phy.c 80.1 KB
Newer Older
1 2 3
/*
 * PHY functions
 *
N
Nick Kossifidis 已提交
4
 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
N
Nick Kossifidis 已提交
5
 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
N
Nick Kossifidis 已提交
6
 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7
 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

N
Nick Kossifidis 已提交
23 24
#define _ATH5K_PHY

25 26 27 28 29
#include <linux/delay.h>

#include "ath5k.h"
#include "reg.h"
#include "base.h"
N
Nick Kossifidis 已提交
30 31
#include "rfbuffer.h"
#include "rfgain.h"
32 33 34 35

/*
 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
 */
36 37 38
static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
					const struct ath5k_rf_reg *rf_regs,
					u32 val, u8 reg_id, bool set)
39
{
40 41 42 43 44 45
	const struct ath5k_rf_reg *rfreg = NULL;
	u8 offset, bank, num_bits, col, position;
	u16 entry;
	u32 mask, data, last_bit, bits_shifted, first_bit;
	u32 *rfb;
	s32 bits_left;
46 47 48
	int i;

	data = 0;
49
	rfb = ah->ah_rf_banks;
50

51 52 53 54 55 56 57 58 59
	for (i = 0; i < ah->ah_rf_regs_count; i++) {
		if (rf_regs[i].index == reg_id) {
			rfreg = &rf_regs[i];
			break;
		}
	}

	if (rfb == NULL || rfreg == NULL) {
		ATH5K_PRINTF("Rf register not found!\n");
60 61
		/* should not happen */
		return 0;
62 63 64 65 66 67 68 69 70 71 72 73
	}

	bank = rfreg->bank;
	num_bits = rfreg->field.len;
	first_bit = rfreg->field.pos;
	col = rfreg->field.col;

	/* first_bit is an offset from bank's
	 * start. Since we have all banks on
	 * the same array, we use this offset
	 * to mark each bank's start */
	offset = ah->ah_offset[bank];
74

75 76
	/* Boundary check */
	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
77 78 79 80
		ATH5K_PRINTF("invalid values at offset %u\n", offset);
		return 0;
	}

81 82
	entry = ((first_bit - 1) / 8) + offset;
	position = (first_bit - 1) % 8;
83

84
	if (set)
85
		data = ath5k_hw_bitswap(val, num_bits);
86

87 88 89 90 91 92 93 94
	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
	position = 0, entry++) {

		last_bit = (position + bits_left > 8) ? 8 :
					position + bits_left;

		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
								(col * 8);
95

96
		if (set) {
97 98
			rfb[entry] &= ~mask;
			rfb[entry] |= ((data << position) << (col * 8)) & mask;
99 100
			data >>= (8 - position);
		} else {
101 102 103
			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
				<< bits_shifted;
			bits_shifted += last_bit - position;
104 105
		}

106
		bits_left -= 8 - position;
107 108
	}

109
	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
110 111 112 113

	return data;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**********************\
* RF Gain optimization *
\**********************/

/*
 * This code is used to optimize rf gain on different environments
 * (temprature mostly) based on feedback from a power detector.
 *
 * It's only used on RF5111 and RF5112, later RF chips seem to have
 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 * no gain optimization ladder-.
 *
 * For more infos check out this patent doc
 * http://www.freepatentsonline.com/7400691.html
 *
 * This paper describes power drops as seen on the receiver due to
 * probe packets
 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 * %20of%20Power%20Control.pdf
 *
 * And this is the MadWiFi bug entry related to the above
 * http://madwifi-project.org/ticket/1659
 * with various measurements and diagrams
 *
 * TODO: Deal with power drops due to probes by setting an apropriate
 * tx power on the probe packets ! Make this part of the calibration process.
 */

/* Initialize ah_gain durring attach */
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
	/* Initialize the gain optimization values */
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 35;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	case AR5K_RF5112:
		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
		ah->ah_gain.g_low = 20;
		ah->ah_gain.g_high = 85;
		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

/* Schedule a gain probe check on the next transmited packet.
 * That means our next packet is going to be sent with lower
 * tx power and a Peak to Average Power Detector (PAPD) will try
 * to measure the gain.
 *
 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
 * just after we enable the probe so that we don't mess with
 * standard traffic ? Maybe it's time to use sw interrupts and
 * a probe tasklet !!!
 */
static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{

	/* Skip if gain calibration is inactive or
	 * we already handle a probe request */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
		return;

184 185
	/* Send the packet with 2dB below max power as
	 * patent doc suggest */
186
	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
187 188 189 190 191 192 193 194 195 196
			AR5K_PHY_PAPD_PROBE_TXPOWER) |
			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);

	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;

}

/* Calculate gain_F measurement correction
 * based on the current step for RF5112 rev. 2 */
static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
197 198 199
{
	u32 mix, step;
	u32 *rf;
200 201
	const struct ath5k_gain_opt *go;
	const struct ath5k_gain_opt_step *g_step;
202
	const struct ath5k_rf_reg *rf_regs;
203 204 205 206 207 208 209

	/* Only RF5112 Rev. 2 supports it */
	if ((ah->ah_radio != AR5K_RF5112) ||
	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
		return 0;

	go = &rfgain_opt_5112;
210 211
	rf_regs = rf_regs_5112a;
	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
212 213

	g_step = &go->go_step[ah->ah_gain.g_step_idx];
214 215 216 217 218 219 220

	if (ah->ah_rf_banks == NULL)
		return 0;

	rf = ah->ah_rf_banks;
	ah->ah_gain.g_f_corr = 0;

221
	/* No VGA (Variable Gain Amplifier) override, skip */
222
	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
223 224
		return 0;

225
	/* Mix gain stepping */
226
	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
227 228 229

	/* Mix gain override */
	mix = g_step->gos_param[0];
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

	switch (mix) {
	case 3:
		ah->ah_gain.g_f_corr = step * 2;
		break;
	case 2:
		ah->ah_gain.g_f_corr = (step - 5) * 2;
		break;
	case 1:
		ah->ah_gain.g_f_corr = step;
		break;
	default:
		ah->ah_gain.g_f_corr = 0;
		break;
	}

	return ah->ah_gain.g_f_corr;
}

249 250 251 252 253
/* Check if current gain_F measurement is in the range of our
 * power detector windows. If we get a measurement outside range
 * we know it's not accurate (detectors can't measure anything outside
 * their detection window) so we must ignore it */
static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
254
{
255
	const struct ath5k_rf_reg *rf_regs;
256
	u32 step, mix_ovr, level[4];
257 258 259 260 261 262 263 264
	u32 *rf;

	if (ah->ah_rf_banks == NULL)
		return false;

	rf = ah->ah_rf_banks;

	if (ah->ah_radio == AR5K_RF5111) {
265 266 267 268 269 270 271

		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);

		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
			false);

272
		level[0] = 0;
273 274 275
		level[1] = (step == 63) ? 50 : step + 4;
		level[2] = (step != 63) ? 64 : level[0];
		level[3] = level[2] + 50 ;
276 277

		ah->ah_gain.g_high = level[3] -
278
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
279
		ah->ah_gain.g_low = level[0] +
280
			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
281
	} else {
282 283 284 285 286 287 288

		rf_regs = rf_regs_5112;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);

		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
			false);

289 290
		level[0] = level[2] = 0;

291
		if (mix_ovr == 1) {
292 293 294 295 296 297 298 299 300 301 302 303 304
			level[1] = level[3] = 83;
		} else {
			level[1] = level[3] = 107;
			ah->ah_gain.g_high = 55;
		}
	}

	return (ah->ah_gain.g_current >= level[0] &&
			ah->ah_gain.g_current <= level[1]) ||
		(ah->ah_gain.g_current >= level[2] &&
			ah->ah_gain.g_current <= level[3]);
}

305 306 307
/* Perform gain_F adjustment by choosing the right set
 * of parameters from rf gain optimization ladder */
static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
308 309
{
	const struct ath5k_gain_opt *go;
310
	const struct ath5k_gain_opt_step *g_step;
311 312 313 314 315 316 317 318 319 320 321 322 323
	int ret = 0;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		go = &rfgain_opt_5112;
		break;
	default:
		return 0;
	}

324
	g_step = &go->go_step[ah->ah_gain.g_step_idx];
325 326

	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
327 328

		/* Reached maximum */
329 330
		if (ah->ah_gain.g_step_idx == 0)
			return -1;
331

332 333 334
		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
				ah->ah_gain.g_step_idx > 0;
335
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
336 337
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
338
			    g_step->gos_gain);
339 340 341 342 343 344

		ret = 1;
		goto done;
	}

	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
345 346

		/* Reached minimum */
347 348
		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
			return -2;
349

350 351 352
		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
				ah->ah_gain.g_step_idx < go->go_steps_count-1;
353
				g_step = &go->go_step[ah->ah_gain.g_step_idx])
354 355
			ah->ah_gain.g_target -= 2 *
			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
356
			    g_step->gos_gain);
357 358 359 360 361 362 363 364 365 366 367 368 369 370

		ret = 2;
		goto done;
	}

done:
	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
		"ret %d, gain step %u, current gain %u, target gain %u\n",
		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
		ah->ah_gain.g_target);

	return ret;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
/* Main callback for thermal rf gain calibration engine
 * Check for a new gain reading and schedule an adjustment
 * if needed.
 *
 * TODO: Use sw interrupt to schedule reset if gain_F needs
 * adjustment */
enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
	u32 data, type;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;

