atl1c_hw.c 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
 *
 * Derived from Intel e1000 driver
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>

#include "atl1c.h"

/*
 * check_eeprom_exist
 * return 1 if eeprom exist
 */
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
	if (data & TWSI_DEBUG_DEV_EXIST)
		return 1;

40 41 42
	AT_READ_REG(hw, REG_MASTER_CTRL, &data);
	if (data & MASTER_CTRL_OTP_SEL)
		return 1;
43 44 45
	return 0;
}

46
void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
47 48 49 50 51 52 53
{
	u32 value;
	/*
	 * 00-0B-6A-F6-00-DC
	 * 0:  6AF600DC 1: 000B
	 * low dword
	 */
54 55 56 57
	value = mac_addr[2] << 24 |
		mac_addr[3] << 16 |
		mac_addr[4] << 8  |
		mac_addr[5];
58 59
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
	/* hight dword */
60 61
	value = mac_addr[0] << 8 |
		mac_addr[1];
62 63 64
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/* read mac address from hardware register */
static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
{
	u32 addr[2];

	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);

	*(u32 *) &eth_addr[2] = htonl(addr[0]);
	*(u16 *) &eth_addr[0] = htons((u16)addr[1]);

	return is_valid_ether_addr(eth_addr);
}

79 80 81 82 83 84 85 86 87
/*
 * atl1c_get_permanent_address
 * return 0 if get valid mac address,
 */
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
{
	u32 i;
	u32 otp_ctrl_data;
	u32 twsi_ctrl_data;
88 89
	u16 phy_data;
	bool raise_vol = false;
90

91 92 93 94
	/* MAC-address from BIOS is the 1st priority */
	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
		return 0;

95 96 97
	/* init */
	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
	if (atl1c_check_eeprom_exist(hw)) {
98
		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
99 100 101 102 103 104 105 106
			/* Enable OTP CLK */
			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
				otp_ctrl_data |= OTP_CTRL_CLK_EN;
				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
				AT_WRITE_FLUSH(hw);
				msleep(1);
			}
		}
107 108 109 110 111 112 113 114
		/* raise voltage temporally for l2cb */
		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
			atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
			phy_data &= ~ANACTRL_HB_EN;
			atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
			phy_data |= VOLT_CTRL_SWLOWEST;
			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
115 116
			udelay(20);
			raise_vol = true;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
		}

		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
			msleep(10);
			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
				break;
		}
		if (i >= AT_TWSI_EEPROM_TIMEOUT)
			return -1;
	}
	/* Disable OTP_CLK */
132
	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
133 134 135
		otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
		msleep(1);
136 137
	}
	if (raise_vol) {
138 139 140 141 142 143 144
		atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
		phy_data |= ANACTRL_HB_EN;
		atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
		atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
		phy_data &= ~VOLT_CTRL_SWLOWEST;
		atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
		udelay(20);
145 146
	}

147
	if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
148 149 150 151 152 153 154 155
		return 0;

	return -1;
}

bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
{
	int i;
156
	bool ret = false;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	u32 otp_ctrl_data;
	u32 control;
	u32 data;

	if (offset & 3)
		return ret; /* address do not align */

	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
		AT_WRITE_REG(hw, REG_OTP_CTRL,
				(otp_ctrl_data | OTP_CTRL_CLK_EN));

	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);

	for (i = 0; i < 10; i++) {
		udelay(100);
		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
		if (control & EEPROM_CTRL_RW)
			break;
	}
	if (control & EEPROM_CTRL_RW) {
		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
		data = data & 0xFFFF;
		*p_value = swab32((data << 16) | (*p_value >> 16));
		ret = true;
	}
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);

	return ret;
}
/*
 * Reads the adapter's MAC address from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 */
int atl1c_read_mac_addr(struct atl1c_hw *hw)
{
	int err = 0;

	err = atl1c_get_permanent_address(hw);
	if (err)
J
Joe Perches 已提交
202
		eth_random_addr(hw->perm_mac_addr);
203 204

	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
205
	return err;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
}

/*
 * atl1c_hash_mc_addr
 *  purpose
 *      set hash value for a multicast address
 *      hash calcu processing :
 *          1. calcu 32bit CRC for multicast address
 *          2. reverse crc with MSB to LSB
 */
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
{
	u32 crc32;
	u32 value = 0;
	int i;

	crc32 = ether_crc_le(6, mc_addr);
	for (i = 0; i < 32; i++)
		value |= (((crc32 >> i) & 1) << (31 - i));

	return value;
}

/*
 * Sets the bit in the multicast table corresponding to the hash value.
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 */
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
{
	u32 hash_bit, hash_reg;
	u32 mta;

