD (Peak to Average Power Detector)
	 * register */
	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);

	/* No probe is scheduled, read gain_F measurement */
	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);

		/* If tx packet is CCK correct the gain_F measurement
		 * by cck ofdm gain delta */
		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
				ah->ah_gain.g_current +=
					ee->ee_cck_ofdm_gain_delta;
			else
				ah->ah_gain.g_current +=
					AR5K_GAIN_CCK_PROBE_CORR;
		}

		/* Further correct gain_F measurement for
		 * RF5112A radios */
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			ath5k_hw_rf_gainf_corr(ah);
			ah->ah_gain.g_current =
				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
				0;
		}

		/* Check if measurement is ok and if we need
		 * to adjust gain, schedule a gain adjustment,
		 * else switch back to the acive state */
		if (ath5k_hw_rf_check_gainf_readback(ah) &&
		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
		ath5k_hw_rf_gainf_adjust(ah)) {
			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
		} else {
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}
	}

done:
	return ah->ah_gain.g_state;
}

B
Bob Copeland 已提交
637
/* Write initial RF gain table to set the RF sensitivity
638 639
 * this one works on all RF chips and has nothing to do
 * with gain_F calibration */
640
static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
641 642
{
	const struct ath5k_ini_rfgain *ath5k_rfg;
643
	unsigned int i, size, index;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ath5k_rfg = rfgain_5111;
		size = ARRAY_SIZE(rfgain_5111);
		break;
	case AR5K_RF5112:
		ath5k_rfg = rfgain_5112;
		size = ARRAY_SIZE(rfgain_5112);
		break;
	case AR5K_RF2413:
		ath5k_rfg = rfgain_2413;
		size = ARRAY_SIZE(rfgain_2413);
		break;
	case AR5K_RF2316:
		ath5k_rfg = rfgain_2316;
		size = ARRAY_SIZE(rfgain_2316);
		break;
	case AR5K_RF5413:
		ath5k_rfg = rfgain_5413;
		size = ARRAY_SIZE(rfgain_5413);
		break;
	case AR5K_RF2317:
	case AR5K_RF2425:
		ath5k_rfg = rfgain_2425;
		size = ARRAY_SIZE(rfgain_2425);
		break;
	default:
		return -EINVAL;
	}

675
	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
676 677 678

	for (i = 0; i < size; i++) {
		AR5K_REG_WAIT(i);
679
		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680 681 682 683 684 685 686 687 688 689 690 691
			(u32)ath5k_rfg[i].rfg_register);
	}

	return 0;
}



/********************\
* RF Registers setup *
\********************/

692
/*
B
Bob Copeland 已提交
693
 * Setup RF registers by writing RF buffer on hw
694
 */
695 696
static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
	struct ieee80211_channel *channel, unsigned int mode)
697
{
698 699 700 701
	const struct ath5k_rf_reg *rf_regs;
	const struct ath5k_ini_rfbuffer *ini_rfb;
	const struct ath5k_gain_opt *go = NULL;
	const struct ath5k_gain_opt_step *g_step;
702
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703 704 705
	u8 ee_mode = 0;
	u32 *rfb;
	int i, obdb = -1, bank = -1;
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
		ini_rfb = rfb_5111;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			rf_regs = rf_regs_5112a;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
			ini_rfb = rfb_5112a;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
		} else {
			rf_regs = rf_regs_5112;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
			ini_rfb = rfb_5112;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
		}
		go = &rfgain_opt_5112;
		break;
	case AR5K_RF2413:
		rf_regs = rf_regs_2413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
		ini_rfb = rfb_2413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
		break;
	case AR5K_RF2316:
		rf_regs = rf_regs_2316;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
		ini_rfb = rfb_2316;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
		break;
	case AR5K_RF5413:
		rf_regs = rf_regs_5413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
		ini_rfb = rfb_5413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
		break;
	case AR5K_RF2317:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		ini_rfb = rfb_2317;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
		break;
	case AR5K_RF2425:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
			ini_rfb = rfb_2425;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
		} else {
			ini_rfb = rfb_2417;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
		}
		break;
	default:
		return -EINVAL;
	}
767

B
Bob Copeland 已提交
768
	/* If it's the first time we set RF buffer, allocate
769 770 771 772 773 774 775 776 777 778
	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
	 * we set above */
	if (ah->ah_rf_banks == NULL) {
		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
								GFP_KERNEL);
		if (ah->ah_rf_banks == NULL) {
			ATH5K_ERR(ah->ah_sc, "out of memory\n");
			return -ENOMEM;
		}
	}
779 780

	/* Copy values to modify them */
781 782 783 784
	rfb = ah->ah_rf_banks;

	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785 786 787 788
			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
			return -EINVAL;
		}

789 790 791
		/* Bank changed, write down the offset */
		if (bank != ini_rfb[i].rfb_bank) {
			bank = ini_rfb[i].rfb_bank;
792 793 794
			ah->ah_offset[bank] = i;
		}

795
		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
796 797
	}

798
	/* Set Output and Driver bias current (OB/DB) */
799
	if (channel->hw_value & CHANNEL_2GHZ) {
800

801
		if (channel->hw_value & CHANNEL_CCK)
802 803 804 805
			ee_mode = AR5K_EEPROM_MODE_11B;
		else
			ee_mode = AR5K_EEPROM_MODE_11G;

806 807 808 809 810 811 812 813 814 815 816 817
		/* For RF511X/RF211X combination we
		 * use b_OB and b_DB parameters stored
		 * in eeprom on ee->ee_ob[ee_mode][0]
		 *
		 * For all other chips we use OB/DB for 2Ghz
		 * stored in the b/g modal section just like
		 * 802.11a on ee->ee_ob[ee_mode][1] */
		if ((ah->ah_radio == AR5K_RF5111) ||
		(ah->ah_radio == AR5K_RF5112))
			obdb = 0;
		else
			obdb = 1;
818

819 820
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_2GHZ, true);
821

822 823 824 825 826 827 828 829 830
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_2GHZ, true);

	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
			(ah->ah_radio == AR5K_RF5111)) {

		/* For 11a, Turbo and XR we need to choose
		 * OB/DB based on frequency range */
831
		ee_mode = AR5K_EEPROM_MODE_11A;
832 833 834 835
		obdb =	 channel->center_freq >= 5725 ? 3 :
			(channel->center_freq >= 5500 ? 2 :
			(channel->center_freq >= 5260 ? 1 :
			 (channel->center_freq > 4000 ? 0 : -1)));
836

837
		if (obdb < 0)
838 839
			return -EINVAL;

840 841 842 843 844
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_5GHZ, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_5GHZ, true);
845 846
	}

847
	g_step = &go->go_step[ah->ah_gain.g_step_idx];
848

849 850 851 852 853
	/* Set turbo mode (N/A on RF5413) */
	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
	(ah->ah_radio != AR5K_RF5413))
		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);

854 855
	/* Bank Modifications (chip-specific) */
	if (ah->ah_radio == AR5K_RF5111) {
856

857 858
		/* Set gain_F settings according to current step */
		if (channel->hw_value & CHANNEL_OFDM) {
859

860 861 862
			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
					AR5K_PHY_FRAME_CTL_TX_CLIP,
					g_step->gos_param[0]);
863

864 865
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
							AR5K_RF_PWD_90, true);
866

867 868
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
							AR5K_RF_PWD_84, true);
869

870 871
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_RFGAIN_SEL, true);
872

873 874 875
			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
876

877
		}
878

879
		/* Bank 6/7 setup */
880

881 882
		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
						AR5K_RF_PWD_XPD, true);
883

884 885
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);
886

887 888
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);
889

890 891
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_PLO_SEL, true);
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
		/* Tweak power detectors for half/quarter rate support */
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
			u8 wait_i;

			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
						AR5K_RF_WAIT_S, true);

			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
							0x1f : 0x10;

			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
						AR5K_RF_WAIT_I, true);
			ath5k_hw_rfb_op(ah, rf_regs, 3,
						AR5K_RF_MAX_TIME, true);

		}
910 911
	}

912
	if (ah->ah_radio == AR5K_RF5112) {
913

914 915
		/* Set gain_F settings according to current step */
		if (channel->hw_value & CHANNEL_OFDM) {
916

917 918
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
						AR5K_RF_MIXGAIN_OVR, true);
919

920 921
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
						AR5K_RF_PWD_138, true);
922

923 924
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
						AR5K_RF_PWD_137, true);
925

926 927
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_PWD_136, true);
928