	ATH5K_TRACE(ah->ah_sc);

	if (ah->ah_rf_banks == NULL ||
	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
		return AR5K_RFGAIN_INACTIVE;

	/* No check requested, either engine is inactive
	 * or an adjustment is already requested */
	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
		goto done;

	/* Read the PAPD (Peak to Average Power Detector)
	 * register */
	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);

	/* No probe is scheduled, read gain_F measurement */
	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);

		/* If tx packet is CCK correct the gain_F measurement
		 * by cck ofdm gain delta */
		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
				ah->ah_gain.g_current +=
					ee->ee_cck_ofdm_gain_delta;
			else
				ah->ah_gain.g_current +=
					AR5K_GAIN_CCK_PROBE_CORR;
		}

		/* Further correct gain_F measurement for
		 * RF5112A radios */
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			ath5k_hw_rf_gainf_corr(ah);
			ah->ah_gain.g_current =
				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
				0;
		}

		/* Check if measurement is ok and if we need
		 * to adjust gain, schedule a gain adjustment,
		 * else switch back to the acive state */
		if (ath5k_hw_rf_check_gainf_readback(ah) &&
		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
		ath5k_hw_rf_gainf_adjust(ah)) {
			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
		} else {
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}
	}

done:
	return ah->ah_gain.g_state;
}

/* Write initial rf gain table to set the RF sensitivity
 * this one works on all RF chips and has nothing to do
 * with gain_F calibration */
int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
{
	const struct ath5k_ini_rfgain *ath5k_rfg;
	unsigned int i, size;

	switch (ah->ah_radio) {
	case AR5K_RF5111:
		ath5k_rfg = rfgain_5111;
		size = ARRAY_SIZE(rfgain_5111);
		break;
	case AR5K_RF5112:
		ath5k_rfg = rfgain_5112;
		size = ARRAY_SIZE(rfgain_5112);
		break;
	case AR5K_RF2413:
		ath5k_rfg = rfgain_2413;
		size = ARRAY_SIZE(rfgain_2413);
		break;
	case AR5K_RF2316:
		ath5k_rfg = rfgain_2316;
		size = ARRAY_SIZE(rfgain_2316);
		break;
	case AR5K_RF5413:
		ath5k_rfg = rfgain_5413;
		size = ARRAY_SIZE(rfgain_5413);
		break;
	case AR5K_RF2317:
	case AR5K_RF2425:
		ath5k_rfg = rfgain_2425;
		size = ARRAY_SIZE(rfgain_2425);
		break;
	default:
		return -EINVAL;
	}

	switch (freq) {
	case AR5K_INI_RFGAIN_2GHZ:
	case AR5K_INI_RFGAIN_5GHZ:
		break;
	default:
		return -EINVAL;
	}

	for (i = 0; i < size; i++) {
		AR5K_REG_WAIT(i);
		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
			(u32)ath5k_rfg[i].rfg_register);
	}

	return 0;
}



/********************\
* RF Registers setup *
\********************/

500

501
/*
502
 * Setup RF registers by writing rf buffer on hw
503
 */
504 505
int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
		unsigned int mode)
506
{
507 508 509 510
	const struct ath5k_rf_reg *rf_regs;
	const struct ath5k_ini_rfbuffer *ini_rfb;
	const struct ath5k_gain_opt *go = NULL;
	const struct ath5k_gain_opt_step *g_step;
511
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 513 514
	u8 ee_mode = 0;
	u32 *rfb;
	int i, obdb = -1, bank = -1;
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		rf_regs = rf_regs_5111;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
		ini_rfb = rfb_5111;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
		go = &rfgain_opt_5111;
		break;
	case AR5K_RF5112:
		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
			rf_regs = rf_regs_5112a;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
			ini_rfb = rfb_5112a;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
		} else {
			rf_regs = rf_regs_5112;
			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
			ini_rfb = rfb_5112;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
		}
		go = &rfgain_opt_5112;
		break;
	case AR5K_RF2413:
		rf_regs = rf_regs_2413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
		ini_rfb = rfb_2413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
		break;
	case AR5K_RF2316:
		rf_regs = rf_regs_2316;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
		ini_rfb = rfb_2316;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
		break;
	case AR5K_RF5413:
		rf_regs = rf_regs_5413;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
		ini_rfb = rfb_5413;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
		break;
	case AR5K_RF2317:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		ini_rfb = rfb_2317;
		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
		break;
	case AR5K_RF2425:
		rf_regs = rf_regs_2425;
		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
			ini_rfb = rfb_2425;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
		} else {
			ini_rfb = rfb_2417;
			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
		}
		break;
	default:
		return -EINVAL;
	}
576

577 578 579 580 581 582 583 584 585 586 587
	/* If it's the first time we set rf buffer, allocate
	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
	 * we set above */
	if (ah->ah_rf_banks == NULL) {
		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
								GFP_KERNEL);
		if (ah->ah_rf_banks == NULL) {
			ATH5K_ERR(ah->ah_sc, "out of memory\n");
			return -ENOMEM;
		}
	}
588 589

	/* Copy values to modify them */
590 591 592 593
	rfb = ah->ah_rf_banks;

	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
594 595 596 597
			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
			return -EINVAL;
		}

598 599 600
		/* Bank changed, write down the offset */
		if (bank != ini_rfb[i].rfb_bank) {
			bank = ini_rfb[i].rfb_bank;
601 602 603
			ah->ah_offset[bank] = i;
		}

604
		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
605 606
	}

607
	/* Set Output and Driver bias current (OB/DB) */
608
	if (channel->hw_value & CHANNEL_2GHZ) {
609

610
		if (channel->hw_value & CHANNEL_CCK)
611 612 613 614
			ee_mode = AR5K_EEPROM_MODE_11B;
		else
			ee_mode = AR5K_EEPROM_MODE_11G;

615 616 617 618 619 620 621 622 623 624 625 626
		/* For RF511X/RF211X combination we
		 * use b_OB and b_DB parameters stored
		 * in eeprom on ee->ee_ob[ee_mode][0]
		 *
		 * For all other chips we use OB/DB for 2Ghz
		 * stored in the b/g modal section just like
		 * 802.11a on ee->ee_ob[ee_mode][1] */
		if ((ah->ah_radio == AR5K_RF5111) ||
		(ah->ah_radio == AR5K_RF5112))
			obdb = 0;
		else
			obdb = 1;
627

628 629
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_2GHZ, true);
630

631 632 633 634 635 636 637 638 639
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_2GHZ, true);

	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
			(ah->ah_radio == AR5K_RF5111)) {

		/* For 11a, Turbo and XR we need to choose
		 * OB/DB based on frequency range */
640
		ee_mode = AR5K_EEPROM_MODE_11A;
641 642 643 644
		obdb =	 channel->center_freq >= 5725 ? 3 :
			(channel->center_freq >= 5500 ? 2 :
			(channel->center_freq >= 5260 ? 1 :
			 (channel->center_freq > 4000 ? 0 : -1)));
645

646
		if (obdb < 0)
647 648
			return -EINVAL;

649 650 651 652 653
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
						AR5K_RF_OB_5GHZ, true);

		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
						AR5K_RF_DB_5GHZ, true);
654 655
	}

656
	g_step = &go->go_step[ah->ah_gain.g_step_idx];
657

658 659
	/* Bank Modifications (chip-specific) */
	if (ah->ah_radio == AR5K_RF5111) {
660

661 662
		/* Set gain_F settings according to current step */
		if (channel->hw_value & CHANNEL_OFDM) {
663

664 665 666
			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
					AR5K_PHY_FRAME_CTL_TX_CLIP,
					g_step->gos_param[0]);
667

668 669
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
							AR5K_RF_PWD_90, true);
670

671 672
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
							AR5K_RF_PWD_84, true);
673

674 675
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_RFGAIN_SEL, true);
676

677 678 679
			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
680

681
		}
682

683
		/* Bank 6/7 setup */
684

685 686
		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
						AR5K_RF_PWD_XPD, true);
687

688 689
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);
690

691 692
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);
693

694 695
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_PLO_SEL, true);
696

697
		/* TODO: Half/quarter channel support */
698 699
	}

700
	if (ah->ah_radio == AR5K_RF5112) {
701

702 703
		/* Set gain_F settings according to current step */
		if (channel->hw_value & CHANNEL_OFDM) {
704

705 706
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
						AR5K_RF_MIXGAIN_OVR, true);
707

708 709
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
						AR5K_RF_PWD_138, true);
710

711 712
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
						AR5K_RF_PWD_137, true);
713

714 715
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
						AR5K_RF_PWD_136, true);
716

717 718
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
						AR5K_RF_PWD_132, true);
719

720 721
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
						AR5K_RF_PWD_131, true);
722

723 724
			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
						AR5K_RF_PWD_130, true);
725

726 727 728 729
			/* We programmed gain_F parameters, switch back
			 * to active state */
			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
		}
730

731
		/* Bank 6/7 setup */
732

733 734
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
						AR5K_RF_XPD_SEL, true);
735

736 737 738 739 740
		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
			/* Rev. 1 supports only one xpd */
			ath5k_hw_rfb_op(ah, rf_regs,
						ee->ee_x_gain[ee_mode],
						AR5K_RF_XPD_GAIN, true);
741