	/*
	 * The HASH Table  is a register array of 2 32-bit registers.
	 * It is treated like an array of 64 bits.  We want to set
	 * bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The register is determined by the
	 * upper bit of the hash value and the bit within that
	 * register are determined by the lower 5 bits of the value.
	 */
	hash_reg = (hash_value >> 31) & 0x1;
	hash_bit = (hash_value >> 26) & 0x1F;

	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);

	mta |= (1 << hash_bit);

	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}

/*
259 260 261
 * wait mdio module be idle
 * return true: idle
 *        false: still busy
262
 */
263
bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
264 265 266 267
{
	u32 val;
	int i;

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	for (i = 0; i < MDIO_MAX_AC_TO; i++) {
		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
		if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
			break;
		udelay(10);
	}

	return i != MDIO_MAX_AC_TO;
}

void atl1c_stop_phy_polling(struct atl1c_hw *hw)
{
	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
		return;

	AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
	atl1c_wait_mdio_idle(hw);
}

void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
{
	u32 val;

	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
		return;
293

294 295 296 297 298
	val = MDIO_CTRL_SPRES_PRMBL |
		FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
		FIELDX(MDIO_CTRL_REG, 1) |
		MDIO_CTRL_START |
		MDIO_CTRL_OP_READ;
299
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
300 301 302 303 304 305
	atl1c_wait_mdio_idle(hw);
	val |= MDIO_CTRL_AP_EN;
	val &= ~MDIO_CTRL_START;
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
	udelay(30);
}
306

307 308 309

/*
 * atl1c_read_phy_core
310
 * core function to read register in PHY via MDIO control regsiter.
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
 * ext: extension register (see IEEE 802.3)
 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
 * reg: reg to read
 */
int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
			u16 reg, u16 *phy_data)
{
	u32 val;
	u16 clk_sel = MDIO_CTRL_CLK_25_4;

	atl1c_stop_phy_polling(hw);

	*phy_data = 0;

	/* only l2c_b2 & l1d_2 could use slow clock */
	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
		hw->hibernate)
		clk_sel = MDIO_CTRL_CLK_25_128;
	if (ext) {
		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			MDIO_CTRL_START |
			MDIO_CTRL_MODE_EXT |
			MDIO_CTRL_OP_READ;
	} else {
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_REG, reg) |
			MDIO_CTRL_START |
			MDIO_CTRL_OP_READ;
343
	}
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);

	if (!atl1c_wait_mdio_idle(hw))
		return -1;

	AT_READ_REG(hw, REG_MDIO_CTRL, &val);
	*phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);

	atl1c_start_phy_polling(hw, clk_sel);

	return 0;
}

/*
 * atl1c_write_phy_core
359
 * core function to write to register in PHY via MDIO control register.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
 * ext: extension register (see IEEE 802.3)
 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
 * reg: reg to write
 */
int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
			u16 reg, u16 phy_data)
{
	u32 val;
	u16 clk_sel = MDIO_CTRL_CLK_25_4;

	atl1c_stop_phy_polling(hw);


	/* only l2c_b2 & l1d_2 could use slow clock */
	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
		hw->hibernate)
		clk_sel = MDIO_CTRL_CLK_25_128;

	if (ext) {
		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_DATA, phy_data) |
			MDIO_CTRL_START |
			MDIO_CTRL_MODE_EXT;
	} else {
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_DATA, phy_data) |
			FIELDX(MDIO_CTRL_REG, reg) |
			MDIO_CTRL_START;
392
	}
393
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	if (!atl1c_wait_mdio_idle(hw))
		return -1;

	atl1c_start_phy_polling(hw, clk_sel);

	return 0;
}

/*
 * Reads the value from a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to read
 */
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
	return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
411 412 413 414 415 416 417 418 419 420
}

/*
 * Writes a value to a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to write
 * data - data to write to the PHY
 */
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
{
421 422
	return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
}
423

424 425 426 427 428 429
/* read from PHY extension register */
int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
			u16 reg_addr, u16 *phy_data)
{
	return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
}
430

431 432 433 434 435
/* write to PHY extension register */
int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
			u16 reg_addr, u16 phy_data)
{
	return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
436 437
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
	int err;

	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
	if (unlikely(err))
		return err;
	else
		err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);

	return err;
}

int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
{
	int err;

	err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
	if (unlikely(err))
		return err;
	else
		err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);

	return err;
}

464 465 466 467 468 469 470
/*
 * Configures PHY autoneg and flow control advertisement settings
 *
 * hw - Struct containing variables accessed by shared code
 */
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
{
471
	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
				~GIGA_CR_1000T_SPEED_MASK;

	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
		mii_adv_data |= ADVERTISE_10HALF;
	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
		mii_adv_data |= ADVERTISE_10FULL;
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
		mii_adv_data |= ADVERTISE_100HALF;
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
		mii_adv_data |= ADVERTISE_100FULL;