929 930
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
						AR5K_RF_PWD_132, true);
931

932 933
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
						AR5K_RF_PWD_131, true);
934

935 936
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
						AR5K_RF_PWD_130, true);
937

938 939 940 941
			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}
942

943
		/* Bank 6/7 setup */
944

945 946
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_XPD_SEL, true);
947

948 949 950 951 952
		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
			/* Rev. 1 supports only one xpd */
			ath5k_hw_rfb_op(ah, rf_regs,
						ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);
953

954
		} else {
N
Nick Kossifidis 已提交
955 956 957 958
			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
			if (ee->ee_pd_gains[ee_mode] > 1) {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
959
						AR5K_RF_PD_GAIN_LO, true);
N
Nick Kossifidis 已提交
960 961
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[1],
962
						AR5K_RF_PD_GAIN_HI, true);
N
Nick Kossifidis 已提交
963 964 965 966 967 968 969 970
			} else {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_LO, true);
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_HI, true);
			}
971

972 973 974
			/* Lower synth voltage on Rev 2 */
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_HIGH_VC_CP, true);
975

976 977
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_MID_VC_CP, true);
978

979 980
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_LOW_VC_CP, true);
N
Nick Kossifidis 已提交
981

982 983
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_PUSH_UP, true);
N
Nick Kossifidis 已提交
984

985 986 987 988
			/* Decrease power consumption on 5213+ BaseBand */
			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PAD2GND, true);
N
Nick Kossifidis 已提交
989

990 991
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB2_LVL, true);
N
Nick Kossifidis 已提交
992

993 994
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB5_LVL, true);
995

996 997
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_167, true);
998

999 1000 1001
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_166, true);
			}
1002 1003
		}

1004 1005
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);
1006

1007 1008 1009 1010 1011 1012 1013
		/* Tweak power detector for half/quarter rates */
		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
			u8 pd_delay;

			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
							0xf : 0x8;
1014

1015 1016 1017 1018 1019 1020
			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
						AR5K_RF_PD_PERIOD_A, true);
			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
						AR5K_RF_PD_DELAY_A, true);

		}
1021
	}
1022

1023 1024
	if (ah->ah_radio == AR5K_RF5413 &&
	channel->hw_value & CHANNEL_2GHZ) {
1025

1026 1027
		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
									true);
1028

1029 1030 1031 1032 1033
		/* Set optimum value for early revisions (on pci-e chips) */
		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
		ah->ah_mac_srev < AR5K_SREV_AR5413)
			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
						AR5K_RF_PWD_ICLOBUF_2G, true);
1034 1035 1036

	}

1037 1038 1039 1040 1041
	/* Write RF banks on hw */
	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		AR5K_REG_WAIT(i);
		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
	}
1042

1043
	return 0;
1044 1045 1046 1047 1048 1049 1050 1051
}


/**************************\
  PHY/RF channel functions
\**************************/

/*
L
Lucas De Marchi 已提交
1052
 * Conversion needed for RF5110
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 */
static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
	u32 athchan;

	/*
	 * Convert IEEE channel/MHz to an internal channel value used
	 * by the AR5210 chipset. This has not been verified with
	 * newer chipsets like the AR5212A who have a completely
	 * different RF/PHY part.
	 */
1064 1065 1066 1067
	athchan = (ath5k_hw_bitswap(
			(ieee80211_frequency_to_channel(
				channel->center_freq) - 24) / 2, 5)
				<< 1) | (1 << 6) | 0x1;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	return athchan;
}

/*
 * Set channel on RF5110
 */
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data;

	/*
	 * Set the channel and wait
	 */
	data = ath5k_hw_rf5110_chan2athchan(channel);
	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
	mdelay(1);

	return 0;
}

/*
L
Lucas De Marchi 已提交
1091
 * Conversion needed for 5111
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
 */
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
		struct ath5k_athchan_2ghz *athchan)
{
	int channel;

	/* Cast this value to catch negative channel numbers (>= -19) */
	channel = (int)ieee;

	/*
	 * Map 2GHz IEEE channel to 5GHz Atheros channel
	 */
	if (channel <= 13) {
		athchan->a2_athchan = 115 + channel;
		athchan->a2_flags = 0x46;
	} else if (channel == 14) {
		athchan->a2_athchan = 124;
		athchan->a2_flags = 0x44;
	} else if (channel >= 15 && channel <= 26) {
		athchan->a2_athchan = ((channel - 14) * 4) + 132;
		athchan->a2_flags = 0x46;
	} else
		return -EINVAL;

	return 0;
}

/*
 * Set channel on 5111
 */
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1126 1127
	unsigned int ath5k_channel =
		ieee80211_frequency_to_channel(channel->center_freq);
1128 1129 1130 1131 1132 1133 1134 1135
	u32 data0, data1, clock;
	int ret;

	/*
	 * Set the channel on the RF5111 radio
	 */
	data0 = data1 = 0;

1136
	if (channel->hw_value & CHANNEL_2GHZ) {
1137
		/* Map 2GHz channel to 5GHz Atheros channel ID */
1138 1139 1140
		ret = ath5k_hw_rf5111_chan2athchan(
			ieee80211_frequency_to_channel(channel->center_freq),
			&ath5k_channel_2ghz);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		if (ret)
			return ret;

		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
		    << 5) | (1 << 4);
	}

	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
		clock = 1;
		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
			(clock << 1) | (1 << 10) | 1;
	} else {
		clock = 0;
		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
			<< 2) | (clock << 1) | (1 << 10) | 1;
	}

	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
			AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
			AR5K_RF_BUFFER_CONTROL_3);

	return 0;
}

/*
 * Set channel on 5112 and newer
 */
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data1, data2;
	u16 c;

	data = data0 = data1 = data2 = 0;
1177
	c = channel->center_freq;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

	if (c < 4800) {
		if (!((c - 2224) % 5)) {
			data0 = ((2 * (c - 704)) - 3040) / 10;
			data1 = 1;
		} else if (!((c - 2192) % 5)) {
			data0 = ((2 * (c - 672)) - 3040) / 10;
			data1 = 0;
		} else
			return -EINVAL;

		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1190
	} else if ((c % 5) != 2 || c > 5435) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		if (!(c % 20) && c >= 5120) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
			data2 = ath5k_hw_bitswap(3, 2);
		} else if (!(c % 10)) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
			data2 = ath5k_hw_bitswap(2, 2);
		} else if (!(c % 5)) {
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
			data2 = ath5k_hw_bitswap(1, 2);
		} else
			return -EINVAL;
1202
	} else {
1203
		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204
		data2 = ath5k_hw_bitswap(0, 2);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	}

	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * Set the channel on the RF2425
 */
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data2;
	u16 c;

	data = data0 = data2 = 0;
	c = channel->center_freq;

	if (c < 4800) {
		data0 = ath5k_hw_bitswap((c - 2272), 8);
		data2 = 0;
	/* ? 5GHz ? */
1231
	} else if ((c % 5) != 2 || c > 5435) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		if (!(c % 20) && c < 5120)
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
		else if (!(c % 10))
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
		else if (!(c % 5))
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
		else
			return -EINVAL;
		data2 = ath5k_hw_bitswap(1, 2);
	} else {
1242
		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		data2 = ath5k_hw_bitswap(0, 2);
	}

	data = (data0 << 4) | data2 << 2 | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

1254 1255 1256
/*
 * Set a channel on the radio chip
 */
1257 1258
static int ath5k_hw_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
1259 1260 1261
{
	int ret;
	/*
1262 1263 1264 1265 1266
	 * Check bounds supported by the PHY (we don't care about regultory
	 * restrictions at this point). Note: hw_value already has the band
	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
	 * of the band by that */
	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1267
		ATH5K_ERR(ah->ah_sc,
1268 1269
			"channel frequency (%u MHz) out of supported "
			"band range\n",
1270
			channel->center_freq);
1271
			return -EINVAL;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	}

	/*
	 * Set the channel and wait
	 */
	switch (ah->ah_radio) {
	case AR5K_RF5110:
		ret = ath5k_hw_rf5110_channel(ah, channel);
		break;
	case AR5K_RF5111:
		ret = ath5k_hw_rf5111_channel(ah, channel);
		break;
1284
	case AR5K_RF2317:
1285 1286 1287
	case AR5K_RF2425:
		ret = ath5k_hw_rf2425_channel(ah, channel);
		break;
1288 1289 1290 1291 1292 1293 1294 1295
	default:
		ret = ath5k_hw_rf5112_channel(ah, channel);
		break;
	}

	if (ret)
		return ret;