742
		} else {
N
Nick Kossifidis 已提交
743 744 745 746
			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
			if (ee->ee_pd_gains[ee_mode] > 1) {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
747
						AR5K_RF_PD_GAIN_LO, true);
N
Nick Kossifidis 已提交
748 749
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[1],
750
						AR5K_RF_PD_GAIN_HI, true);
N
Nick Kossifidis 已提交
751 752 753 754 755 756 757 758
			} else {
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_LO, true);
				ath5k_hw_rfb_op(ah, rf_regs,
						pdg_curve_to_idx[0],
						AR5K_RF_PD_GAIN_HI, true);
			}
759

760 761 762
			/* Lower synth voltage on Rev 2 */
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_HIGH_VC_CP, true);
763

764 765
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_MID_VC_CP, true);
766

767 768
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_LOW_VC_CP, true);
N
Nick Kossifidis 已提交
769

770 771
			ath5k_hw_rfb_op(ah, rf_regs, 2,
					AR5K_RF_PUSH_UP, true);
N
Nick Kossifidis 已提交
772

773 774 775 776
			/* Decrease power consumption on 5213+ BaseBand */
			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PAD2GND, true);
N
Nick Kossifidis 已提交
777

778 779
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB2_LVL, true);
N
Nick Kossifidis 已提交
780

781 782
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_XB5_LVL, true);
783

784 785
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_167, true);
786

787 788 789
				ath5k_hw_rfb_op(ah, rf_regs, 1,
						AR5K_RF_PWD_166, true);
			}
790 791
		}

792 793
		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
						AR5K_RF_GAIN_I, true);
794

795
		/* TODO: Half/quarter channel support */
796

797
	}
798

799 800
	if (ah->ah_radio == AR5K_RF5413 &&
	channel->hw_value & CHANNEL_2GHZ) {
801

802 803
		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
									true);
804

805 806 807 808 809
		/* Set optimum value for early revisions (on pci-e chips) */
		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
		ah->ah_mac_srev < AR5K_SREV_AR5413)
			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
						AR5K_RF_PWD_ICLOBUF_2G, true);
810 811 812

	}

813 814 815 816 817
	/* Write RF banks on hw */
	for (i = 0; i < ah->ah_rf_banks_size; i++) {
		AR5K_REG_WAIT(i);
		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
	}
818

819
	return 0;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
}


/**************************\
  PHY/RF channel functions
\**************************/

/*
 * Check if a channel is supported
 */
bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
{
	/* Check if the channel is in our supported range */
	if (flags & CHANNEL_2GHZ) {
		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
			return true;
	} else if (flags & CHANNEL_5GHZ)
		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
			return true;

	return false;
}

/*
 * Convertion needed for RF5110
 */
static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
	u32 athchan;

	/*
	 * Convert IEEE channel/MHz to an internal channel value used
	 * by the AR5210 chipset. This has not been verified with
	 * newer chipsets like the AR5212A who have a completely
	 * different RF/PHY part.
	 */
858 859 860 861
	athchan = (ath5k_hw_bitswap(
			(ieee80211_frequency_to_channel(
				channel->center_freq) - 24) / 2, 5)
				<< 1) | (1 << 6) | 0x1;
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	return athchan;
}

/*
 * Set channel on RF5110
 */
static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data;

	/*
	 * Set the channel and wait
	 */
	data = ath5k_hw_rf5110_chan2athchan(channel);
	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
	mdelay(1);

	return 0;
}

/*
 * Convertion needed for 5111
 */
static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
		struct ath5k_athchan_2ghz *athchan)
{
	int channel;

	/* Cast this value to catch negative channel numbers (>= -19) */
	channel = (int)ieee;

	/*
	 * Map 2GHz IEEE channel to 5GHz Atheros channel
	 */
	if (channel <= 13) {
		athchan->a2_athchan = 115 + channel;
		athchan->a2_flags = 0x46;
	} else if (channel == 14) {
		athchan->a2_athchan = 124;
		athchan->a2_flags = 0x44;
	} else if (channel >= 15 && channel <= 26) {
		athchan->a2_athchan = ((channel - 14) * 4) + 132;
		athchan->a2_flags = 0x46;
	} else
		return -EINVAL;

	return 0;
}

/*
 * Set channel on 5111
 */
static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
920 921
	unsigned int ath5k_channel =
		ieee80211_frequency_to_channel(channel->center_freq);
922 923 924 925 926 927 928 929
	u32 data0, data1, clock;
	int ret;

	/*
	 * Set the channel on the RF5111 radio
	 */
	data0 = data1 = 0;

930
	if (channel->hw_value & CHANNEL_2GHZ) {
931
		/* Map 2GHz channel to 5GHz Atheros channel ID */
932 933 934
		ret = ath5k_hw_rf5111_chan2athchan(
			ieee80211_frequency_to_channel(channel->center_freq),
			&ath5k_channel_2ghz);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		if (ret)
			return ret;

		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
		    << 5) | (1 << 4);
	}

	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
		clock = 1;
		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
			(clock << 1) | (1 << 10) | 1;
	} else {
		clock = 0;
		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
			<< 2) | (clock << 1) | (1 << 10) | 1;
	}

	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
			AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
			AR5K_RF_BUFFER_CONTROL_3);

	return 0;
}

/*
 * Set channel on 5112 and newer
 */
static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data1, data2;
	u16 c;

	data = data0 = data1 = data2 = 0;
971
	c = channel->center_freq;
972 973 974 975 976 977 978 979 980 981 982 983

	if (c < 4800) {
		if (!((c - 2224) % 5)) {
			data0 = ((2 * (c - 704)) - 3040) / 10;
			data1 = 1;
		} else if (!((c - 2192) % 5)) {
			data0 = ((2 * (c - 672)) - 3040) / 10;
			data1 = 0;
		} else
			return -EINVAL;

		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
984
	} else if ((c - (c % 5)) != 2 || c > 5435) {
985 986 987 988 989 990 991 992 993 994 995
		if (!(c % 20) && c >= 5120) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
			data2 = ath5k_hw_bitswap(3, 2);
		} else if (!(c % 10)) {
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
			data2 = ath5k_hw_bitswap(2, 2);
		} else if (!(c % 5)) {
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
			data2 = ath5k_hw_bitswap(1, 2);
		} else
			return -EINVAL;
996 997 998
	} else {
		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
		data2 = ath5k_hw_bitswap(0, 2);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	}

	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * Set the channel on the RF2425
 */
static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 data, data0, data2;
	u16 c;

	data = data0 = data2 = 0;
	c = channel->center_freq;

	if (c < 4800) {
		data0 = ath5k_hw_bitswap((c - 2272), 8);
		data2 = 0;
	/* ? 5GHz ? */
	} else if ((c - (c % 5)) != 2 || c > 5435) {
		if (!(c % 20) && c < 5120)
			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
		else if (!(c % 10))
			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
		else if (!(c % 5))
			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
		else
			return -EINVAL;
		data2 = ath5k_hw_bitswap(1, 2);
	} else {
		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
		data2 = ath5k_hw_bitswap(0, 2);
	}

	data = (data0 << 4) | data2 << 2 | 0x1001;

	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);

	return 0;
}

1048 1049 1050 1051 1052 1053 1054
/*
 * Set a channel on the radio chip
 */
int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
	int ret;
	/*
1055 1056 1057 1058 1059
	 * Check bounds supported by the PHY (we don't care about regultory
	 * restrictions at this point). Note: hw_value already has the band
	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
	 * of the band by that */
	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1060
		ATH5K_ERR(ah->ah_sc,
1061 1062
			"channel frequency (%u MHz) out of supported "
			"band range\n",
1063
			channel->center_freq);
1064
			return -EINVAL;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	}

	/*
	 * Set the channel and wait
	 */
	switch (ah->ah_radio) {
	case AR5K_RF5110:
		ret = ath5k_hw_rf5110_channel(ah, channel);
		break;
	case AR5K_RF5111:
		ret = ath5k_hw_rf5111_channel(ah, channel);
		break;
1077 1078 1079
	case AR5K_RF2425:
		ret = ath5k_hw_rf2425_channel(ah, channel);
		break;
1080 1081 1082 1083 1084 1085 1086 1087
	default:
		ret = ath5k_hw_rf5112_channel(ah, channel);
		break;
	}

	if (ret)
		return ret;

1088 1089 1090 1091 1092 1093 1094 1095 1096
	/* Set JAPAN setting for channel 14 */
	if (channel->center_freq == 2484) {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_JAPAN);
	} else {
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
				AR5K_PHY_CCKTXCTL_WORLD);
	}

B
Bob Copeland 已提交
1097
	ah->ah_current_channel = channel;
1098
	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1099 1100 1101 1102 1103 1104 1105 1106

	return 0;
}

/*****************\
  PHY calibration
\*****************/

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
void
ath5k_hw_calibration_poll(struct ath5k_hw *ah)
{
	/* Calibration interval in jiffies */
	unsigned long cal_intval;

	cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);

	/* Initialize timestamp if needed */
	if (!ah->ah_cal_tstamp)
		ah->ah_cal_tstamp = jiffies;

	/* For now we always do full calibration
	 * Mark software interrupt mask and fire software
	 * interrupt (bit gets auto-cleared) */
	if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
		ah->ah_cal_tstamp = jiffies;
		ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
		AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
	}