	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
				ADVERTISE_100HALF | ADVERTISE_100FULL;

488
	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
489 490 491 492 493 494 495 496 497 498
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
					ADVERTISE_1000FULL;
	}

	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
499
	    atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
500 501 502 503 504 505
		return -1;
	return 0;
}

void atl1c_phy_disable(struct atl1c_hw *hw)
{
506
	atl1c_power_saving(hw, 0);
507 508 509 510 511 512 513
}


int atl1c_phy_reset(struct atl1c_hw *hw)
{
	struct atl1c_adapter *adapter = hw->adapter;
	struct pci_dev *pdev = adapter->pdev;
514
	u16 phy_data;
515
	u32 phy_ctrl_data, lpi_ctrl;
516 517
	int err;

518 519 520 521 522 523 524 525 526
	/* reset PHY core */
	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
	phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
		GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
	phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
		phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
	else
		phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
527 528
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
	AT_WRITE_FLUSH(hw);
529 530
	udelay(10);
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
531
	AT_WRITE_FLUSH(hw);
532
	udelay(10 * GPHY_CTRL_EXT_RST_TO);	/* delay 800us */
533

534
	/* switch clock */
535
	if (hw->nic_type == athr_l2c_b) {
536 537 538
		atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
		atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
			phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
539 540
	}

541 542 543 544 545
	/* tx-half amplitude issue fix */
	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
		atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
		phy_data |= CABLE1TH_DET_EN;
		atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
546
	}
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	/* clear bit3 of dbgport 3B to lower voltage */
	if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
		if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
			atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
			phy_data &= ~VOLT_CTRL_SWLOWEST;
			atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
		}
		/* power saving config */
		phy_data =
			hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
			L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
		/* hib */
		atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
			SYSMODCTRL_IECHOADJ_DEF);
	} else {
		/* disable pws */
		atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
		atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
			phy_data & ~LEGCYPS_EN);
		/* disable hibernate */
		atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
		atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
			phy_data & HIBNEG_PSHIB_EN);
572
	}
573 574 575 576 577 578 579 580
	/* disable AZ(EEE) by default */
	if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
	    hw->nic_type == athr_l2c_b2) {
		AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
		AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
		atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
		atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
			L2CB_CLDCTRL3);
581
	}
582 583 584 585 586 587 588 589 590 591 592 593

	/* other debug port to set */
	atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
	atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
	atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
	/* UNH-IOL test issue, set bit7 */
	atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
		TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);

	/* set phy interrupt mask */
	phy_data = IER_LINK_UP | IER_LINK_DOWN;
	err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
594 595 596 597 598 599 600 601 602 603 604
	if (err) {
		if (netif_msg_hw(adapter))
			dev_err(&pdev->dev,
				"Error enable PHY linkChange Interrupt\n");
		return err;
	}
	return 0;
}

int atl1c_phy_init(struct atl1c_hw *hw)
{
605
	struct atl1c_adapter *adapter = hw->adapter;
606 607 608 609
	struct pci_dev *pdev = adapter->pdev;
	int ret_val;
	u16 mii_bmcr_data = BMCR_RESET;

610 611 612
	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
		(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
		dev_err(&pdev->dev, "Error get phy ID\n");
613 614 615 616 617 618 619 620 621 622 623
		return -1;
	}
	switch (hw->media_type) {
	case MEDIA_TYPE_AUTO_SENSOR:
		ret_val = atl1c_phy_setup_adv(hw);
		if (ret_val) {
			if (netif_msg_link(adapter))
				dev_err(&pdev->dev,
					"Error Setting up Auto-Negotiation\n");
			return ret_val;
		}
624
		mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
625 626
		break;
	case MEDIA_TYPE_100M_FULL:
627
		mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
628 629
		break;
	case MEDIA_TYPE_100M_HALF:
630
		mii_bmcr_data |= BMCR_SPEED100;
631 632
		break;
	case MEDIA_TYPE_10M_FULL:
633
		mii_bmcr_data |= BMCR_FULLDPLX;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
		break;
	case MEDIA_TYPE_10M_HALF:
		break;
	default:
		if (netif_msg_link(adapter))
			dev_err(&pdev->dev, "Wrong Media type %d\n",
				hw->media_type);
		return -1;
	}

	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
	if (ret_val)
		return ret_val;
	hw->phy_configured = true;

	return 0;
}

/*
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 */
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
{
	int err;
	u16 phy_data;

	/* Read   PHY Specific Status Register (17) */
	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
	if (err)
		return err;