1296 1297 1298 1299 1300 1301 1302 1303 1304
	/* Set JAPAN setting for channel 14 */
	if (channel->center_freq == 2484) {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_JAPAN);
	} else {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_WORLD);
	}

B
Bob Copeland 已提交
1305
	ah->ah_current_channel = channel;
1306 1307 1308 1309 1310 1311 1312 1313

	return 0;
}

/*****************\
  PHY calibration
\*****************/

1314 1315 1316 1317 1318
static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
{
	s32 val;

	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1319
	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
{
	int i;

	ah->ah_nfcal_hist.index = 0;
	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}

static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
{
	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
	hist->nfval[hist->index] = noise_floor;
}

static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
{
	s16 sort[ATH5K_NF_CAL_HIST_MAX];
	s16 tmp;
	int i, j;

	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
			if (sort[j] > sort[j-1]) {
				tmp = sort[j];
				sort[j] = sort[j-1];
				sort[j-1] = tmp;
			}
		}
	}
	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
			"cal %d:%d\n", i, sort[i]);
	}
	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
}

/*
 * When we tell the hardware to perform a noise floor calibration
 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
 * sample-and-hold the minimum noise level seen at the antennas.
 * This value is then stored in a ring buffer of recently measured
 * noise floor values so we have a moving window of the last few
 * samples.
1368
 *
1369 1370
 * The median of the values in the history is then loaded into the
 * hardware for its own use for RSSI and CCA measurements.
1371
 */
1372
void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1373
{
1374 1375 1376 1377
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 val;
	s16 nf, threshold;
	u8 ee_mode;
1378

1379 1380 1381 1382
	/* keep last value if calibration hasn't completed */
	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
			"NF did not complete in calibration window\n");
1383

1384
		return;
1385 1386
	}

1387
	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/* completed NF calibration, test threshold */
	nf = ath5k_hw_read_measured_noise_floor(ah);
	threshold = ee->ee_noise_floor_thr[ee_mode];

	if (nf > threshold) {
		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
			"noise floor failure detected; "
			"read %d, threshold %d\n",
			nf, threshold);

		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1400 1401
	}

1402 1403
	ath5k_hw_update_nfcal_hist(ah, nf);
	nf = ath5k_hw_get_median_noise_floor(ah);
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/* load noise floor (in .5 dBm) so the hardware will use it */
	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
	val |= (nf * 2) & AR5K_PHY_NF_M;
	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);

	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));

	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
		0, false);

	/*
	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
	 * so that we're not capped by the median we just loaded.
	 * This will be used as the initial value for the next noise
	 * floor calibration.
	 */
	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
		AR5K_PHY_AGCCTL_NF_EN |
		AR5K_PHY_AGCCTL_NF_NOUPDATE |
		AR5K_PHY_AGCCTL_NF);

	ah->ah_noise_floor = nf;

	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
		"noise floor calibrated: %d\n", nf);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
}

/*
 * Perform a PHY calibration on RF5110
 * -Fix BPSK/QAM Constellation (I/Q correction)
 */
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 phy_sig, phy_agc, phy_sat, beacon;
	int ret;

	/*
	 * Disable beacons and RX/TX queues, wait
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1449
		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1450 1451 1452
	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);

1453
	mdelay(2);
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/*
	 * Set the channel (with AGC turned off)
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ret = ath5k_hw_channel(ah, channel);

	/*
	 * Activate PHY and wait
	 */
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
	mdelay(1);

	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	if (ret)
		return ret;

	/*
	 * Calibrate the radio chip
	 */

	/* Remember normal state */
	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);

	/* Update radio registers */
	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);

	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
			AR5K_PHY_AGCCOARSE_LO)) |
		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);

	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
			AR5K_PHY_ADCSAT_THR)) |
		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);

	udelay(20);

	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	mdelay(1);

	/*
	 * Enable calibration and wait until completion
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);

	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_CAL, 0, false);

	/* Reset to normal state */
	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);

	if (ret) {
		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1520
				channel->center_freq);
1521 1522 1523 1524 1525 1526 1527
		return ret;
	}

	/*
	 * Re-enable RX/TX and beacons
	 */
	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1528
		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1529 1530 1531 1532 1533 1534
	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);

	return 0;
}

/*
1535
 * Perform I/Q calibration on RF5111/5112 and newer chips
1536
 */
1537 1538
static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1539 1540 1541
{
	u32 i_pwr, q_pwr;
	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1542
	int i;
1543

1544
	if (!ah->ah_calibration ||
1545
		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1546
		return 0;
1547

1548
	/* Calibration has finished, get the results and re-run */
1549
	/* work around empty results which can apparently happen on 5212 */
1550 1551 1552 1553
	for (i = 0; i <= 10; i++) {
		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1554 1555 1556 1557
		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
		if (i_pwr && q_pwr)
			break;
1558
	}
1559 1560

	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1561 1562 1563 1564 1565

	if (ah->ah_version == AR5K_AR5211)
		q_coffd = q_pwr >> 6;
	else
		q_coffd = q_pwr >> 7;
1566

1567 1568
	/* protect against divide by 0 and loss of sign bits */
	if (i_coffd == 0 || q_coffd < 2)
1569
		return 0;
1570

1571 1572
	i_coff = (-iq_corr) / i_coffd;
	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1573

1574 1575 1576 1577
	if (ah->ah_version == AR5K_AR5211)
		q_coff = (i_pwr / q_coffd) - 64;
	else
		q_coff = (i_pwr / q_coffd) - 128;
1578
	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1579

1580 1581 1582
	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
			i_coff, q_coff, i_coffd, q_coffd);
1583

1584 1585 1586 1587
	/* Commit new I/Q values (set enable bit last to match HAL sources) */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1588

1589 1590 1591 1592 1593 1594
	/* Re-enable calibration -if we don't we'll commit
	 * the same values again and again */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	return 0;
}

/*
 * Perform a PHY calibration
 */
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	int ret;

	if (ah->ah_radio == AR5K_RF5110)
		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1608 1609 1610 1611
	else {
		ret = ath5k_hw_rf511x_iq_calibrate(ah);
		ath5k_hw_request_rfgain_probe(ah);
	}
1612 1613 1614 1615

	return ret;
}

1616

1617 1618 1619 1620
/***************************\
* Spur mitigation functions *
\***************************/

1621
static void
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 mag_mask[4] = {0, 0, 0, 0};
	u32 pilot_mask[2] = {0, 0};
	/* Note: fbin values are scaled up by 2 */
	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
	s32 spur_delta_phase, spur_freq_sigma_delta;
	s32 spur_offset, num_symbols_x16;
	u8 num_symbol_offsets, i, freq_band;

	/* Convert current frequency to fbin value (the same way channels
	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
	 * up by 2 so we can compare it later */
	if (channel->hw_value & CHANNEL_2GHZ) {
		chan_fbin = (channel->center_freq - 2300) * 10;
		freq_band = AR5K_EEPROM_BAND_2GHZ;
	} else {
		chan_fbin = (channel->center_freq - 4900) * 10;
		freq_band = AR5K_EEPROM_BAND_5GHZ;
	}

	/* Check if any spur_chan_fbin from EEPROM is
	 * within our current channel's spur detection range */
	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
	/* XXX: Half/Quarter channels ?*/
1650
	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		spur_detection_window *= 2;

	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];

		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
		 * so it's zero if we got nothing from EEPROM */
		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}

		if ((chan_fbin - spur_detection_window <=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
		(chan_fbin + spur_detection_window >=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}
	}

	/* We need to enable spur filter for this channel */
	if (spur_chan_fbin) {
		spur_offset = spur_chan_fbin - chan_fbin;
		/*
		 * Calculate deltas:
		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
		 * spur_delta_phase -> spur_offset / chip_freq << 11
1679
		 * Note: Both values have 100Hz resolution
1680
		 */
1681 1682
		switch (ah->ah_bwmode) {
		case AR5K_BWMODE_40MHZ:
1683 1684 1685
			/* Both sample_freq and chip_freq are 80MHz */
			spur_delta_phase = (spur_offset << 16) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1686
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1687
			break;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		case AR5K_BWMODE_10MHZ:
			/* Both sample_freq and chip_freq are 20MHz (?) */
			spur_delta_phase = (spur_offset << 18) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
		case AR5K_BWMODE_5MHZ:
			/* Both sample_freq and chip_freq are 10MHz (?) */
			spur_delta_phase = (spur_offset << 19) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1698
		default:
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
			if (channel->hw_value == CHANNEL_A) {
				/* Both sample_freq and chip_freq are 40MHz */
				spur_delta_phase = (spur_offset << 17) / 25;
				spur_freq_sigma_delta =
						(spur_delta_phase >> 10);
				symbol_width =
					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			} else {
				/* sample_freq -> 40MHz chip_freq -> 44MHz
				 * (for b compatibility) */
				spur_delta_phase = (spur_offset << 17) / 25;
				spur_freq_sigma_delta =
						(spur_offset << 8) / 55;
				symbol_width =
					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			}
			break;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		}