}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/**
 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
 *
 * @ah: struct ath5k_hw pointer we are operating on
 * @freq: the channel frequency, just used for error logging
 *
 * This function performs a noise floor calibration of the PHY and waits for
 * it to complete. Then the noise floor value is compared to some maximum
 * noise floor we consider valid.
 *
 * Note that this is different from what the madwifi HAL does: it reads the
 * noise floor and afterwards initiates the calibration. Since the noise floor
 * calibration can take some time to finish, depending on the current channel
 * use, that avoids the occasional timeout warnings we are seeing now.
 *
 * See the following link for an Atheros patent on noise floor calibration:
 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
 *
1149 1150
 * XXX: Since during noise floor calibration antennas are detached according to
 * the patent, we should stop tx queues here.
1151 1152 1153 1154 1155 1156 1157 1158 1159
 */
int
ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
{
	int ret;
	unsigned int i;
	s32 noise_floor;

	/*
1160
	 * Enable noise floor calibration
1161 1162 1163 1164 1165 1166 1167 1168 1169
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
				AR5K_PHY_AGCCTL_NF);

	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_NF, 0, false);
	if (ret) {
		ATH5K_ERR(ah->ah_sc,
			"noise floor calibration timeout (%uMHz)\n", freq);
1170
		return -EAGAIN;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	}

	/* Wait until the noise floor is calibrated and read the value */
	for (i = 20; i > 0; i--) {
		mdelay(1);
		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);

			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
				break;
		}
	}

	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
		"noise floor %d\n", noise_floor);

	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
		ATH5K_ERR(ah->ah_sc,
			"noise floor calibration failed (%uMHz)\n", freq);
1192
		return -EAGAIN;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	}

	ah->ah_noise_floor = noise_floor;

	return 0;
}

/*
 * Perform a PHY calibration on RF5110
 * -Fix BPSK/QAM Constellation (I/Q correction)
 * -Calculate Noise Floor
 */
static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 phy_sig, phy_agc, phy_sat, beacon;
	int ret;

	/*
	 * Disable beacons and RX/TX queues, wait
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);

1219
	mdelay(2);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	/*
	 * Set the channel (with AGC turned off)
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ret = ath5k_hw_channel(ah, channel);

	/*
	 * Activate PHY and wait
	 */
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
	mdelay(1);

	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	if (ret)
		return ret;

	/*
	 * Calibrate the radio chip
	 */

	/* Remember normal state */
	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);

	/* Update radio registers */
	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);

	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
			AR5K_PHY_AGCCOARSE_LO)) |
		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);

	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
			AR5K_PHY_ADCSAT_THR)) |
		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);

	udelay(20);

	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
	udelay(10);
	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);

	mdelay(1);

	/*
	 * Enable calibration and wait until completion
	 */
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);

	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
			AR5K_PHY_AGCCTL_CAL, 0, false);

	/* Reset to normal state */
	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);

	if (ret) {
		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1286
				channel->center_freq);
1287 1288 1289
		return ret;
	}

1290
	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

	/*
	 * Re-enable RX/TX and beacons
	 */
	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);

	return 0;
}

/*
1303
 * Perform a PHY calibration on RF5111/5112 and newer chips
1304 1305 1306 1307 1308 1309
 */
static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	u32 i_pwr, q_pwr;
	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1310
	int i;
1311 1312
	ATH5K_TRACE(ah->ah_sc);

1313
	if (!ah->ah_calibration ||
1314
		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1315 1316
		goto done;

1317 1318 1319 1320 1321 1322
	/* Calibration has finished, get the results and re-run */
	for (i = 0; i <= 10; i++) {
		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
	}
1323 1324

	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1325
	q_coffd = q_pwr >> 7;
1326

1327
	/* No correction */
1328 1329 1330 1331 1332
	if (i_coffd == 0 || q_coffd == 0)
		goto done;

	i_coff = ((-iq_corr) / i_coffd) & 0x3f;

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	/* Boundary check */
	if (i_coff > 31)
		i_coff = 31;
	if (i_coff < -32)
		i_coff = -32;

	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;

	/* Boundary check */
	if (q_coff > 15)
		q_coff = 15;
	if (q_coff < -16)
		q_coff = -16;

	/* Commit new I/Q value */
1348 1349 1350
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));

1351 1352 1353 1354 1355 1356
	/* Re-enable calibration -if we don't we'll commit
	 * the same values again and again */
	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);

1357
done:
1358 1359 1360 1361 1362

	/* TODO: Separate noise floor calibration from I/Q calibration
	 * since noise floor calibration interrupts rx path while I/Q
	 * calibration doesn't. We don't need to run noise floor calibration
	 * as often as I/Q calibration.*/
1363
	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1364

1365 1366
	/* Initiate a gain_F calibration */
	ath5k_hw_request_rfgain_probe(ah);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

	return 0;
}

/*
 * Perform a PHY calibration
 */
int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
		struct ieee80211_channel *channel)
{
	int ret;

	if (ah->ah_radio == AR5K_RF5110)
		ret = ath5k_hw_rf5110_calibrate(ah, channel);
	else
		ret = ath5k_hw_rf511x_calibrate(ah, channel);

	return ret;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
/***************************\
* Spur mitigation functions *
\***************************/

bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	u8 refclk_freq;

	if ((ah->ah_radio == AR5K_RF5112) ||
	(ah->ah_radio == AR5K_RF5413) ||
	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
		refclk_freq = 40;
	else
		refclk_freq = 32;

	if ((channel->center_freq % refclk_freq != 0) &&
	((channel->center_freq % refclk_freq < 10) ||
	(channel->center_freq % refclk_freq > 22)))
		return true;
	else
		return false;
}

void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
				struct ieee80211_channel *channel)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u32 mag_mask[4] = {0, 0, 0, 0};
	u32 pilot_mask[2] = {0, 0};
	/* Note: fbin values are scaled up by 2 */
	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
	s32 spur_delta_phase, spur_freq_sigma_delta;
	s32 spur_offset, num_symbols_x16;
	u8 num_symbol_offsets, i, freq_band;

	/* Convert current frequency to fbin value (the same way channels
	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
	 * up by 2 so we can compare it later */
	if (channel->hw_value & CHANNEL_2GHZ) {
		chan_fbin = (channel->center_freq - 2300) * 10;
		freq_band = AR5K_EEPROM_BAND_2GHZ;
	} else {
		chan_fbin = (channel->center_freq - 4900) * 10;
		freq_band = AR5K_EEPROM_BAND_5GHZ;
	}

	/* Check if any spur_chan_fbin from EEPROM is
	 * within our current channel's spur detection range */
	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
	/* XXX: Half/Quarter channels ?*/
	if (channel->hw_value & CHANNEL_TURBO)
		spur_detection_window *= 2;

	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];

		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
		 * so it's zero if we got nothing from EEPROM */
		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}

		if ((chan_fbin - spur_detection_window <=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
		(chan_fbin + spur_detection_window >=
		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
			break;
		}
	}

	/* We need to enable spur filter for this channel */
	if (spur_chan_fbin) {
		spur_offset = spur_chan_fbin - chan_fbin;
		/*
		 * Calculate deltas:
		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
		 * spur_delta_phase -> spur_offset / chip_freq << 11
		 * Note: Both values have 100KHz resolution
		 */
		/* XXX: Half/Quarter rate channels ? */
		switch (channel->hw_value) {
		case CHANNEL_A:
			/* Both sample_freq and chip_freq are 40MHz */
			spur_delta_phase = (spur_offset << 17) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			break;
		case CHANNEL_G:
			/* sample_freq -> 40MHz chip_freq -> 44MHz
			 * (for b compatibility) */
			spur_freq_sigma_delta = (spur_offset << 8) / 55;
			spur_delta_phase = (spur_offset << 17) / 25;
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
			break;
		case CHANNEL_T:
		case CHANNEL_TG:
			/* Both sample_freq and chip_freq are 80MHz */
			spur_delta_phase = (spur_offset << 16) / 25;
			spur_freq_sigma_delta = (spur_delta_phase >> 10);
			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
			break;
		default:
			return;
		}

		/* Calculate pilot and magnitude masks */

		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
		 * and divide by symbol_width to find how many symbols we have
		 * Note: number of symbols is scaled up by 16 */
		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;

		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
		if (!(num_symbols_x16 & 0xF))
			/* _X_ */
			num_symbol_offsets = 3;
		else
			/* _xx_ */
			num_symbol_offsets = 4;

		for (i = 0; i < num_symbol_offsets; i++) {

			/* Calculate pilot mask */
			s32 curr_sym_off =
				(num_symbols_x16 / 16) + i + 25;

			/* Pilot magnitude mask seems to be a way to
			 * declare the boundaries for our detection
			 * window or something, it's 2 for the middle
			 * value(s) where the symbol is expected to be
			 * and 1 on the boundary values */
			u8 plt_mag_map =
				(i == 0 || i == (num_symbol_offsets - 1))
								? 1 : 2;

			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
				if (curr_sym_off <= 25)
					pilot_mask[0] |= 1 << curr_sym_off;
				else if (curr_sym_off >= 27)
					pilot_mask[0] |= 1 << (curr_sym_off - 1);
			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
				pilot_mask[1] |= 1 << (curr_sym_off - 33);

