atl1c_hw.c 20.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
 *
 * Derived from Intel e1000 driver
 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/crc32.h>

#include "atl1c.h"

/*
 * check_eeprom_exist
 * return 1 if eeprom exist
 */
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
{
	u32 data;

	AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
	if (data & TWSI_DEBUG_DEV_EXIST)
		return 1;

40 41 42
	AT_READ_REG(hw, REG_MASTER_CTRL, &data);
	if (data & MASTER_CTRL_OTP_SEL)
		return 1;
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	return 0;
}

void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
{
	u32 value;
	/*
	 * 00-0B-6A-F6-00-DC
	 * 0:  6AF600DC 1: 000B
	 * low dword
	 */
	value = (((u32)hw->mac_addr[2]) << 24) |
		(((u32)hw->mac_addr[3]) << 16) |
		(((u32)hw->mac_addr[4]) << 8)  |
		(((u32)hw->mac_addr[5])) ;
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
	/* hight dword */
	value = (((u32)hw->mac_addr[0]) << 8) |
		(((u32)hw->mac_addr[1])) ;
	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}

/*
 * atl1c_get_permanent_address
 * return 0 if get valid mac address,
 */
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
{
	u32 addr[2];
	u32 i;
	u32 otp_ctrl_data;
	u32 twsi_ctrl_data;
75 76
	u32 ltssm_ctrl_data;
	u32 wol_data;
77
	u8  eth_addr[ETH_ALEN];
78 79
	u16 phy_data;
	bool raise_vol = false;
80 81 82 83 84

	/* init */
	addr[0] = addr[1] = 0;
	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
	if (atl1c_check_eeprom_exist(hw)) {
85
		if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
			/* Enable OTP CLK */
			if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
				otp_ctrl_data |= OTP_CTRL_CLK_EN;
				AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
				AT_WRITE_FLUSH(hw);
				msleep(1);
			}
		}

		if (hw->nic_type == athr_l2c_b ||
		    hw->nic_type == athr_l2c_b2 ||
		    hw->nic_type == athr_l1d) {
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
				goto out;
			phy_data &= 0xFF7F;
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);

			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
				goto out;
			phy_data |= 0x8;
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
			udelay(20);
			raise_vol = true;
111
		}
112 113 114 115 116 117 118 119 120
		/* close open bit of ReadOnly*/
		AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &ltssm_ctrl_data);
		ltssm_ctrl_data &= ~LTSSM_ID_EN_WRO;
		AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, ltssm_ctrl_data);

		/* clear any WOL settings */
		AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
		AT_READ_REG(hw, REG_WOL_CTRL, &wol_data);

121 122 123 124 125 126 127 128 129 130 131 132 133 134

		AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
			msleep(10);
			AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
				break;
		}
		if (i >= AT_TWSI_EEPROM_TIMEOUT)
			return -1;
	}
	/* Disable OTP_CLK */
135
	if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
136 137 138
		otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
		msleep(1);
139 140 141 142
	}
	if (raise_vol) {
		if (hw->nic_type == athr_l2c_b ||
		    hw->nic_type == athr_l2c_b2 ||
143 144
		    hw->nic_type == athr_l1d ||
		    hw->nic_type == athr_l1d_2) {
145 146 147 148 149 150 151 152 153 154 155 156 157
			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x00);
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
				goto out;
			phy_data |= 0x80;
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);

			atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
			if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data))
				goto out;
			phy_data &= 0xFFF7;
			atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
			udelay(20);
		}
158 159 160 161 162 163 164 165 166 167 168 169 170
	}

	/* maybe MAC-address is from BIOS */
	AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
	AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
	*(u32 *) &eth_addr[2] = swab32(addr[0]);
	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);

	if (is_valid_ether_addr(eth_addr)) {
		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
		return 0;
	}

171
out:
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	return -1;
}

bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
{
	int i;
	int ret = false;
	u32 otp_ctrl_data;
	u32 control;
	u32 data;

	if (offset & 3)
		return ret; /* address do not align */

	AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
		AT_WRITE_REG(hw, REG_OTP_CTRL,
				(otp_ctrl_data | OTP_CTRL_CLK_EN));

	AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
	control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
	AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);

	for (i = 0; i < 10; i++) {
		udelay(100);
		AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
		if (control & EEPROM_CTRL_RW)
			break;
	}
	if (control & EEPROM_CTRL_RW) {
		AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
		AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
		data = data & 0xFFFF;
		*p_value = swab32((data << 16) | (*p_value >> 16));
		ret = true;
	}
	if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
		AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);

	return ret;
}
/*
 * Reads the adapter's MAC address from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 */
int atl1c_read_mac_addr(struct atl1c_hw *hw)
{
	int err = 0;

	err = atl1c_get_permanent_address(hw);
	if (err)
		random_ether_addr(hw->perm_mac_addr);