	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
		return -1;

	switch (phy_data & GIGA_PSSR_SPEED) {
	case GIGA_PSSR_1000MBS:
		*speed = SPEED_1000;
		break;
	case GIGA_PSSR_100MBS:
		*speed = SPEED_100;
		break;
	case  GIGA_PSSR_10MBS:
		*speed = SPEED_10;
		break;
	default:
		return -1;
	}

	if (phy_data & GIGA_PSSR_DPLX)
		*duplex = FULL_DUPLEX;
	else
		*duplex = HALF_DUPLEX;

	return 0;
}

694 695
/* select one link mode to get lower power consumption */
int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
696
{
697
	struct atl1c_adapter *adapter = hw->adapter;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	struct pci_dev *pdev = adapter->pdev;
	int ret = 0;
	u16 autoneg_advertised = ADVERTISED_10baseT_Half;
	u16 save_autoneg_advertised;
	u16 phy_data;
	u16 mii_lpa_data;
	u16 speed = SPEED_0;
	u16 duplex = FULL_DUPLEX;
	int i;

	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	if (phy_data & BMSR_LSTATUS) {
		atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
		if (mii_lpa_data & LPA_10FULL)
			autoneg_advertised = ADVERTISED_10baseT_Full;
		else if (mii_lpa_data & LPA_10HALF)
			autoneg_advertised = ADVERTISED_10baseT_Half;
		else if (mii_lpa_data & LPA_100HALF)
			autoneg_advertised = ADVERTISED_100baseT_Half;
		else if (mii_lpa_data & LPA_100FULL)
			autoneg_advertised = ADVERTISED_100baseT_Full;

		save_autoneg_advertised = hw->autoneg_advertised;
		hw->phy_configured = false;
		hw->autoneg_advertised = autoneg_advertised;
		if (atl1c_restart_autoneg(hw) != 0) {
			dev_dbg(&pdev->dev, "phy autoneg failed\n");
			ret = -1;
		}
		hw->autoneg_advertised = save_autoneg_advertised;

		if (mii_lpa_data) {
			for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
				mdelay(100);
				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
				if (phy_data & BMSR_LSTATUS) {
					if (atl1c_get_speed_and_duplex(hw, &speed,
									&duplex) != 0)
						dev_dbg(&pdev->dev,
							"get speed and duplex failed\n");
					break;
				}
			}
		}
	} else {
		speed = SPEED_10;
		duplex = HALF_DUPLEX;
	}
	adapter->link_speed = speed;
	adapter->link_duplex = duplex;

	return ret;
}

754 755 756 757 758 759 760 761
int atl1c_restart_autoneg(struct atl1c_hw *hw)
{
	int err = 0;
	u16 mii_bmcr_data = BMCR_RESET;

	err = atl1c_phy_setup_adv(hw);
	if (err)
		return err;
762
	mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
763 764 765

	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
}
766 767 768

int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
{
769
	struct atl1c_adapter *adapter = hw->adapter;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	struct pci_dev *pdev = adapter->pdev;
	u32 master_ctrl, mac_ctrl, phy_ctrl;
	u32 wol_ctrl, speed;
	u16 phy_data;

	wol_ctrl = 0;
	speed = adapter->link_speed == SPEED_1000 ?
		MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;

	AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
	AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
	AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);

	master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
	mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
	mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
	if (adapter->link_duplex == FULL_DUPLEX)
		mac_ctrl |= MAC_CTRL_DUPLX;
	phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
	phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
		GPHY_CTRL_HIB_EN;
	if (!wufc) { /* without WoL */
		master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
		phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
		AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
		AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
		hw->phy_configured = false; /* re-init PHY when resume */
		return 0;
	}
	phy_ctrl |= GPHY_CTRL_EXT_RESET;
	if (wufc & AT_WUFC_MAG) {
		mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
		wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
		if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
			wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
	}
	if (wufc & AT_WUFC_LNKC) {
		wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
		if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
811
			dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
				atl1c_driver_name);
		}
	}
	/* clear PHY interrupt */
	atl1c_read_phy_reg(hw, MII_ISR, &phy_data);

	dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
		atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
	AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
	AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);

	return 0;
}
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863


/* configure phy after Link change Event */
void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
{
	u16 phy_val;
	bool adj_thresh = false;

	if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
	    hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
		adj_thresh = true;

	if (link_speed != SPEED_0) { /* link up */
		/* az with brcm, half-amp */
		if (hw->nic_type == athr_l1d_2) {
			atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
				&phy_val);
			phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
			phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
				AZ_ANADECT_LONG : AZ_ANADECT_DEF;
			atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
		}
		/* threshold adjust */
		if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
				L1D_SYSMODCTRL_IECHOADJ_DEF);
		}
	} else { /* link down */
		if (adj_thresh && hw->msi_lnkpatch) {
			atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
				SYSMODCTRL_IECHOADJ_DEF);
			atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
				L1D_MSE16DB_DOWN);
		}
	}
}