			/* Calculate magnitude mask (for viterbi decoder) */
			if (curr_sym_off >= -1 && curr_sym_off <= 14)
				mag_mask[0] |=
					plt_mag_map << (curr_sym_off + 1) * 2;
			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
				mag_mask[1] |=
					plt_mag_map << (curr_sym_off - 15) * 2;
			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
				mag_mask[2] |=
					plt_mag_map << (curr_sym_off - 31) * 2;
			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
				mag_mask[3] |=
					plt_mag_map << (curr_sym_off - 47) * 2;

		}

		/* Write settings on hw to enable spur filter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
		/* XXX: Self correlator also ? */
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);

		/* Set delta phase and freq sigma delta */
		ath5k_hw_reg_write(ah,
				AR5K_REG_SM(spur_delta_phase,
					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
				AR5K_REG_SM(spur_freq_sigma_delta,
				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
				AR5K_PHY_TIMING_11);

		/* Write pilot masks */
		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					pilot_mask[1]);

		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					pilot_mask[1]);

		/* Write magnitude masks */
		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					mag_mask[3]);

		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					mag_mask[3]);

	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
	AR5K_PHY_IQ_SPUR_FILT_EN) {
		/* Clean up spur mitigation settings and disable fliter */
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
					AR5K_PHY_IQ_PILOT_MASK_EN |
					AR5K_PHY_IQ_CHAN_MASK_EN |
					AR5K_PHY_IQ_SPUR_FILT_EN);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);

		/* Clear pilot masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
					AR5K_PHY_TIMING_8_PILOT_MASK_2,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
					AR5K_PHY_TIMING_10_PILOT_MASK_2,
					0);

		/* Clear magnitude masks */
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
					AR5K_PHY_BIN_MASK_CTL_MASK_4,
					0);

		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
					AR5K_PHY_BIN_MASK2_4_MASK_4,
					0);
	}
}

/********************\
  Misc PHY functions
\********************/

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
	/*Just a try M.F.*/
	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);

	return 0;
}

/*
 * Get the PHY Chip revision
 */
u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
{
	unsigned int i;
	u32 srev;
	u16 ret;

	ATH5K_TRACE(ah->ah_sc);

	/*
	 * Set the radio chip access register
	 */
	switch (chan) {
	case CHANNEL_2GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
		break;
	case CHANNEL_5GHZ:
		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
		break;
	default:
		return 0;
	}

	mdelay(2);

	/* ...wait until PHY is ready and read the selected radio revision */
	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));

	for (i = 0; i < 8; i++)
		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));

	if (ah->ah_version == AR5K_AR5210) {
		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
	} else {
		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
				((srev & 0x0f) << 4), 8);
	}

	/* Reset to the 5GHz mode */
	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));

	return ret;
}

1695 1696 1697 1698
/*****************\
* Antenna control *
\*****************/

1699
void /*TODO:Boundary check*/
1700
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1701 1702
{
	ATH5K_TRACE(ah->ah_sc);
1703

1704
	if (ah->ah_version != AR5K_AR5210)
1705
		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1706 1707 1708 1709 1710
}

unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
{
	ATH5K_TRACE(ah->ah_sc);
1711

1712
	if (ah->ah_version != AR5K_AR5210)
1713
		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
1714 1715 1716 1717

	return false; /*XXX: What do we return for 5210 ?*/
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
/*
 * Enable/disable fast rx antenna diversity
 */
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
	switch (ee_mode) {
	case AR5K_EEPROM_MODE_11G:
		/* XXX: This is set to
		 * disabled on initvals !!! */
	case AR5K_EEPROM_MODE_11A:
		if (enable)
			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		else
			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	case AR5K_EEPROM_MODE_11B:
		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
		break;
	default:
		return;
	}

	if (enable) {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
				AR5K_PHY_RESTART_DIV_GC, 0xc);

		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	} else {
		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
				AR5K_PHY_RESTART_DIV_GC, 0x8);

		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
					AR5K_PHY_FAST_ANT_DIV_EN);
	}
}

/*
 * Set antenna operating mode
 */
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
B
Bob Copeland 已提交
1765
	struct ieee80211_channel *channel = ah->ah_current_channel;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
	bool use_def_for_sg;
	u8 def_ant, tx_ant, ee_mode;
	u32 sta_id1 = 0;

	def_ant = ah->ah_def_ant;

	ATH5K_TRACE(ah->ah_sc);

	switch (channel->hw_value & CHANNEL_MODES) {
	case CHANNEL_A:
	case CHANNEL_T:
	case CHANNEL_XR:
		ee_mode = AR5K_EEPROM_MODE_11A;
		break;
	case CHANNEL_G:
	case CHANNEL_TG:
		ee_mode = AR5K_EEPROM_MODE_11G;
		break;
	case CHANNEL_B:
		ee_mode = AR5K_EEPROM_MODE_11B;
		break;
	default:
		ATH5K_ERR(ah->ah_sc,
			"invalid channel: %d\n", channel->center_freq);
		return;
	}

	switch (ant_mode) {
	case AR5K_ANTMODE_DEFAULT:
		tx_ant = 0;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_FIXED_A:
		def_ant = 1;
		tx_ant = 0;
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_FIXED_B:
		def_ant = 2;
		tx_ant = 0;
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SINGLE_AP:
		def_ant = 1;	/* updated on tx */
		tx_ant = 0;
		use_def_for_tx = true;
		update_def_on_tx = true;
		use_def_for_rts = true;
		use_def_for_sg = true;
		fast_div = true;
		break;
	case AR5K_ANTMODE_SECTOR_AP:
		tx_ant = 1;	/* variable */
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = false;
		break;
	case AR5K_ANTMODE_SECTOR_STA:
		tx_ant = 1;	/* variable */
		use_def_for_tx = true;
		update_def_on_tx = false;
		use_def_for_rts = true;
		use_def_for_sg = false;
		fast_div = true;
		break;
	case AR5K_ANTMODE_DEBUG:
		def_ant = 1;
		tx_ant = 2;
		use_def_for_tx = false;
		update_def_on_tx = false;
		use_def_for_rts = false;
		use_def_for_sg = false;
		fast_div = false;
		break;
	default:
		return;
	}

	ah->ah_tx_ant = tx_ant;
	ah->ah_ant_mode = ant_mode;

	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;

	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);

	if (sta_id1)
		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);

	/* Note: set diversity before default antenna
	 * because it won't work correctly */
	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
	ath5k_hw_set_def_antenna(ah, def_ant);
}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

/****************\
* TX power setup *
\****************/

/*
 * Helper functions
 */

/*
 * Do linear interpolation between two given (x, y) points
 */
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
					s16 y_left, s16 y_right)
{
	s16 ratio, result;

	/* Avoid divide by zero and skip interpolation
	 * if we have the same point */
	if ((x_left == x_right) || (y_left == y_right))
		return y_left;

	/*
	 * Since we use ints and not fps, we need to scale up in
	 * order to get a sane ratio value (or else we 'll eg. get
	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
	 * to have some accuracy both for 0.5 and 0.25 steps.
	 */
	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));

	/* Now scale down to be in range */
	result = y_left + (ratio * (target - x_left) / 100);

	return result;
}

/*
 * Find vertical boundary (min pwr) for the linear PCDAC curve.
 *
 * Since we have the top of the curve and we draw the line below
 * until we reach 1 (1 pcdac step) we need to know which point
 * (x value) that is so that we don't go below y axis and have negative
 * pcdac values when creating the curve, or fill the table with zeroes.
 */
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
				const s16 *pwrL, const s16 *pwrR)
{
	s8 tmp;
	s16 min_pwrL, min_pwrR;
1929 1930
	s16 pwr_i;

N
Nick Kossifidis 已提交
1931 1932 1933
	/* Some vendors write the same pcdac value twice !!! */
	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
		return max(pwrL[0], pwrR[0]);
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	if (pwrL[0] == pwrL[1])
		min_pwrL = pwrL[0];
	else {
		pwr_i = pwrL[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrL[0], pwrL[1],
							stepL[0], stepL[1]);
		} while (tmp > 1);

		min_pwrL = pwr_i;
	}
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	if (pwrR[0] == pwrR[1])
		min_pwrR = pwrR[0];
	else {
		pwr_i = pwrR[0];
		do {
			pwr_i--;
			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
							pwrR[0], pwrR[1],
							stepR[0], stepR[1]);
		} while (tmp > 1);

		min_pwrR = pwr_i;
	}
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

	/* Keep the right boundary so that it works for both curves */
	return max(min_pwrL, min_pwrR);
}

/*
 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
 * Power to PCDAC curve.
 *
 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
 * steps (offsets) on y axis. Power can go up to 31.5dB and max
 * PCDAC/PDADC step for each curve is 64 but we can write more than
 * one curves on hw so we can go up to 128 (which is the max step we
 * can write on the final table).
 *
 * We write y values (PCDAC/PDADC steps) on hw.
 */
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
			const s16 *pwr, const u8 *vpd,
			u8 num_points,
			u8 *vpd_table, u8 type)
{
	u8 idx[2] = { 0, 1 };
	s16 pwr_i = 2*pmin;
	int i;

	if (num_points < 2)
		return;

	/* We want the whole line, so adjust boundaries
	 * to cover the entire power range. Note that
	 * power values are already 0.25dB so no need
	 * to multiply pwr_i by 2 */
	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
		pwr_i = pmin;
		pmin = 0;
		pmax = 63;
	}