	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
227
	return err;
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
}

/*
 * atl1c_hash_mc_addr
 *  purpose
 *      set hash value for a multicast address
 *      hash calcu processing :
 *          1. calcu 32bit CRC for multicast address
 *          2. reverse crc with MSB to LSB
 */
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
{
	u32 crc32;
	u32 value = 0;
	int i;

	crc32 = ether_crc_le(6, mc_addr);
	for (i = 0; i < 32; i++)
		value |= (((crc32 >> i) & 1) << (31 - i));

	return value;
}

/*
 * Sets the bit in the multicast table corresponding to the hash value.
 * hw - Struct containing variables accessed by shared code
 * hash_value - Multicast address hash value
 */
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
{
	u32 hash_bit, hash_reg;
	u32 mta;

	/*
	 * The HASH Table  is a register array of 2 32-bit registers.
	 * It is treated like an array of 64 bits.  We want to set
	 * bit BitArray[hash_value]. So we figure out what register
	 * the bit is in, read it, OR in the new bit, then write
	 * back the new value.  The register is determined by the
	 * upper bit of the hash value and the bit within that
	 * register are determined by the lower 5 bits of the value.
	 */
	hash_reg = (hash_value >> 31) & 0x1;
	hash_bit = (hash_value >> 26) & 0x1F;

	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);

	mta |= (1 << hash_bit);

	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}

/*
281 282 283
 * wait mdio module be idle
 * return true: idle
 *        false: still busy
284
 */
285
bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
286 287 288 289
{
	u32 val;
	int i;

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	for (i = 0; i < MDIO_MAX_AC_TO; i++) {
		AT_READ_REG(hw, REG_MDIO_CTRL, &val);
		if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
			break;
		udelay(10);
	}

	return i != MDIO_MAX_AC_TO;
}

void atl1c_stop_phy_polling(struct atl1c_hw *hw)
{
	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
		return;

	AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
	atl1c_wait_mdio_idle(hw);
}

void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
{
	u32 val;

	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
		return;
315

316 317 318 319 320
	val = MDIO_CTRL_SPRES_PRMBL |
		FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
		FIELDX(MDIO_CTRL_REG, 1) |
		MDIO_CTRL_START |
		MDIO_CTRL_OP_READ;
321
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
322 323 324 325 326 327
	atl1c_wait_mdio_idle(hw);
	val |= MDIO_CTRL_AP_EN;
	val &= ~MDIO_CTRL_START;
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
	udelay(30);
}
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

/*
 * atl1c_read_phy_core
 * core funtion to read register in PHY via MDIO control regsiter.
 * ext: extension register (see IEEE 802.3)
 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
 * reg: reg to read
 */
int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
			u16 reg, u16 *phy_data)
{
	u32 val;
	u16 clk_sel = MDIO_CTRL_CLK_25_4;

	atl1c_stop_phy_polling(hw);

	*phy_data = 0;

	/* only l2c_b2 & l1d_2 could use slow clock */
	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
		hw->hibernate)
		clk_sel = MDIO_CTRL_CLK_25_128;
	if (ext) {
		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			MDIO_CTRL_START |
			MDIO_CTRL_MODE_EXT |
			MDIO_CTRL_OP_READ;
	} else {
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_REG, reg) |
			MDIO_CTRL_START |
			MDIO_CTRL_OP_READ;
365
	}
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);

	if (!atl1c_wait_mdio_idle(hw))
		return -1;

	AT_READ_REG(hw, REG_MDIO_CTRL, &val);
	*phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);

	atl1c_start_phy_polling(hw, clk_sel);

	return 0;
}

/*
 * atl1c_write_phy_core
 * core funtion to write to register in PHY via MDIO control regsiter.
 * ext: extension register (see IEEE 802.3)
 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
 * reg: reg to write
 */
int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
			u16 reg, u16 phy_data)
{
	u32 val;
	u16 clk_sel = MDIO_CTRL_CLK_25_4;

	atl1c_stop_phy_polling(hw);


