i915_gem_tiling.c 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28 29 30 31
#include <linux/string.h>
#include <linux/bitops.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#include "i915_drv.h"

/** @file i915_gem_tiling.c
 *
 * Support for managing tiling state of buffer objects.
 *
 * The idea behind tiling is to increase cache hit rates by rearranging
 * pixel data so that a group of pixel accesses are in the same cacheline.
 * Performance improvement from doing this on the back/depth buffer are on
 * the order of 30%.
 *
 * Intel architectures make this somewhat more complicated, though, by
 * adjustments made to addressing of data when the memory is in interleaved
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 * For interleaved memory, the CPU sends every sequential 64 bytes
 * to an alternate memory channel so it can get the bandwidth from both.
 *
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 * it does it a little differently, since one walks addresses not just in the
 * X direction but also Y.  So, along with alternating channels when bit
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 * are common to both the 915 and 965-class hardware.
 *
 * The CPU also sometimes XORs in higher bits as well, to improve
 * bandwidth doing strided access like we do so frequently in graphics.  This
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 * decode.
 *
 * All of this bit 6 XORing has an effect on our memory management,
 * as we need to make sure that the 3d driver can correctly address object
 * contents.
 *
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 * required.
 *
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 * 17 is not just a page offset, so as we page an objet out and back in,
 * individual pages in it will have different bit 17 addresses, resulting in
 * each 64 bytes being swapped with its neighbor!
 *
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 * swizzling it needs to do is, since it's writing with the CPU to the pages
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 * to match what the GPU expects.
 */

/**
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 * access through main memory.
 */
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
90
	struct drm_i915_private *dev_priv = dev->dev_private;
91 92 93
	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;

94 95 96 97 98 99 100 101
	if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
		/*
		 * On BDW+, swizzling is not used. We leave the CPU memory
		 * controller in charge of optimizing memory accesses without
		 * the extra address manipulation GPU side.
		 *
		 * VLV and CHV don't have GPU swizzling.
		 */
102 103 104
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	} else if (INTEL_INFO(dev)->gen >= 6) {
105 106 107 108 109 110 111 112 113
		if (dev_priv->preserve_bios_swizzle) {
			if (I915_READ(DISP_ARB_CTL) &
			    DISP_TILE_SURFACE_SWIZZLING) {
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
			} else {
				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			}
114
		} else {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
			uint32_t dimm_c0, dimm_c1;
			dimm_c0 = I915_READ(MAD_DIMM_C0);
			dimm_c1 = I915_READ(MAD_DIMM_C1);
			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
			/* Enable swizzling when the channels are populated
			 * with identically sized dimms. We don't need to check
			 * the 3rd channel because no cpu with gpu attached
			 * ships in that configuration. Also, swizzling only
			 * makes sense for 2 channels anyway. */
			if (dimm_c0 == dimm_c1) {
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
			} else {
				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			}
132
		}
D
Daniel Vetter 已提交
133
	} else if (IS_GEN5(dev)) {
134
		/* On Ironlake whatever DRAM config, GPU always do
Z
Zhenyu Wang 已提交
135 136 137 138
		 * same swizzling setup.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
		swizzle_y = I915_BIT_6_SWIZZLE_9;
139
	} else if (IS_GEN2(dev)) {
140 141 142 143 144
		/* As far as we know, the 865 doesn't have these bit 6
		 * swizzling issues.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
145
	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
146 147
		uint32_t dcc;

148
		/* On 9xx chipsets, channel interleave by the CPU is
149 150 151 152 153 154
		 * determined by DCC.  For single-channel, neither the CPU
		 * nor the GPU do swizzling.  For dual channel interleaved,
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
		 * 9 for Y tiled.  The CPU's interleave is independent, and
		 * can be based on either bit 11 (haven't seen this yet) or
		 * bit 17 (common).
155 156 157 158 159 160 161 162 163
		 */
		dcc = I915_READ(DCC);
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			break;
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
164 165 166 167
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
				/* This is the base swizzling by the GPU for
				 * tiled buffers.
				 */
168 169
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
170 171
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
				/* Bit 11 swizzling by the CPU in addition. */
172 173 174
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
			} else {
175
				/* Bit 17 swizzling by the CPU in addition. */
176 177
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
178 179 180
			}
			break;
		}
181 182 183 184 185

		/* check for L-shaped memory aka modified enhanced addressing */
		if (IS_GEN4(dev)) {
			uint32_t ddc2 = I915_READ(DCC2);