	/* Find surrounding turning points (TPs)
	 * and interpolate between them */
	for (i = 0; (i <= (u16) (pmax - pmin)) &&
	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {

		/* We passed the right TP, move to the next set of TPs
		 * if we pass the last TP, extrapolate above using the last
		 * two TPs for ratio */
		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
			idx[0]++;
			idx[1]++;
		}

		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
						pwr[idx[0]], pwr[idx[1]],
						vpd[idx[0]], vpd[idx[1]]);

		/* Increase by 0.5dB
		 * (0.25 dB units) */
		pwr_i += 2;
	}
}

/*
 * Get the surrounding per-channel power calibration piers
 * for a given frequency so that we can interpolate between
 * them and come up with an apropriate dataset for our current
 * channel.
 */
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_chan_pcal_info **pcinfo_l,
			struct ath5k_chan_pcal_info **pcinfo_r)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_chan_pcal_info *pcinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	if (!(channel->hw_value & CHANNEL_OFDM)) {
		pcinfo = ee->ee_pwr_cal_b;
		mode = AR5K_EEPROM_MODE_11B;
	} else if (channel->hw_value & CHANNEL_2GHZ) {
		pcinfo = ee->ee_pwr_cal_g;
		mode = AR5K_EEPROM_MODE_11G;
	} else {
		pcinfo = ee->ee_pwr_cal_a;
		mode = AR5K_EEPROM_MODE_11A;
	}
	max = ee->ee_n_piers[mode] - 1;

	/* Frequency is below our calibrated
	 * range. Use the lowest power curve
	 * we have */
	if (target < pcinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	/* Frequency is above our calibrated
	 * range. Use the highest power curve
	 * we have */
	if (target > pcinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	/* Frequency is inside our calibrated
	 * channel range. Pick the surrounding
	 * calibration piers so that we can
	 * interpolate */
	for (i = 0; i <= max; i++) {

		/* Frequency matches one of our calibration
		 * piers, no need to interpolate, just use
		 * that calibration pier */
		if (pcinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		/* We found a calibration pier that's above
		 * frequency, use this pier and the previous
		 * one to interpolate */
		if (target < pcinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	*pcinfo_l = &pcinfo[idx_l];
	*pcinfo_r = &pcinfo[idx_r];

	return;
}

/*
 * Get the surrounding per-rate power calibration data
 * for a given frequency and interpolate between power
 * values to set max target power supported by hw for
 * each rate.
 */
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			struct ath5k_rate_pcal_info *rates)
{
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_rate_pcal_info *rpinfo;
	u8 idx_l, idx_r;
	u8 mode, max, i;
	u32 target = channel->center_freq;

	idx_l = 0;
	idx_r = 0;

	if (!(channel->hw_value & CHANNEL_OFDM)) {
		rpinfo = ee->ee_rate_tpwr_b;
		mode = AR5K_EEPROM_MODE_11B;
	} else if (channel->hw_value & CHANNEL_2GHZ) {
		rpinfo = ee->ee_rate_tpwr_g;
		mode = AR5K_EEPROM_MODE_11G;
	} else {
		rpinfo = ee->ee_rate_tpwr_a;
		mode = AR5K_EEPROM_MODE_11A;
	}
	max = ee->ee_rate_target_pwr_num[mode] - 1;

	/* Get the surrounding calibration
	 * piers - same as above */
	if (target < rpinfo[0].freq) {
		idx_l = idx_r = 0;
		goto done;
	}

	if (target > rpinfo[max].freq) {
		idx_l = idx_r = max;
		goto done;
	}

	for (i = 0; i <= max; i++) {

		if (rpinfo[i].freq == target) {
			idx_l = idx_r = i;
			goto done;
		}

		if (target < rpinfo[i].freq) {
			idx_r = i;
			idx_l = idx_r - 1;
			goto done;
		}
	}

done:
	/* Now interpolate power value, based on the frequency */
	rates->freq = target;

	rates->target_power_6to24 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_6to24,
					rpinfo[idx_r].target_power_6to24);

	rates->target_power_36 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_36,
					rpinfo[idx_r].target_power_36);

	rates->target_power_48 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_48,
					rpinfo[idx_r].target_power_48);

	rates->target_power_54 =
		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
					rpinfo[idx_r].freq,
					rpinfo[idx_l].target_power_54,
					rpinfo[idx_r].target_power_54);
}

/*
 * Get the max edge power for this channel if
 * we have such data from EEPROM's Conformance Test
 * Limits (CTL), and limit max power if needed.
 */
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
			struct ieee80211_channel *channel)
{
2201
	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
	u8 *ctl_val = ee->ee_ctl;
	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
	s16 edge_pwr = 0;
	u8 rep_idx;
	u8 i, ctl_mode;
	u8 ctl_idx = 0xFF;
	u32 target = channel->center_freq;

2212
	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2213

2214 2215
	switch (channel->hw_value & CHANNEL_MODES) {
	case CHANNEL_A:
2216
		ctl_mode |= AR5K_CTL_11A;
2217 2218
		break;
	case CHANNEL_G:
2219
		ctl_mode |= AR5K_CTL_11G;
2220 2221
		break;
	case CHANNEL_B:
2222
		ctl_mode |= AR5K_CTL_11B;
2223 2224
		break;
	case CHANNEL_T:
2225
		ctl_mode |= AR5K_CTL_TURBO;
2226 2227
		break;
	case CHANNEL_TG:
2228
		ctl_mode |= AR5K_CTL_TURBOG;
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		break;
	case CHANNEL_XR:
		/* Fall through */
	default:
		return;
	}

	for (i = 0; i < ee->ee_ctls; i++) {
		if (ctl_val[i] == ctl_mode) {
			ctl_idx = i;
			break;
		}
	}

	/* If we have a CTL dataset available grab it and find the
	 * edge power for our frequency */
	if (ctl_idx == 0xFF)
		return;

	/* Edge powers are sorted by frequency from lower
	 * to higher. Each CTL corresponds to 8 edge power
	 * measurements. */
	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;

	/* Don't do boundaries check because we
	 * might have more that one bands defined
	 * for this mode */

	/* Get the edge power that's closer to our
	 * frequency */
	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
		rep_idx += i;
		if (target <= rep[rep_idx].freq)
			edge_pwr = (s16) rep[rep_idx].edge;
	}

	if (edge_pwr)
		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
}


/*
 * Power to PCDAC table functions
 */

2274
/*
2275 2276 2277 2278 2279
 * Fill Power to PCDAC table on RF5111
 *
 * No further processing is needed for RF5111, the only thing we have to
 * do is fill the values below and above calibration range since eeprom data
 * may not cover the entire PCDAC table.
2280
 */
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
							s16 *table_max)
{
	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
	s16	min_pwr, max_pwr;

	/* Get table boundaries */
	min_pwr = table_min[0];
	pcdac_0 = pcdac_tmp[0];

	max_pwr = table_max[0];
	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];

	/* Extrapolate below minimum using pcdac_0 */
	pcdac_i = 0;
	for (i = 0; i < min_pwr; i++)
		pcdac_out[pcdac_i++] = pcdac_0;

	/* Copy values from pcdac_tmp */
	pwr_idx = min_pwr;
	for (i = 0 ; pwr_idx <= max_pwr &&
	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
		pcdac_out[pcdac_i++] = pcdac_tmp[i];
		pwr_idx++;
	}

	/* Extrapolate above maximum */
	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
		pcdac_out[pcdac_i++] = pcdac_n;

}
2315 2316

/*
2317 2318 2319 2320 2321 2322 2323 2324 2325
 * Combine available XPD Curves and fill Linear Power to PCDAC table
 * on RF5112
 *
 * RFX112 can have up to 2 curves (one for low txpower range and one for
 * higher txpower range). We need to put them both on pcdac_out and place
 * them in the correct location. In case we only have one curve available
 * just fit it on pcdac_out (it's supposed to cover the entire range of
 * available pwr levels since it's always the higher power curve). Extrapolate
 * below and above final table if needed.
2326
 */
2327 2328 2329
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
						s16 *table_max, u8 pdcurves)
2330
{
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
	u8	*pcdac_low_pwr;
	u8	*pcdac_high_pwr;
	u8	*pcdac_tmp;
	u8	pwr;
	s16	max_pwr_idx;
	s16	min_pwr_idx;
	s16	mid_pwr_idx = 0;
	/* Edge flag turs on the 7nth bit on the PCDAC
	 * to delcare the higher power curve (force values
	 * to be greater than 64). If we only have one curve
	 * we don't need to set this, if we have 2 curves and
	 * fill the table backwards this can also be used to
	 * switch from higher power curve to lower power curve */
	u8	edge_flag;
	int	i;

	/* When we have only one curve available
	 * that's the higher power curve. If we have
	 * two curves the first is the high power curve
	 * and the next is the low power curve. */
	if (pdcurves > 1) {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		mid_pwr_idx = table_max[1] - table_min[1] - 1;
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;

		/* If table size goes beyond 31.5dB, keep the
		 * upper 31.5dB range when setting tx power.
		 * Note: 126 = 31.5 dB in quarter dB steps */
		if (table_max[0] - table_min[1] > 126)
			min_pwr_idx = table_max[0] - 126;
		else
			min_pwr_idx = table_min[1];