		/* Calculate pilot and magnitude masks */

		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
		 * and divide by symbol_width to find how many symbols we have
		 * Note: number of symbols is scaled up by 16 */
		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;

		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
		if (!(num_symbols_x16 & 0xF))
			/* _X_ */
			num_symbol_offsets = 3;
		else
			/* _xx_ */
			num_symbol_offsets = 4;

		for (i = 0; i < num_symbol_offsets; i++) {

			/* Calculate pilot mask */
			s32 curr_sym_off =
				(num_symbols_x16 / 16) + i + 25;

			/* Pilot magnitude mask seems to be a way to
			 * declare the boundaries for our detection
			 * window or something, it's 2 for the middle
			 * value(s) where the symbol is expected to be
			 * and 1 on the boundary values */
			u8 plt_mag_map =
				(i == 0 || i == (num_symbol_offsets - 1))
								? 1 : 2;

			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
				if (curr_sym_off <= 25)
					pilot_mask[0] |= 1 << curr_sym_off;
				else if (curr_sym_off >= 27)
					pilot_mask[0] |= 1 << (curr_sym_off - 1);
			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
				pilot_mask[1] |= 1 << (curr_sym_off - 33);

			/* Calculate magnitude mask (for viterbi decoder) */
			if (curr_sym_off >= -1 && curr_sym_off <= 14)
				mag_mask[0] |=
					plt_mag_map << (curr_sym_off + 1) * 2;
			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
				mag_mask[1] |=
					plt_mag_map << (curr_sym_off - 15) * 2;
			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
				mag_mask[2] |=
					plt_mag_map << (curr_sym_off - 31) * 2;
1766
			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
				mag_mask[3] |=
					plt_mag_map << (curr_sym_off - 47) * 2;

		}

		/* Write settings on hw to enable spur filter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
		/* XXX: Self correlator also ? */
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);

		/* Set delta phase and freq sigma delta */
		ath5k_hw_reg_write(ah,
				AR5K_REG_SM(spur_delta_phase,
					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
				AR5K_REG_SM(spur_freq_sigma_delta,
				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
				AR5K_PHY_TIMING_11);

		/* Write pilot masks */
		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					pilot_mask[1]);

		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					pilot_mask[1]);

		/* Write magnitude masks */
		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					mag_mask[3]);

		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					mag_mask[3]);

	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
	AR5K_PHY_IQ_SPUR_FILT_EN) {
		/* Clean up spur mitigation settings and disable fliter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);

		/* Clear pilot masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					0);

		/* Clear magnitude masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					0);
	}
}

1855

1856 1857 1858 1859
/*****************\
* Antenna control *
\*****************/

1860
static void /*TODO:Boundary check*/
1861
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1862 1863
{
	if (ah->ah_version != AR5K_AR5210)
1864
		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
/*
 * Enable/disable fast rx antenna diversity
 */
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
	switch (ee_mode) {
	case AR5K_EEPROM_MODE_11G:
		/* XXX: This is set to
		 * disabled on initvals !!! */
	case AR5K_EEPROM_MODE_11A:
		if (enable)
			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		else
			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	case AR5K_EEPROM_MODE_11B:
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	default:
		return;
	}

	if (enable) {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1895
				AR5K_PHY_RESTART_DIV_GC, 4);
1896 1897 1898 1899 1900

		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	} else {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1901
				AR5K_PHY_RESTART_DIV_GC, 0);
1902 1903 1904 1905 1906 1907

		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	}
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
void
ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
{
	u8 ant0, ant1;

	/*
	 * In case a fixed antenna was set as default
	 * use the same switch table twice.
	 */
	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
	else {
		ant0 = AR5K_ANT_SWTABLE_A;
		ant1 = AR5K_ANT_SWTABLE_B;
	}

	/* Set antenna idle switch table */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
			AR5K_PHY_ANT_CTL_TXRX_EN));

	/* Set antenna switch tables */
	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
		AR5K_PHY_ANT_SWITCH_TABLE_0);
	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
		AR5K_PHY_ANT_SWITCH_TABLE_1);
}

1939 1940 1941 1942 1943 1944
/*
 * Set antenna operating mode
 */
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
B
Bob Copeland 已提交
1945
	struct ieee80211_channel *channel = ah->ah_current_channel;
1946 1947
	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
	bool use_def_for_sg;
1948 1949
	int ee_mode;
	u8 def_ant, tx_ant;
1950 1951
	u32 sta_id1 = 0;

1952 1953 1954 1955 1956 1957 1958
	/* if channel is not initialized yet we can't set the antennas
	 * so just store the mode. it will be set on the next reset */
	if (channel == NULL) {
		ah->ah_ant_mode = ant_mode;
		return;
	}

1959 1960
	def_ant = ah->ah_def_ant;

1961 1962
	ee_mode = ath5k_eeprom_mode_from_channel(channel);
	if (ee_mode < 0) {
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		ATH5K_ERR(ah->ah_sc,
			"invalid channel: %d\n", channel->center_freq);
		return;
	}

	switch (ant_mode) {
	case AR5K_ANTMODE_DEFAULT:
		tx_ant = 0;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_FIXED_A:
		def_ant = 1;
1979
		tx_ant = 1;
1980 1981 1982 1983 1984 1985 1986 1987
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_FIXED_B:
		def_ant = 2;
1988
		tx_ant = 2;
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SINGLE_AP:
		def_ant = 1;	/* updated on tx */
		tx_ant = 0;
		use_def_for_tx = true;
		update_def_on_tx = true;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = true;
		break;
	case AR5K_ANTMODE_SECTOR_AP:
		tx_ant = 1;	/* variable */
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SECTOR_STA:
		tx_ant = 1;	/* variable */
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_DEBUG:
		def_ant = 1;
		tx_ant = 2;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = false;
		break;
	default:
		return;
	}

	ah->ah_tx_ant = tx_ant;
	ah->ah_ant_mode = ant_mode;
B
Bruno Randolf 已提交
2035
	ah->ah_def_ant = def_ant;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;

	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);

	if (sta_id1)
		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);

2047
	ath5k_hw_set_antenna_switch(ah, ee_mode);
2048 2049 2050 2051 2052 2053
	/* Note: set diversity before default antenna
	 * because it won't work correctly */
	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
	ath5k_hw_set_def_antenna(ah, def_ant);
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

/****************\
* TX power setup *
\****************/

/*
 * Helper functions
 */

/*
 * Do linear interpolation between two given (x, y) points
 */
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
					s16 y_left, s16 y_right)
{
	s16 ratio, result;

	/* Avoid divide by zero and skip interpolation
	 * if we have the same point */
	if ((x_left == x_right) || (y_left == y_right))
		return y_left;

	/*
	 * Since we use ints and not fps, we need to scale up in
	 * order to get a sane ratio value (or else we 'll eg. get
	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
	 * to have some accuracy both for 0.5 and 0.25 steps.
	 */
	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));

	/* Now scale down to be in range */
	result = y_left + (ratio * (target - x_left) / 100);

	return result;
}

/*
 * Find vertical boundary (min pwr) for the linear PCDAC curve.
 *
 * Since we have the top of the curve and we draw the line below
 * until we reach 1 (1 pcdac step) we need to know which point
 * (x value) that is so that we don't go below y axis and have negative
 * pcdac values when creating the curve, or fill the table with zeroes.
 */
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
				const s16 *pwrL, const s16 *pwrR)
{
	s8 tmp;
	s16 min_pwrL, min_pwrR;
2105 2106
	s16 pwr_i;