186
			if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
187 188 189
				dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
		}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		if (dcc == 0xffffffff) {
			DRM_ERROR("Couldn't read from MCHBAR.  "
				  "Disabling tiling.\n");
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}
	} else {
		/* The 965, G33, and newer, have a very flexible memory
		 * configuration.  It will enable dual-channel mode
		 * (interleaving) on as much memory as it can, and the GPU
		 * will additionally sometimes enable different bit 6
		 * swizzling for tiled objects from the CPU.
		 *
		 * Here's what I found on the G965:
		 *    slot fill         memory size  swizzling
		 * 0A   0B   1A   1B    1-ch   2-ch
		 * 512  0    0    0     512    0     O
		 * 512  0    512  0     16     1008  X
		 * 512  0    0    512   16     1008  X
		 * 0    512  0    512   16     1008  X
		 * 1024 1024 1024 0     2048   1024  O
		 *
		 * We could probably detect this based on either the DRB
		 * matching, which was the case for the swizzling required in
		 * the table above, or from the 1-ch value being less than
		 * the minimum size of a rank.
		 */
		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		}
	}

	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}

230
/* Check pitch constriants for all chips & tiling formats */
231
static bool
232 233
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
{
234
	int tile_width;
235 236 237 238 239

	/* Linear is always fine */
	if (tiling_mode == I915_TILING_NONE)
		return true;

240
	if (IS_GEN2(dev) ||
241
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
242 243 244 245
		tile_width = 128;
	else
		tile_width = 512;

246
	/* check maximum stride & object size */
247 248 249 250 251 252
	/* i965+ stores the end address of the gtt mapping in the fence
	 * reg, so dont bother to check the size */
	if (INTEL_INFO(dev)->gen >= 7) {
		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
			return false;
	} else if (INTEL_INFO(dev)->gen >= 4) {
253 254
		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
			return false;
255
	} else {
256
		if (stride > 8192)
257
			return false;
258

259 260 261 262 263 264 265
		if (IS_GEN3(dev)) {
			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
				return false;
		} else {
			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
				return false;
		}
266 267
	}

268 269 270
	if (stride < tile_width)
		return false;

271
	/* 965+ just needs multiples of tile width */
272
	if (INTEL_INFO(dev)->gen >= 4) {
273 274 275 276 277 278 279 280 281 282 283 284
		if (stride & (tile_width - 1))
			return false;
		return true;
	}

	/* Pre-965 needs power of two tile widths */
	if (stride & (stride - 1))
		return false;

	return true;
}

285 286
/* Is the current GTT allocation valid for the change in tiling? */
static bool
287
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
288
{
289
	u32 size;
290 291 292 293

	if (tiling_mode == I915_TILING_NONE)
		return true;

294
	if (INTEL_INFO(obj->base.dev)->gen >= 4)
295 296
		return true;

297
	if (INTEL_INFO(obj->base.dev)->gen == 3) {
298
		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
299 300
			return false;
	} else {
301
		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
302 303 304
			return false;
	}

305
	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
306
	if (i915_gem_obj_ggtt_size(obj) != size)
307 308
		return false;

309
	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
310
		return false;
311 312 313 314

	return true;
}

315 316 317 318 319 320
/**
 * Sets the tiling mode of an object, returning the required swizzling of
 * bit 6 of addresses in the object.
 */
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
321
		   struct drm_file *file)
322 323
{
	struct drm_i915_gem_set_tiling *args = data;
324
	struct drm_i915_private *dev_priv = dev->dev_private;
325
	struct drm_i915_gem_object *obj;
326
	int ret = 0;
327

328
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
329
	if (&obj->base == NULL)
330
		return -ENOENT;
331

332 333 334
	if (!i915_tiling_ok(dev,
			    args->stride, obj->base.size, args->tiling_mode)) {
		drm_gem_object_unreference_unlocked(&obj->base);
335
		return -EINVAL;
336
	}
337

338
	mutex_lock(&dev->struct_mutex);
339
	if (obj->pin_display || obj->framebuffer_references) {
340 341
		ret = -EBUSY;
		goto err;
342 343
	}

344 345
	if (args->tiling_mode == I915_TILING_NONE) {
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
346
		args->stride = 0;
347 348 349 350 351
	} else {
		if (args->tiling_mode == I915_TILING_X)
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		else
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
352 353 354 355 356 357 358 359 360 361 362 363 364

		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
		 * from aborting the application on sw fallbacks to bit 17,
		 * and we use the pread/pwrite bit17 paths to swizzle for it.
		 * If there was a user that was relying on the swizzle
		 * information for drm_intel_bo_map()ed reads/writes this would
		 * break it, but we don't have any of those.
		 */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