		/* Since we fill table backwards
		 * start from high power curve */
		pcdac_tmp = pcdac_high_pwr;

		edge_flag = 0x40;
#if 0
		/* If both min and max power limits are in lower
		 * power curve's range, only use the low power curve.
		 * TODO: min/max levels are related to target
		 * power values requested from driver/user
		 * XXX: Is this really needed ? */
		if (min_pwr < table_max[1] &&
		max_pwr < table_max[1]) {
			edge_flag = 0;
			pcdac_tmp = pcdac_low_pwr;
			max_pwr_idx = (table_max[1] - table_min[1])/2;
		}
2383
#endif
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	} else {
		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
		min_pwr_idx = table_min[0];
		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
		pcdac_tmp = pcdac_high_pwr;
		edge_flag = 0;
	}

	/* This is used when setting tx power*/
	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;

	/* Fill Power to PCDAC table backwards */
	pwr = max_pwr_idx;
	for (i = 63; i >= 0; i--) {
		/* Entering lower power range, reset
		 * edge flag and set pcdac_tmp to lower
		 * power curve.*/
		if (edge_flag == 0x40 &&
		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
			edge_flag = 0x00;
			pcdac_tmp = pcdac_low_pwr;
			pwr = mid_pwr_idx/2;
		}

		/* Don't go below 1, extrapolate below if we have
		 * already swithced to the lower power curve -or
		 * we only have one curve and edge_flag is zero
		 * anyway */
		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
			while (i >= 0) {
				pcdac_out[i] = pcdac_out[i + 1];
				i--;
			}
			break;
		}

		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;

		/* Extrapolate above if pcdac is greater than
		 * 126 -this can happen because we OR pcdac_out
		 * value with edge_flag on high power curve */
		if (pcdac_out[i] > 126)
			pcdac_out[i] = 126;

		/* Decrease by a 0.5dB step */
		pwr--;
	}
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/* Write PCDAC values on hw */
static void
ath5k_setup_pcdac_table(struct ath5k_hw *ah)
{
	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
	int	i;

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		ath5k_hw_reg_write(ah,
			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
			AR5K_PHY_PCDAC_TXPOWER(i));
	}
}


2453
/*
2454
 * Power to PDADC table functions
2455
 */
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466

/*
 * Set the gain boundaries and create final Power to PDADC table
 *
 * We can have up to 4 pd curves, we need to do a simmilar process
 * as we do for RF5112. This time we don't have an edge_flag but we
 * set the gain boundaries on a separate register.
 */
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2467
{
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
	u8 *pdadc_tmp;
	s16 pdadc_0;
	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
	u8 pd_gain_overlap;

	/* Note: Register value is initialized on initvals
	 * there is no feedback from hw.
	 * XXX: What about pd_gain_overlap from EEPROM ? */
	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;

	/* Create final PDADC table */
	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
		pdadc_tmp = ah->ah_txpower.tmpL[pdg];

		if (pdg == pdcurves - 1)
			/* 2 dB boundary stretch for last
			 * (higher power) curve */
			gain_boundaries[pdg] = pwr_max[pdg] + 4;
		else
			/* Set gain boundary in the middle
			 * between this curve and the next one */
			gain_boundaries[pdg] =
				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;

		/* Sanity check in case our 2 db stretch got out of
		 * range. */
		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;

		/* For the first curve (lower power)
		 * start from 0 dB */
		if (pdg == 0)
			pdadc_0 = 0;
		else
			/* For the other curves use the gain overlap */
			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
							pd_gain_overlap;
2508

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
		else
			pwr_step = 1;

		/* If pdadc_0 is negative, we need to extrapolate
		 * below this pdgain by a number of pwr_steps */
		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
			pdadc_0++;
		}

		/* Set last pwr level, using gain boundaries */
		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
		/* Limit it to be inside pwr range */
		table_size = pwr_max[pdg] - pwr_min[pdg];
		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;

		/* Fill pdadc_out table */
		while (pdadc_0 < max_idx)
			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];

		/* Need to extrapolate above this pdgain? */
		if (pdadc_n <= max_idx)
			continue;

		/* Force each power step to be at least 0.5 dB */
		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
			pwr_step = pdadc_tmp[table_size - 1] -
						pdadc_tmp[table_size - 2];
		else
			pwr_step = 1;

		/* Extrapolate above */
		while ((pdadc_0 < (s16) pdadc_n) &&
		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
			s16 tmp = pdadc_tmp[table_size - 1] +
					(pdadc_0 - max_idx) * pwr_step;
			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
			pdadc_0++;
		}
2552 2553
	}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
		pdg++;
	}

	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
		pdadc_i++;
	}

	/* Set gain boundaries */
	ath5k_hw_reg_write(ah,
		AR5K_REG_SM(pd_gain_overlap,
			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
		AR5K_REG_SM(gain_boundaries[0],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
		AR5K_REG_SM(gain_boundaries[1],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
		AR5K_REG_SM(gain_boundaries[2],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
		AR5K_REG_SM(gain_boundaries[3],
			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
		AR5K_PHY_TPC_RG5);

	/* Used for setting rate power table */
	ah->ah_txpower.txp_min_idx = pwr_min[0];

}

/* Write PDADC values on hw */
static void
ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
			u8 pdcurves, u8 *pdg_to_idx)
{
	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
	u32 reg;
	u8 i;

	/* Select the right pdgain curves */

	/* Clear current settings */
	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
		AR5K_PHY_TPC_RG1_PDGAIN_2 |
		AR5K_PHY_TPC_RG1_PDGAIN_3 |
		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);

N
Nick Kossifidis 已提交
2601
	/*
2602
	 * Use pd_gains curve from eeprom
N
Nick Kossifidis 已提交
2603
	 *
2604 2605 2606 2607
	 * This overrides the default setting from initvals
	 * in case some vendors (e.g. Zcomax) don't use the default
	 * curves. If we don't honor their settings we 'll get a
	 * 5dB (1 * gain overlap ?) drop.
N
Nick Kossifidis 已提交
2608
	 */
2609
	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
N
Nick Kossifidis 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	switch (pdcurves) {
	case 3:
		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
		/* Fall through */
	case 2:
		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
		/* Fall through */
	case 1:
		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
		break;
	}
	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2623 2624 2625 2626 2627 2628

	/*
	 * Write TX power values
	 */
	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
		ath5k_hw_reg_write(ah,
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
			((pdadc_out[4*i + 0] & 0xff) << 0) |
			((pdadc_out[4*i + 1] & 0xff) << 8) |
			((pdadc_out[4*i + 2] & 0xff) << 16) |
			((pdadc_out[4*i + 3] & 0xff) << 24),
			AR5K_PHY_PDADC_TXPOWER(i));
	}
}


/*
 * Common code for PCDAC/PDADC tables
 */

/*
 * This is the main function that uses all of the above
 * to set PCDAC/PDADC table on hw for the current channel.
 * This table is used for tx power calibration on the basband,
 * without it we get weird tx power levels and in some cases
 * distorted spectral mask
 */
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
			struct ieee80211_channel *channel,
			u8 ee_mode, u8 type)
{
	struct ath5k_pdgain_info *pdg_L, *pdg_R;
	struct ath5k_chan_pcal_info *pcinfo_L;
	struct ath5k_chan_pcal_info *pcinfo_R;
	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
	u8 *tmpL;
	u8 *tmpR;
	u32 target = channel->center_freq;
	int pdg, i;

	/* Get surounding freq piers for this channel */
	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
						&pcinfo_L,
						&pcinfo_R);

	/* Loop over pd gain curves on
	 * surounding freq piers by index */
	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {

		/* Fill curves in reverse order
		 * from lower power (max gain)
		 * to higher power. Use curve -> idx
		 * backmaping we did on eeprom init */
		u8 idx = pdg_curve_to_idx[pdg];

		/* Grab the needed curves by index */
		pdg_L = &pcinfo_L->pd_curves[idx];
		pdg_R = &pcinfo_R->pd_curves[idx];

		/* Initialize the temp tables */
		tmpL = ah->ah_txpower.tmpL[pdg];
		tmpR = ah->ah_txpower.tmpR[pdg];

		/* Set curve's x boundaries and create
		 * curves so that they cover the same
		 * range (if we don't do that one table
		 * will have values on some range and the
		 * other one won't have any so interpolation
		 * will fail) */
		table_min[pdg] = min(pdg_L->pd_pwr[0],
					pdg_R->pd_pwr[0]) / 2;

		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;

		/* Now create the curves on surrounding channels
		 * and interpolate if needed to get the final
		 * curve for this gain on this channel */
		switch (type) {
		case AR5K_PWRTABLE_LINEAR_PCDAC:
			/* Override min/max so that we don't loose
			 * accuracy (don't divide by 2) */
			table_min[pdg] = min(pdg_L->pd_pwr[0],
						pdg_R->pd_pwr[0]);

			table_max[pdg] =
				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
					pdg_R->pd_pwr[pdg_R->pd_points - 1]);

			/* Override minimum so that we don't get
			 * out of bounds while extrapolating
			 * below. Don't do this when we have 2
			 * curves and we are on the high power curve
			 * because table_min is ok in this case */
			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {

				table_min[pdg] =
					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
								pdg_R->pd_step,
								pdg_L->pd_pwr,
								pdg_R->pd_pwr);