	/* only l2c_b2 & l1d_2 could use slow clock */
	if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
		hw->hibernate)
		clk_sel = MDIO_CTRL_CLK_25_128;

	if (ext) {
		val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
		AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_DATA, phy_data) |
			MDIO_CTRL_START |
			MDIO_CTRL_MODE_EXT;
	} else {
		val = MDIO_CTRL_SPRES_PRMBL |
			FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
			FIELDX(MDIO_CTRL_DATA, phy_data) |
			FIELDX(MDIO_CTRL_REG, reg) |
			MDIO_CTRL_START;
414
	}
415
	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	if (!atl1c_wait_mdio_idle(hw))
		return -1;

	atl1c_start_phy_polling(hw, clk_sel);

	return 0;
}

/*
 * Reads the value from a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to read
 */
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
{
	return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
433 434 435 436 437 438 439 440 441 442
}

/*
 * Writes a value to a PHY register
 * hw - Struct containing variables accessed by shared code
 * reg_addr - address of the PHY register to write
 * data - data to write to the PHY
 */
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
{
443 444
	return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
}
445

446 447 448 449 450 451
/* read from PHY extension register */
int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
			u16 reg_addr, u16 *phy_data)
{
	return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
}
452

453 454 455 456 457
/* write to PHY extension register */
int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
			u16 reg_addr, u16 phy_data)
{
	return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
458 459 460 461 462 463 464 465 466
}

/*
 * Configures PHY autoneg and flow control advertisement settings
 *
 * hw - Struct containing variables accessed by shared code
 */
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
{
467
	u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
				~GIGA_CR_1000T_SPEED_MASK;

	if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
		mii_adv_data |= ADVERTISE_10HALF;
	if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
		mii_adv_data |= ADVERTISE_10FULL;
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
		mii_adv_data |= ADVERTISE_100HALF;
	if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
		mii_adv_data |= ADVERTISE_100FULL;

	if (hw->autoneg_advertised & ADVERTISED_Autoneg)
		mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL |
				ADVERTISE_100HALF | ADVERTISE_100FULL;

484
	if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
485 486 487 488 489 490 491 492 493 494
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
			mii_giga_ctrl_data |= ADVERTISE_1000HALF;
		if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
			mii_giga_ctrl_data |= ADVERTISE_1000FULL;
		if (hw->autoneg_advertised & ADVERTISED_Autoneg)
			mii_giga_ctrl_data |= ADVERTISE_1000HALF |
					ADVERTISE_1000FULL;
	}

	if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
495
	    atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		return -1;
	return 0;
}

void atl1c_phy_disable(struct atl1c_hw *hw)
{
	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
}

static void atl1c_phy_magic_data(struct atl1c_hw *hw)
{
	u16 data;

	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
		((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
		ANA_INTERVAL_SEL_TIMER_SHIFT);

	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

	data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
		ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
		ANA_SERDES_EN_LCKDT;

	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

	data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
		((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
		ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
		ANA_BP_SMALL_BW;

	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

	data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
		ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
		ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
		ANA_IECHO_ADJ_0_SHIFT);

	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

	data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
		ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
		ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;

	atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
	atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

	if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
			return;
		data &= ~ANA_TOP_PS_EN;
		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);

		atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
		if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
			return;
		data &= ~ANA_PS_HIB_EN;
		atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
	}
}

int atl1c_phy_reset(struct atl1c_hw *hw)
{
	struct atl1c_adapter *adapter = hw->adapter;
	struct pci_dev *pdev = adapter->pdev;
566
	u16 phy_data;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
	u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
	int err;

	if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
		phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;

	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
	AT_WRITE_FLUSH(hw);
	msleep(40);
	phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
	AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
	AT_WRITE_FLUSH(hw);
	msleep(10);

582 583 584 585 586 587 588 589
	if (hw->nic_type == athr_l2c_b) {
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x0A);
		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xDFFF);
	}

	if (hw->nic_type == athr_l2c_b ||
	    hw->nic_type == athr_l2c_b2 ||
590 591
	    hw->nic_type == athr_l1d ||
	    hw->nic_type == athr_l1d_2) {
592 593 594 595 596
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x3B);
		atl1c_read_phy_reg(hw, MII_DBG_DATA, &phy_data);
		atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data & 0xFFF7);
		msleep(20);
	}
597 598 599 600 601
	if (hw->nic_type == athr_l1d) {
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x29);
		atl1c_write_phy_reg(hw, MII_DBG_DATA, 0x929D);
	}
	if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c_b2
602
		|| hw->nic_type == athr_l2c) {
603 604 605
		atl1c_write_phy_reg(hw, MII_DBG_ADDR, 0x29);
		atl1c_write_phy_reg(hw, MII_DBG_DATA, 0xB6DD);
	}
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
	if (err) {
		if (netif_msg_hw(adapter))
			dev_err(&pdev->dev,
				"Error enable PHY linkChange Interrupt\n");
		return err;
	}
	if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
		atl1c_phy_magic_data(hw);
	return 0;
}

int atl1c_phy_init(struct atl1c_hw *hw)
{
	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
	struct pci_dev *pdev = adapter->pdev;
	int ret_val;
	u16 mii_bmcr_data = BMCR_RESET;