N
Nick Kossifidis 已提交
2107 2108 2109
	/* Some vendors write the same pcdac value twice !!! */
	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
		return max(pwrL[0], pwrR[0]);
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	if (pwrL[0] == pwrL[1])
		min_pwrL = pwrL[0];
	else {
		pwr_i = pwrL[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrL[0], pwrL[1],
							stepL[0], stepL[1]);
		} while (tmp > 1);

		min_pwrL = pwr_i;
	}
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (pwrR[0] == pwrR[1])
		min_pwrR = pwrR[0];
	else {
		pwr_i = pwrR[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrR[0], pwrR[1],
							stepR[0], stepR[1]);
		} while (tmp > 1);

		min_pwrR = pwr_i;
	}
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

	/* Keep the right boundary so that it works for both curves */
	return max(min_pwrL, min_pwrR);
}

/*
 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
 * Power to PCDAC curve.
 *
 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
 * steps (offsets) on y axis. Power can go up to 31.5dB and max
 * PCDAC/PDADC step for each curve is 64 but we can write more than
 * one curves on hw so we can go up to 128 (which is the max step we
 * can write on the final table).
 *
 * We write y values (PCDAC/PDADC steps) on hw.
 */
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
			const s16 *pwr, const u8 *vpd,
			u8 num_points,
			u8 *vpd_table, u8 type)
{
	u8 idx[2] = { 0, 1 };
	s16 pwr_i = 2*pmin;
	int i;

	if (num_points < 2)
		return;

	/* We want the whole line, so adjust boundaries
	 * to cover the entire power range. Note that
	 * power values are already 0.25dB so no need
	 * to multiply pwr_i by 2 */
	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
		pwr_i = pmin;
		pmin = 0;
		pmax = 63;
	}

	/* Find surrounding turning points (TPs)
	 * and interpolate between them */
	for (i = 0; (i <= (u16) (pmax - pmin)) &&
	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {

		/* We passed the right TP, move to the next set of TPs
		 * if we pass the last TP, extrapolate above using the last
		 * two TPs for ratio */
		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
			idx[0]++;
			idx[1]++;
		}

		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
						pwr[idx[0]], pwr[idx[1]],
						vpd[idx[0]], vpd[idx[1]]);

		/* Increase by 0.5dB
		 * (0.25 dB units) */
		pwr_i += 2;
	}
}

/*
 * Get the surrounding per-channel power calibration piers
 * for a given frequency so that we can interpolate between
L
Lucas De Marchi 已提交
2204
 * them and come up with an appropriate dataset for our current
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
 * channel.
 */
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_chan_pcal_info **pcinfo_l,
			struct ath5k_chan_pcal_info **pcinfo_r)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	if (!(channel->hw_value & CHANNEL_OFDM)) {
		pcinfo = ee->ee_pwr_cal_b;
		mode = AR5K_EEPROM_MODE_11B;
	} else if (channel->hw_value & CHANNEL_2GHZ) {
		pcinfo = ee->ee_pwr_cal_g;
		mode = AR5K_EEPROM_MODE_11G;
	} else {
		pcinfo = ee->ee_pwr_cal_a;
		mode = AR5K_EEPROM_MODE_11A;
	}
	max = ee->ee_n_piers[mode] - 1;

	/* Frequency is below our calibrated
	 * range. Use the lowest power curve
	 * we have */
	if (target < pcinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	/* Frequency is above our calibrated
	 * range. Use the highest power curve
	 * we have */
	if (target > pcinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	/* Frequency is inside our calibrated
	 * channel range. Pick the surrounding
	 * calibration piers so that we can
	 * interpolate */
	for (i = 0; i <= max; i++) {

		/* Frequency matches one of our calibration
		 * piers, no need to interpolate, just use
		 * that calibration pier */
		if (pcinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		/* We found a calibration pier that's above
		 * frequency, use this pier and the previous
		 * one to interpolate */
		if (target < pcinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	*pcinfo_l = &pcinfo[idx_l];
	*pcinfo_r = &pcinfo[idx_r];
}

/*
 * Get the surrounding per-rate power calibration data
 * for a given frequency and interpolate between power
 * values to set max target power supported by hw for
 * each rate.
 */
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_rate_pcal_info *rates)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_rate_pcal_info *rpinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	if (!(channel->hw_value & CHANNEL_OFDM)) {
		rpinfo = ee->ee_rate_tpwr_b;
		mode = AR5K_EEPROM_MODE_11B;
	} else if (channel->hw_value & CHANNEL_2GHZ) {
		rpinfo = ee->ee_rate_tpwr_g;
		mode = AR5K_EEPROM_MODE_11G;
	} else {
		rpinfo = ee->ee_rate_tpwr_a;
		mode = AR5K_EEPROM_MODE_11A;
	}
	max = ee->ee_rate_target_pwr_num[mode] - 1;

	/* Get the surrounding calibration
	 * piers - same as above */
	if (target < rpinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	if (target > rpinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	for (i = 0; i <= max; i++) {

		if (rpinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		if (target < rpinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	/* Now interpolate power value, based on the frequency */
	rates->freq = target;

	rates->target_power_6to24 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_6to24,
					rpinfo[idx_r].target_power_6to24);

	rates->target_power_36 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_36,
					rpinfo[idx_r].target_power_36);

	rates->target_power_48 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_48,
					rpinfo[idx_r].target_power_48);

	rates->target_power_54 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_54,
					rpinfo[idx_r].target_power_54);
}

/*
 * Get the max edge power for this channel if
 * we have such data from EEPROM's Conformance Test
 * Limits (CTL), and limit max power if needed.
 */
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
			struct ieee80211_channel *channel)
{
2375
	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
	u8 *ctl_val = ee->ee_ctl;
	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
	s16 edge_pwr = 0;
	u8 rep_idx;
	u8 i, ctl_mode;
	u8 ctl_idx = 0xFF;
	u32 target = channel->center_freq;

2386
	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2387

2388 2389
	switch (channel->hw_value & CHANNEL_MODES) {
	case CHANNEL_A:
2390 2391 2392 2393
		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
			ctl_mode |= AR5K_CTL_TURBO;
		else
			ctl_mode |= AR5K_CTL_11A;
2394 2395
		break;
	case CHANNEL_G:
2396 2397 2398 2399
		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
			ctl_mode |= AR5K_CTL_TURBOG;
		else
			ctl_mode |= AR5K_CTL_11G;
2400 2401
		break;
	case CHANNEL_B:
2402
		ctl_mode |= AR5K_CTL_11B;
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		break;
	case CHANNEL_XR:
		/* Fall through */
	default:
		return;
	}

	for (i = 0; i < ee->ee_ctls; i++) {
		if (ctl_val[i] == ctl_mode) {
			ctl_idx = i;
			break;
		}
	}

	/* If we have a CTL dataset available grab it and find the
	 * edge power for our frequency */
	if (ctl_idx == 0xFF)
		return;

	/* Edge powers are sorted by frequency from lower
	 * to higher. Each CTL corresponds to 8 edge power
	 * measurements. */
	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;

	/* Don't do boundaries check because we
	 * might have more that one bands defined
	 * for this mode */

	/* Get the edge power that's closer to our
	 * frequency */
	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
		rep_idx += i;
		if (target <= rep[rep_idx].freq)
			edge_pwr = (s16) rep[rep_idx].edge;
	}

	if (edge_pwr)
		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
}


/*
 * Power to PCDAC table functions
 */

2448
/*
2449 2450 2451 2452 2453
 * Fill Power to PCDAC table on RF5111
 *
 * No further processing is needed for RF5111, the only thing we have to
 * do is fill the values below and above calibration range since eeprom data
 * may not cover the entire PCDAC table.
2454
 */
2455 2456 2457 2458
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
							s16 *table_max)
{
2459
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
	s16	min_pwr, max_pwr;

	/* Get table boundaries */
	min_pwr = table_min[0];
	pcdac_0 = pcdac_tmp[0];

	max_pwr = table_max[0];
	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];

	/* Extrapolate below minimum using pcdac_0 */
	pcdac_i = 0;
	for (i = 0; i < min_pwr; i++)
		pcdac_out[pcdac_i++] = pcdac_0;

	/* Copy values from pcdac_tmp */
	pwr_idx = min_pwr;
	for (i = 0 ; pwr_idx <= max_pwr &&
	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
		pcdac_out[pcdac_i++] = pcdac_tmp[i];
		pwr_idx++;
	}

	/* Extrapolate above maximum */
	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
		pcdac_out[pcdac_i++] = pcdac_n;