				/* Don't go too low because we will
				 * miss the upper part of the curve.
				 * Note: 126 = 31.5dB (max power supported)
				 * in 0.25dB units */
				if (table_max[pdg] - table_min[pdg] > 126)
					table_min[pdg] = table_max[pdg] - 126;
			}

			/* Fall through */
		case AR5K_PWRTABLE_PWR_TO_PCDAC:
		case AR5K_PWRTABLE_PWR_TO_PDADC:

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_L->pd_pwr,
						pdg_L->pd_step,
						pdg_L->pd_points, tmpL, type);

			/* We are in a calibration
			 * pier, no need to interpolate
			 * between freq piers */
			if (pcinfo_L == pcinfo_R)
				continue;

			ath5k_create_power_curve(table_min[pdg],
						table_max[pdg],
						pdg_R->pd_pwr,
						pdg_R->pd_step,
						pdg_R->pd_points, tmpR, type);
			break;
		default:
			return -EINVAL;
		}

		/* Interpolate between curves
		 * of surounding freq piers to
		 * get the final curve for this
		 * pd gain. Re-use tmpL for interpolation
		 * output */
		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
							(s16) pcinfo_L->freq,
							(s16) pcinfo_R->freq,
							(s16) tmpL[i],
							(s16) tmpR[i]);
		}
2775 2776
	}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/* Now we have a set of curves for this
	 * channel on tmpL (x range is table_max - table_min
	 * and y values are tmpL[pdg][]) sorted in the same
	 * order as EEPROM (because we've used the backmaping).
	 * So for RF5112 it's from higher power to lower power
	 * and for RF2413 it's from lower power to higher power.
	 * For RF5111 we only have one curve. */

	/* Fill min and max power levels for this
	 * channel by interpolating the values on
	 * surounding channels to complete the dataset */
	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->min_pwr, pcinfo_R->min_pwr);

	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
					(s16) pcinfo_L->freq,
					(s16) pcinfo_R->freq,
					pcinfo_L->max_pwr, pcinfo_R->max_pwr);

	/* We are ready to go, fill PCDAC/PDADC
	 * table and write settings on hardware */
	switch (type) {
	case AR5K_PWRTABLE_LINEAR_PCDAC:
		/* For RF5112 we can have one or two curves
		 * and each curve covers a certain power lvl
		 * range so we need to do some more processing */
		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Set txp.offset so that we can
		 * match max power value with max
		 * table index */
		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);

		/* Write settings on hw */
		ath5k_setup_pcdac_table(ah);
		break;
	case AR5K_PWRTABLE_PWR_TO_PCDAC:
		/* We are done for RF5111 since it has only
		 * one curve, just fit the curve on the table */
		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);

		/* No rate powertable adjustment for RF5111 */
		ah->ah_txpower.txp_min_idx = 0;
		ah->ah_txpower.txp_offset = 0;

		/* Write settings on hw */
		ath5k_setup_pcdac_table(ah);
		break;
	case AR5K_PWRTABLE_PWR_TO_PDADC:
		/* Set PDADC boundaries and fill
		 * final PDADC table */
		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
						ee->ee_pd_gains[ee_mode]);

		/* Write settings on hw */
		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);

		/* Set txp.offset, note that table_min
		 * can be negative */
		ah->ah_txpower.txp_offset = table_min[0];
		break;
	default:
		return -EINVAL;
	}

	return 0;
}


/*
 * Per-rate tx power setting
 *
 * This is the code that sets the desired tx power (below
 * maximum) on hw for each rate (we also have TPC that sets
 * power per packet). We do that by providing an index on the
 * PCDAC/PDADC table we set up.
 */

/*
 * Set rate power table
 *
 * For now we only limit txpower based on maximum tx power
 * supported by hw (what's inside rate_info). We need to limit
 * this even more, based on regulatory domain etc.
 *
 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
 * and is indexed as follows:
 * rates[0] - rates[7] -> OFDM rates
 * rates[8] - rates[14] -> CCK rates
 * rates[15] -> XR rates (they all have the same power)
 */
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
			struct ath5k_rate_pcal_info *rate_info,
			u8 ee_mode)
{
	unsigned int i;
	u16 *rates;

	/* max_pwr is power level we got from driver/user in 0.5dB
	 * units, switch to 0.25dB units so we can compare */
	max_pwr *= 2;
	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;

	/* apply rate limits */
	rates = ah->ah_txpower.txp_rates_power_table;

	/* OFDM rates 6 to 24Mb/s */
	for (i = 0; i < 5; i++)
		rates[i] = min(max_pwr, rate_info->target_power_6to24);

	/* Rest OFDM rates */
	rates[5] = min(rates[0], rate_info->target_power_36);
	rates[6] = min(rates[0], rate_info->target_power_48);
	rates[7] = min(rates[0], rate_info->target_power_54);

	/* CCK rates */
	/* 1L */
	rates[8] = min(rates[0], rate_info->target_power_6to24);
	/* 2L */
	rates[9] = min(rates[0], rate_info->target_power_36);
	/* 2S */
	rates[10] = min(rates[0], rate_info->target_power_36);
	/* 5L */
	rates[11] = min(rates[0], rate_info->target_power_48);
	/* 5S */
	rates[12] = min(rates[0], rate_info->target_power_48);
	/* 11L */
	rates[13] = min(rates[0], rate_info->target_power_54);
	/* 11S */
	rates[14] = min(rates[0], rate_info->target_power_54);

	/* XR rates */
	rates[15] = min(rates[0], rate_info->target_power_6to24);

	/* CCK rates have different peak to average ratio
	 * so we have to tweak their power so that gainf
	 * correction works ok. For this we use OFDM to
	 * CCK delta from eeprom */
	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
		for (i = 8; i <= 15; i++)
			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	/* Now that we have all rates setup use table offset to
	 * match the power range set by user with the power indices
	 * on PCDAC/PDADC table */
	for (i = 0; i < 16; i++) {
		rates[i] += ah->ah_txpower.txp_offset;
		/* Don't get out of bounds */
		if (rates[i] > 63)
			rates[i] = 63;
	}

	/* Min/max in 0.25dB units */
	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	ah->ah_txpower.txp_ofdm = rates[7];
}


/*
 * Set transmition power
 */
int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
		u8 ee_mode, u8 txpower)
{
	struct ath5k_rate_pcal_info rate_info;
	u8 type;
	int ret;

	ATH5K_TRACE(ah->ah_sc);
	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
		return -EINVAL;
	}
	if (txpower == 0)
		txpower = AR5K_TUNE_DEFAULT_TXPOWER;

	/* Reset TX power values */
	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
	ah->ah_txpower.txp_min_pwr = 0;
	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;

	/* Initialize TX power table */
	switch (ah->ah_radio) {
	case AR5K_RF5111:
		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
		break;
	case AR5K_RF5112:
		type = AR5K_PWRTABLE_LINEAR_PCDAC;
		break;
	case AR5K_RF2413:
	case AR5K_RF5413:
	case AR5K_RF2316:
	case AR5K_RF2317:
	case AR5K_RF2425:
		type = AR5K_PWRTABLE_PWR_TO_PDADC;
		break;
	default:
		return -EINVAL;
	}

	/* FIXME: Only on channel/mode change */
	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
	if (ret)
		return ret;

	/* Limit max power if we have a CTL available */
	ath5k_get_max_ctl_power(ah, channel);

	/* FIXME: Tx power limit for this regdomain
	 * XXX: Mac80211/CRDA will do that anyway ? */

	/* FIXME: Antenna reduction stuff */

	/* FIXME: Limit power on turbo modes */

	/* FIXME: TPC scale reduction */

	/* Get surounding channels for per-rate power table
	 * calibration */
	ath5k_get_rate_pcal_data(ah, channel, &rate_info);

	/* Setup rate power table */
	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);

	/* Write rate power table on hw */
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);

	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);

3026 3027
	/* FIXME: TPC support */
	if (ah->ah_txpower.txp_tpc) {
3028 3029
		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3030 3031 3032 3033 3034 3035 3036

		ath5k_hw_reg_write(ah,
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
			AR5K_TPC);
	} else {
3037 3038
		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3039
	}
3040 3041 3042 3043

	return 0;
}

3044
int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3045 3046
{
	/*Just a try M.F.*/
B
Bob Copeland 已提交
3047
	struct ieee80211_channel *channel = ah->ah_current_channel;
3048
	u8 ee_mode;
3049 3050

	ATH5K_TRACE(ah->ah_sc);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

	switch (channel->hw_value & CHANNEL_MODES) {
	case CHANNEL_A:
	case CHANNEL_T:
	case CHANNEL_XR:
		ee_mode = AR5K_EEPROM_MODE_11A;
		break;
	case CHANNEL_G:
	case CHANNEL_TG:
		ee_mode = AR5K_EEPROM_MODE_11G;
		break;
	case CHANNEL_B:
		ee_mode = AR5K_EEPROM_MODE_11B;
		break;
	default:
		ATH5K_ERR(ah->ah_sc,
			"invalid channel: %d\n", channel->center_freq);
		return -EINVAL;
	}

3071
	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3072
		"changing txpower to %d\n", txpower);
3073

3074
	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3075
}
N
Nick Kossifidis 已提交
3076 3077

#undef _ATH5K_PHY