625 626 627
	if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
		(atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
		dev_err(&pdev->dev, "Error get phy ID\n");
628 629 630 631 632 633 634 635 636 637 638
		return -1;
	}
	switch (hw->media_type) {
	case MEDIA_TYPE_AUTO_SENSOR:
		ret_val = atl1c_phy_setup_adv(hw);
		if (ret_val) {
			if (netif_msg_link(adapter))
				dev_err(&pdev->dev,
					"Error Setting up Auto-Negotiation\n");
			return ret_val;
		}
639
		mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
640 641
		break;
	case MEDIA_TYPE_100M_FULL:
642
		mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
643 644
		break;
	case MEDIA_TYPE_100M_HALF:
645
		mii_bmcr_data |= BMCR_SPEED100;
646 647
		break;
	case MEDIA_TYPE_10M_FULL:
648
		mii_bmcr_data |= BMCR_FULLDPLX;
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		break;
	case MEDIA_TYPE_10M_HALF:
		break;
	default:
		if (netif_msg_link(adapter))
			dev_err(&pdev->dev, "Wrong Media type %d\n",
				hw->media_type);
		return -1;
		break;
	}

	ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
	if (ret_val)
		return ret_val;
	hw->phy_configured = true;

	return 0;
}

/*
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 */
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
{
	int err;
	u16 phy_data;

	/* Read   PHY Specific Status Register (17) */
	err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
	if (err)
		return err;

	if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
		return -1;

	switch (phy_data & GIGA_PSSR_SPEED) {
	case GIGA_PSSR_1000MBS:
		*speed = SPEED_1000;
		break;
	case GIGA_PSSR_100MBS:
		*speed = SPEED_100;
		break;
	case  GIGA_PSSR_10MBS:
		*speed = SPEED_10;
		break;
	default:
		return -1;
		break;
	}

	if (phy_data & GIGA_PSSR_DPLX)
		*duplex = FULL_DUPLEX;
	else
		*duplex = HALF_DUPLEX;

	return 0;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
int atl1c_phy_power_saving(struct atl1c_hw *hw)
{
	struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
	struct pci_dev *pdev = adapter->pdev;
	int ret = 0;
	u16 autoneg_advertised = ADVERTISED_10baseT_Half;
	u16 save_autoneg_advertised;
	u16 phy_data;
	u16 mii_lpa_data;
	u16 speed = SPEED_0;
	u16 duplex = FULL_DUPLEX;
	int i;

	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
	if (phy_data & BMSR_LSTATUS) {
		atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
		if (mii_lpa_data & LPA_10FULL)
			autoneg_advertised = ADVERTISED_10baseT_Full;
		else if (mii_lpa_data & LPA_10HALF)
			autoneg_advertised = ADVERTISED_10baseT_Half;
		else if (mii_lpa_data & LPA_100HALF)
			autoneg_advertised = ADVERTISED_100baseT_Half;
		else if (mii_lpa_data & LPA_100FULL)
			autoneg_advertised = ADVERTISED_100baseT_Full;

		save_autoneg_advertised = hw->autoneg_advertised;
		hw->phy_configured = false;
		hw->autoneg_advertised = autoneg_advertised;
		if (atl1c_restart_autoneg(hw) != 0) {
			dev_dbg(&pdev->dev, "phy autoneg failed\n");
			ret = -1;
		}
		hw->autoneg_advertised = save_autoneg_advertised;

		if (mii_lpa_data) {
			for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
				mdelay(100);
				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
				atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
				if (phy_data & BMSR_LSTATUS) {
					if (atl1c_get_speed_and_duplex(hw, &speed,
									&duplex) != 0)
						dev_dbg(&pdev->dev,
							"get speed and duplex failed\n");
					break;
				}
			}
		}
	} else {
		speed = SPEED_10;
		duplex = HALF_DUPLEX;
	}
	adapter->link_speed = speed;
	adapter->link_duplex = duplex;

	return ret;
}

770 771 772 773 774 775 776 777
int atl1c_restart_autoneg(struct atl1c_hw *hw)
{
	int err = 0;
	u16 mii_bmcr_data = BMCR_RESET;

	err = atl1c_phy_setup_adv(hw);
	if (err)
		return err;
778
	mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
779 780 781

	return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
}