}
2489 2490

/*
2491 2492 2493 2494 2495 2496 2497 2498 2499
 * Combine available XPD Curves and fill Linear Power to PCDAC table
 * on RF5112
 *
 * RFX112 can have up to 2 curves (one for low txpower range and one for
 * higher txpower range). We need to put them both on pcdac_out and place
 * them in the correct location. In case we only have one curve available
 * just fit it on pcdac_out (it's supposed to cover the entire range of
 * available pwr levels since it's always the higher power curve). Extrapolate
 * below and above final table if needed.
2500
 */
2501 2502 2503
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
						s16 *table_max, u8 pdcurves)
2504
{
2505
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	u8	*pcdac_low_pwr;
	u8	*pcdac_high_pwr;
	u8	*pcdac_tmp;
	u8	pwr;
	s16	max_pwr_idx;
	s16	min_pwr_idx;
	s16	mid_pwr_idx = 0;
	/* Edge flag turs on the 7nth bit on the PCDAC
	 * to delcare the higher power curve (force values
	 * to be greater than 64). If we only have one curve
	 * we don't need to set this, if we have 2 curves and
	 * fill the table backwards this can also be used to
	 * switch from higher power curve to lower power curve */
	u8	edge_flag;
	int	i;

	/* When we have only one curve available
	 * that's the higher power curve. If we have
	 * two curves the first is the high power curve
	 * and the next is the low power curve. */
	if (pdcurves > 1) {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		mid_pwr_idx = table_max[1] - table_min[1] - 1;
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;

		/* If table size goes beyond 31.5dB, keep the
		 * upper 31.5dB range when setting tx power.
		 * Note: 126 = 31.5 dB in quarter dB steps */
		if (table_max[0] - table_min[1] > 126)
			min_pwr_idx = table_max[0] - 126;
		else
			min_pwr_idx = table_min[1];

		/* Since we fill table backwards
		 * start from high power curve */
		pcdac_tmp = pcdac_high_pwr;

		edge_flag = 0x40;
	} else {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		min_pwr_idx = table_min[0];
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
		pcdac_tmp = pcdac_high_pwr;
		edge_flag = 0;
	}

	/* This is used when setting tx power*/
	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;

	/* Fill Power to PCDAC table backwards */
	pwr = max_pwr_idx;
	for (i = 63; i >= 0; i--) {
		/* Entering lower power range, reset
		 * edge flag and set pcdac_tmp to lower
		 * power curve.*/
		if (edge_flag == 0x40 &&
		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
			edge_flag = 0x00;
			pcdac_tmp = pcdac_low_pwr;
			pwr = mid_pwr_idx/2;
		}

		/* Don't go below 1, extrapolate below if we have
		 * already swithced to the lower power curve -or
		 * we only have one curve and edge_flag is zero
		 * anyway */
		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
			while (i >= 0) {
				pcdac_out[i] = pcdac_out[i + 1];
				i--;
			}
			break;
		}

		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;

		/* Extrapolate above if pcdac is greater than
		 * 126 -this can happen because we OR pcdac_out
		 * value with edge_flag on high power curve */
		if (pcdac_out[i] > 126)
			pcdac_out[i] = 126;

		/* Decrease by a 0.5dB step */
		pwr--;
	}
2593 2594
}

2595 2596
/* Write PCDAC values on hw */
static void
2597
ath5k_write_pcdac_table(struct ath5k_hw *ah)
2598
{
2599
	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	int	i;

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		ath5k_hw_reg_write(ah,
			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
			AR5K_PHY_PCDAC_TXPOWER(i));
	}
}


2614
/*
2615
 * Power to PDADC table functions
2616
 */
2617 2618 2619 2620

/*
 * Set the gain boundaries and create final Power to PDADC table
 *
L
Lucas De Marchi 已提交
2621
 * We can have up to 4 pd curves, we need to do a similar process
2622 2623 2624 2625 2626 2627
 * as we do for RF5112. This time we don't have an edge_flag but we
 * set the gain boundaries on a separate register.
 */
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2628
{
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
	u8 *pdadc_tmp;
	s16 pdadc_0;
	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
	u8 pd_gain_overlap;

	/* Note: Register value is initialized on initvals
	 * there is no feedback from hw.
	 * XXX: What about pd_gain_overlap from EEPROM ? */
	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;

	/* Create final PDADC table */
	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
		pdadc_tmp = ah->ah_txpower.tmpL[pdg];

		if (pdg == pdcurves - 1)
			/* 2 dB boundary stretch for last
			 * (higher power) curve */
			gain_boundaries[pdg] = pwr_max[pdg] + 4;
		else
			/* Set gain boundary in the middle
			 * between this curve and the next one */
			gain_boundaries[pdg] =
				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;

		/* Sanity check in case our 2 db stretch got out of
		 * range. */
		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;

		/* For the first curve (lower power)
		 * start from 0 dB */
		if (pdg == 0)
			pdadc_0 = 0;
		else
			/* For the other curves use the gain overlap */
			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
							pd_gain_overlap;
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
		else
			pwr_step = 1;

		/* If pdadc_0 is negative, we need to extrapolate
		 * below this pdgain by a number of pwr_steps */
		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
			pdadc_0++;
		}

		/* Set last pwr level, using gain boundaries */
		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
		/* Limit it to be inside pwr range */
		table_size = pwr_max[pdg] - pwr_min[pdg];
		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;

		/* Fill pdadc_out table */
2691
		while (pdadc_0 < max_idx && pdadc_i < 128)
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];

		/* Need to extrapolate above this pdgain? */
		if (pdadc_n <= max_idx)
			continue;

		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
			pwr_step = pdadc_tmp[table_size - 1] -
						pdadc_tmp[table_size - 2];
		else
			pwr_step = 1;

		/* Extrapolate above */
		while ((pdadc_0 < (s16) pdadc_n) &&
		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
			s16 tmp = pdadc_tmp[table_size - 1] +
					(pdadc_0 - max_idx) * pwr_step;
			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
			pdadc_0++;
		}
2713 2714
	}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
		pdg++;
	}

	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
		pdadc_i++;
	}

	/* Set gain boundaries */
	ath5k_hw_reg_write(ah,
		AR5K_REG_SM(pd_gain_overlap,
			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
		AR5K_REG_SM(gain_boundaries[0],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
		AR5K_REG_SM(gain_boundaries[1],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
		AR5K_REG_SM(gain_boundaries[2],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
		AR5K_REG_SM(gain_boundaries[3],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
		AR5K_PHY_TPC_RG5);

	/* Used for setting rate power table */
	ah->ah_txpower.txp_min_idx = pwr_min[0];

}

/* Write PDADC values on hw */
static void
2746
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2747
{
2748
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2749
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2750 2751
	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	u32 reg;
	u8 i;

	/* Select the right pdgain curves */

	/* Clear current settings */
	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
		AR5K_PHY_TPC_RG1_PDGAIN_2 |
		AR5K_PHY_TPC_RG1_PDGAIN_3 |
		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

N
Nick Kossifidis 已提交
2764
	/*
2765
	 * Use pd_gains curve from eeprom
N
Nick Kossifidis 已提交
2766
	 *
2767 2768 2769 2770
	 * This overrides the default setting from initvals
	 * in case some vendors (e.g. Zcomax) don't use the default
	 * curves. If we don't honor their settings we 'll get a
	 * 5dB (1 * gain overlap ?) drop.
N
Nick Kossifidis 已提交
2771
	 */
2772
	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
N
Nick Kossifidis 已提交
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
	switch (pdcurves) {
	case 3:
		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
		/* Fall through */
	case 2:
		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
		/* Fall through */
	case 1:
		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
		break;
	}
	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2786 2787 2788 2789 2790 2791

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		ath5k_hw_reg_write(ah,
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
			((pdadc_out[4*i + 0] & 0xff) << 0) |
			((pdadc_out[4*i + 1] & 0xff) << 8) |
			((pdadc_out[4*i + 2] & 0xff) << 16) |
			((pdadc_out[4*i + 3] & 0xff) << 24),
			AR5K_PHY_PDADC_TXPOWER(i));
	}
}


/*
 * Common code for PCDAC/PDADC tables
 */

/*
 * This is the main function that uses all of the above
 * to set PCDAC/PDADC table on hw for the current channel.
 * This table is used for tx power calibration on the basband,
 * without it we get weird tx power levels and in some cases
 * distorted spectral mask
 */
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			u8 ee_mode, u8 type)
{
	struct ath5k_pdgain_info *pdg_L, *pdg_R;
	struct ath5k_chan_pcal_info *pcinfo_L;
	struct ath5k_chan_pcal_info *pcinfo_R;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
	u8 *tmpL;
	u8 *tmpR;
	u32 target = channel->center_freq;
	int pdg, i;

L
Lucas De Marchi 已提交
2829
	/* Get surrounding freq piers for this channel */
2830 2831 2832 2833 2834
	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
						&pcinfo_L,
						&pcinfo_R);

	/* Loop over pd gain curves on
L
Lucas De Marchi 已提交
2835
	 * surrounding freq piers by index */
2836 2837 2838 2839 2840
	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {

		/* Fill curves in reverse order
		 * from lower power (max gain)
		 * to higher power. Use curve -> idx
2841
		 * backmapping we did on eeprom init */
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		u8 idx = pdg_curve_to_idx[pdg];

		/* Grab the needed curves by index */
		pdg_L = &pcinfo_L->pd_curves[idx];
		pdg_R = &pcinfo_R->pd_curves[idx];

		/* Initialize the temp tables */
		tmpL = ah->ah_txpower.tmpL[pdg];
		tmpR = ah->ah_txpower.tmpR[pdg];

		/* Set curve's x boundaries and create
		 * curves so that they cover the same
		 * range (if we don't do that one table
		 * will have values on some range and the
		 * other one won't have any so interpolation
		 * will fail) */
		table_min[pdg] = min(pdg_L->pd_pwr[0],
					pdg_R->pd_pwr[0]) / 2;

		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;

		/* Now create the curves on surrounding channels
		 * and interpolate if needed to get the final
		 * curve for this gain on this channel */
		switch (type) {
		case AR5K_PWRTABLE_LINEAR_PCDAC:
			/* Override min/max so that we don't loose
			 * accuracy (don't divide by 2) */
			table_min[pdg] = min(pdg_L->pd_pwr[0],
						pdg_R->pd_pwr[0]);

			table_max[pdg] =
				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
					pdg_R->pd_pwr[pdg_R->pd_points - 1]);

			/* Override minimum so that we don't get
			 * out of bounds while extrapolating
			 * below. Don't do this when we have 2
			 * curves and we are on the high power curve
			 * because table_min is ok in this case */
			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {

				table_min[pdg] =
					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
								pdg_R->pd_step,
								pdg_L->pd_pwr,
								pdg_R->pd_pwr);

				/* Don't go too low because we will
				 * miss the upper part of the curve.
				 * Note: 126 = 31.5dB (max power supported)
				 * in 0.25dB units */
				if (table_max[pdg] - table_min[pdg] > 126)
					table_min[pdg] = table_max[pdg] - 126;
			}

			/* Fall through */
		case AR5K_PWRTABLE_PWR_TO_PCDAC:
		case AR5K_PWRTABLE_PWR_TO_PDADC:

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_L->pd_pwr,
						pdg_L->pd_step,
						pdg_L->pd_points, tmpL, type);

			/* We are in a calibration
			 * pier, no need to interpolate
			 * between freq piers */
			if (pcinfo_L == pcinfo_R)
				continue;

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_R->pd_pwr,
						pdg_R->pd_step,
						pdg_R->pd_points, tmpR, type);
			break;
		default:
			return -EINVAL;
		}

		/* Interpolate between curves
L
Lucas De Marchi 已提交
2926
		 * of surrounding freq piers to
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		 * get the final curve for this
		 * pd gain. Re-use tmpL for interpolation
		 * output */
		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
							(s16) pcinfo_L->freq,
							(s16) pcinfo_R->freq,
							(s16) tmpL[i],
							(s16) tmpR[i]);
		}
2938 2939
	}

2940 2941 2942
	/* Now we have a set of curves for this
	 * channel on tmpL (x range is table_max - table_min
	 * and y values are tmpL[pdg][]) sorted in the same
2943
	 * order as EEPROM (because we've used the backmapping).
2944 2945 2946 2947 2948 2949
	 * So for RF5112 it's from higher power to lower power
	 * and for RF2413 it's from lower power to higher power.
	 * For RF5111 we only have one curve. */

	/* Fill min and max power levels for this
	 * channel by interpolating the values on
L
Lucas De Marchi 已提交
2950
	 * surrounding channels to complete the dataset */
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->min_pwr, pcinfo_R->min_pwr);

	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->max_pwr, pcinfo_R->max_pwr);

2961
	/* Fill PCDAC/PDADC table */
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	switch (type) {
	case AR5K_PWRTABLE_LINEAR_PCDAC:
		/* For RF5112 we can have one or two curves
		 * and each curve covers a certain power lvl
		 * range so we need to do some more processing */
		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Set txp.offset so that we can
		 * match max power value with max
		 * table index */
		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
		break;
	case AR5K_PWRTABLE_PWR_TO_PCDAC:
		/* We are done for RF5111 since it has only
		 * one curve, just fit the curve on the table */
		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);

		/* No rate powertable adjustment for RF5111 */
		ah->ah_txpower.txp_min_idx = 0;
		ah->ah_txpower.txp_offset = 0;
		break;
	case AR5K_PWRTABLE_PWR_TO_PDADC:
		/* Set PDADC boundaries and fill
		 * final PDADC table */
		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Set txp.offset, note that table_min
		 * can be negative */
		ah->ah_txpower.txp_offset = table_min[0];
		break;
	default:
		return -EINVAL;
	}

2998 2999
	ah->ah_txpower.txp_setup = true;

3000 3001 3002
	return 0;
}

3003 3004 3005 3006 3007 3008 3009 3010 3011
/* Write power table for current channel to hw */
static void
ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
{
	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
	else
		ath5k_write_pcdac_table(ah);
}
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

/*
 * Per-rate tx power setting
 *
 * This is the code that sets the desired tx power (below
 * maximum) on hw for each rate (we also have TPC that sets
 * power per packet). We do that by providing an index on the
 * PCDAC/PDADC table we set up.
 */

/*
 * Set rate power table
 *
 * For now we only limit txpower based on maximum tx power
 * supported by hw (what's inside rate_info). We need to limit
 * this even more, based on regulatory domain etc.
 *
 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
 * and is indexed as follows:
 * rates[0] - rates[7] -> OFDM rates
 * rates[8] - rates[14] -> CCK rates
 * rates[15] -> XR rates (they all have the same power)
 */
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
			struct ath5k_rate_pcal_info *rate_info,
			u8 ee_mode)
{
	unsigned int i;
	u16 *rates;

	/* max_pwr is power level we got from driver/user in 0.5dB
	 * units, switch to 0.25dB units so we can compare */
	max_pwr *= 2;
	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;

	/* apply rate limits */
	rates = ah->ah_txpower.txp_rates_power_table;

	/* OFDM rates 6 to 24Mb/s */
	for (i = 0; i < 5; i++)
		rates[i] = min(max_pwr, rate_info->target_power_6to24);

	/* Rest OFDM rates */
	rates[5] = min(rates[0], rate_info->target_power_36);
	rates[6] = min(rates[0], rate_info->target_power_48);
	rates[7] = min(rates[0], rate_info->target_power_54);

	/* CCK rates */
	/* 1L */
	rates[8] = min(rates[0], rate_info->target_power_6to24);
	/* 2L */
	rates[9] = min(rates[0], rate_info->target_power_36);
	/* 2S */
	rates[10] = min(rates[0], rate_info->target_power_36);
	/* 5L */
	rates[11] = min(rates[0], rate_info->target_power_48);
	/* 5S */
	rates[12] = min(rates[0], rate_info->target_power_48);
	/* 11L */
	rates[13] = min(rates[0], rate_info->target_power_54);
	/* 11S */
	rates[14] = min(rates[0], rate_info->target_power_54);

	/* XR rates */
	rates[15] = min(rates[0], rate_info->target_power_6to24);

	/* CCK rates have different peak to average ratio
	 * so we have to tweak their power so that gainf
	 * correction works ok. For this we use OFDM to
	 * CCK delta from eeprom */
	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
		for (i = 8; i <= 15; i++)
			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	/* Now that we have all rates setup use table offset to
	 * match the power range set by user with the power indices
	 * on PCDAC/PDADC table */
	for (i = 0; i < 16; i++) {
		rates[i] += ah->ah_txpower.txp_offset;
		/* Don't get out of bounds */
		if (rates[i] > 63)
			rates[i] = 63;
	}

	/* Min/max in 0.25dB units */
	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3100
	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3101 3102 3103 3104 3105
	ah->ah_txpower.txp_ofdm = rates[7];
}


/*
B
Bob Copeland 已提交
3106
 * Set transmission power
3107
 */
3108
static int
3109
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3110
		 u8 txpower)
3111 3112
{
	struct ath5k_rate_pcal_info rate_info;
3113
	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3114 3115
	int ee_mode;
	u8 type;
3116 3117 3118 3119 3120 3121 3122
	int ret;

	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
		return -EINVAL;
	}

3123 3124 3125 3126 3127 3128 3129
	ee_mode = ath5k_eeprom_mode_from_channel(channel);
	if (ee_mode < 0) {
		ATH5K_ERR(ah->ah_sc,
			"invalid channel: %d\n", channel->center_freq);
		return -EINVAL;
	}

3130 3131
	/* Initialize TX power table */
	switch (ah->ah_radio) {
3132 3133 3134
	case AR5K_RF5110:
		/* TODO */
		return 0;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	case AR5K_RF5111:
		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
		break;
	case AR5K_RF5112:
		type = AR5K_PWRTABLE_LINEAR_PCDAC;
		break;
	case AR5K_RF2413:
	case AR5K_RF5413:
	case AR5K_RF2316:
	case AR5K_RF2317:
	case AR5K_RF2425:
		type = AR5K_PWRTABLE_PWR_TO_PDADC;
		break;
	default:
		return -EINVAL;
	}

3152 3153 3154 3155 3156 3157 3158
	/*
	 * If we don't change channel/mode skip tx powertable calculation
	 * and use the cached one.
	 */
	if (!ah->ah_txpower.txp_setup ||
	    (channel->hw_value != curr_channel->hw_value) ||
	    (channel->center_freq != curr_channel->center_freq)) {
3159 3160 3161 3162 3163
		/* Reset TX power values */
		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;

		/* Calculate the powertable */
3164 3165
		ret = ath5k_setup_channel_powertable(ah, channel,
							ee_mode, type);
3166 3167
		if (ret)
			return ret;
3168 3169 3170 3171
	}

	/* Write table on hw */
	ath5k_write_channel_powertable(ah, ee_mode, type);
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
	/* Limit max power if we have a CTL available */
	ath5k_get_max_ctl_power(ah, channel);

	/* FIXME: Antenna reduction stuff */

	/* FIXME: Limit power on turbo modes */

	/* FIXME: TPC scale reduction */

L
Lucas De Marchi 已提交
3182
	/* Get surrounding channels for per-rate power table
3183 3184 3185 3186 3187 3188 3189
	 * calibration */
	ath5k_get_rate_pcal_data(ah, channel, &rate_info);

	/* Setup rate power table */
	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);

	/* Write rate power table on hw */
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);

3206 3207
	/* FIXME: TPC support */
	if (ah->ah_txpower.txp_tpc) {
3208 3209
		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3210 3211 3212 3213 3214 3215 3216

		ath5k_hw_reg_write(ah,
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
			AR5K_TPC);
	} else {
3217 3218
		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3219
	}
3220 3221 3222 3223

	return 0;
}

3224
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3225 3226
{
	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3227
		"changing txpower to %d\n", txpower);
3228

3229
	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3230
}
3231 3232 3233 3234 3235 3236

/*************\
 Init function
\*************/

int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3237
		      u8 mode, bool fast)
3238
{
3239
	struct ieee80211_channel *curr_channel;
3240 3241 3242 3243
	int ret, i;
	u32 phy_tst1;
	ret = 0;

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	/*
	 * Sanity check for fast flag
	 * Don't try fast channel change when changing modulation
	 * mode/band. We check for chip compatibility on
	 * ath5k_hw_reset.
	 */
	curr_channel = ah->ah_current_channel;
	if (fast && (channel->hw_value != curr_channel->hw_value))
		return -EINVAL;

	/*
	 * On fast channel change we only set the synth parameters
	 * while PHY is running, enable calibration and skip the rest.
	 */
	if (fast) {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
				    AR5K_PHY_RFBUS_REQ_REQUEST);
		for (i = 0; i < 100; i++) {
			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
				break;
			udelay(5);
		}
		/* Failed */
		if (i >= 100)
			return -EIO;
3269 3270 3271 3272 3273 3274 3275

		/* Set channel and wait for synth */
		ret = ath5k_hw_channel(ah, channel);
		if (ret)
			return ret;

		ath5k_hw_wait_for_synth(ah, channel);
3276 3277
	}

3278 3279 3280 3281 3282 3283 3284
	/*
	 * Set TX power
	 *
	 * Note: We need to do that before we set
	 * RF buffer settings on 5211/5212+ so that we
	 * properly set curve indices.
	 */
3285
	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3286
			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3287 3288 3289
	if (ret)
		return ret;

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	/* Write OFDM timings on 5212*/
	if (ah->ah_version == AR5K_AR5212 &&
		channel->hw_value & CHANNEL_OFDM) {

		ret = ath5k_hw_write_ofdm_timings(ah, channel);
		if (ret)
			return ret;

		/* Spur info is available only from EEPROM versions
		 * greater than 5.3, but the EEPROM routines will use
		 * static values for older versions */
		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
			ath5k_hw_set_spur_mitigation_filter(ah,
							    channel);
	}

	/* If we used fast channel switching
	 * we are done, release RF bus and
	 * fire up NF calibration.
	 *
	 * Note: Only NF calibration due to
	 * channel change, not AGC calibration
	 * since AGC is still running !
	 */
	if (fast) {
		/*
		 * Release RF Bus grant
		 */
		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
				    AR5K_PHY_RFBUS_REQ_REQUEST);

		/*
		 * Start NF calibration
		 */
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_NF);

		return ret;
	}

3330 3331 3332 3333 3334
	/*
	 * For 5210 we do all initialization using
	 * initvals, so we don't have to modify
	 * any settings (5210 also only supports
	 * a/aturbo modes)
3335
	 */
3336
	if (ah->ah_version != AR5K_AR5210) {
3337 3338 3339 3340 3341

		/*
		 * Write initial RF gain settings
		 * This should work for both 5111/5112
		 */
3342
		ret = ath5k_hw_rfgain_init(ah, channel->band);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		if (ret)
			return ret;

		mdelay(1);

		/*
		 * Write RF buffer
		 */
		ret = ath5k_hw_rfregs_init(ah, channel, mode);
		if (ret)
			return ret;

		/*Enable/disable 802.11b mode on 5111
		(enable 2111 frequency converter + CCK)*/
		if (ah->ah_radio == AR5K_RF5111) {
			if (mode == AR5K_MODE_11B)
				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
				    AR5K_TXCFG_B_MODE);
			else
				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
				    AR5K_TXCFG_B_MODE);
		}

3366
	} else if (ah->ah_version == AR5K_AR5210) {
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
		mdelay(1);
		/* Disable phy and wait */
		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
		mdelay(1);
	}

	/* Set channel on PHY */
	ret = ath5k_hw_channel(ah, channel);
	if (ret)
		return ret;

	/*
	 * Enable the PHY and wait until completion
	 * This includes BaseBand and Synthesizer
	 * activation.
	 */
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);

3385 3386
	ath5k_hw_wait_for_synth(ah, channel);

3387
	/*
3388 3389
	 * Perform ADC test to see if baseband is ready
	 * Set tx hold and check adc test register
3390
	 */
3391 3392 3393 3394 3395 3396
	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
	for (i = 0; i <= 20; i++) {
		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
			break;
		udelay(200);
3397
	}
3398
	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

	/*
	 * Start automatic gain control calibration
	 *
	 * During AGC calibration RX path is re-routed to
	 * a power detector so we don't receive anything.
	 *
	 * This method is used to calibrate some static offsets
	 * used together with on-the fly I/Q calibration (the
	 * one performed via ath5k_hw_phy_calibrate), which doesn't
	 * interrupt rx path.
	 *
	 * While rx path is re-routed to the power detector we also
	 * start a noise floor calibration to measure the
	 * card's noise floor (the noise we measure when we are not
	 * transmitting or receiving anything).
	 *
	 * If we are in a noisy environment, AGC calibration may time
	 * out and/or noise floor calibration might timeout.
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);

	/* At the same time start I/Q calibration for QAM constellation
	 * -no need for CCK- */
	ah->ah_calibration = false;
	if (!(mode == AR5K_MODE_11B)) {
		ah->ah_calibration = true;
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
				AR5K_PHY_IQ_RUN);
	}

	/* Wait for gain calibration to finish (we check for I/Q calibration
	 * during ath5k_phy_calibrate) */
	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_CAL, 0, false)) {
		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
			channel->center_freq);
	}

	/* Restore antenna mode */
	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);

	return ret;
}