365 366 367 368
		/* If we can't handle the swizzling, make it untiled. */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
			args->tiling_mode = I915_TILING_NONE;
			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
369
			args->stride = 0;
370 371
		}
	}
372

373 374
	if (args->tiling_mode != obj->tiling_mode ||
	    args->stride != obj->stride) {
375 376 377
		/* We need to rebind the object if its current allocation
		 * no longer meets the alignment restrictions for its new
		 * tiling mode. Otherwise we can just leave it alone, but
378 379 380
		 * need to ensure that any fence register is updated before
		 * the next fenced (either through the GTT or by the BLT unit
		 * on older GPUs) access.
381 382 383 384 385
		 *
		 * After updating the tiling parameters, we then flag whether
		 * we need to update an associated fence register. Note this
		 * has to also include the unfenced register the GPU uses
		 * whilst executing a fenced command for an untiled object.
386
		 */
387 388 389
		if (obj->map_and_fenceable &&
		    !i915_gem_object_fence_ok(obj, args->tiling_mode))
			ret = i915_gem_object_ggtt_unbind(obj);
390 391

		if (ret == 0) {
392 393 394 395 396 397 398 399 400
			if (obj->pages &&
			    obj->madv == I915_MADV_WILLNEED &&
			    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
				if (args->tiling_mode == I915_TILING_NONE)
					i915_gem_object_unpin_pages(obj);
				if (obj->tiling_mode == I915_TILING_NONE)
					i915_gem_object_pin_pages(obj);
			}

401
			obj->fence_dirty =
402
				obj->last_fenced_req ||
403 404
				obj->fence_reg != I915_FENCE_REG_NONE;

405 406
			obj->tiling_mode = args->tiling_mode;
			obj->stride = args->stride;
407 408 409

			/* Force the fence to be reacquired for GTT access */
			i915_gem_release_mmap(obj);
410
		}
411
	}
412 413 414
	/* we have to maintain this existing ABI... */
	args->stride = obj->stride;
	args->tiling_mode = obj->tiling_mode;
415 416 417 418

	/* Try to preallocate memory required to save swizzling on put-pages */
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
		if (obj->bit_17 == NULL) {
D
Daniel Vetter 已提交
419
			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
420 421 422 423 424 425 426
					      sizeof(long), GFP_KERNEL);
		}
	} else {
		kfree(obj->bit_17);
		obj->bit_17 = NULL;
	}

427
err:
428
	drm_gem_object_unreference(&obj->base);
429
	mutex_unlock(&dev->struct_mutex);
430

431
	return ret;
432 433 434 435 436 437 438
}

/**
 * Returns the current tiling mode and required bit 6 swizzling for the object.
 */
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
439
		   struct drm_file *file)
440 441
{
	struct drm_i915_gem_get_tiling *args = data;
442
	struct drm_i915_private *dev_priv = dev->dev_private;
443
	struct drm_i915_gem_object *obj;
444

445
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
446
	if (&obj->base == NULL)
447
		return -ENOENT;
448 449 450

	mutex_lock(&dev->struct_mutex);

451 452
	args->tiling_mode = obj->tiling_mode;
	switch (obj->tiling_mode) {
453 454 455 456 457 458 459 460 461 462 463 464 465
	case I915_TILING_X:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		break;
	case I915_TILING_Y:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
		break;
	case I915_TILING_NONE:
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
		break;
	default:
		DRM_ERROR("unknown tiling mode\n");
	}

466
	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
467
	args->phys_swizzle_mode = args->swizzle_mode;
468 469 470 471 472
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

473
	drm_gem_object_unreference(&obj->base);
474
	mutex_unlock(&dev->struct_mutex);
475 476 477

	return 0;
}
478 479 480 481 482 483

/**
 * Swap every 64 bytes of this page around, to account for it having a new
 * bit 17 of its physical address and therefore being interpreted differently
 * by the GPU.
 */
484
static void
485 486
i915_gem_swizzle_page(struct page *page)
{
487
	char temp[64];
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	char *vaddr;
	int i;

	vaddr = kmap(page);

	for (i = 0; i < PAGE_SIZE; i += 128) {
		memcpy(temp, &vaddr[i], 64);
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
		memcpy(&vaddr[i + 64], temp, 64);
	}

	kunmap(page);
}

void
503
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
504
{
505
	struct sg_page_iter sg_iter;
506 507
	int i;

508
	if (obj->bit_17 == NULL)
509 510
		return;

511 512
	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
513
		struct page *page = sg_page_iter_page(&sg_iter);
514
		char new_bit_17 = page_to_phys(page) >> 17;
515
		if ((new_bit_17 & 0x1) !=
516
		    (test_bit(i, obj->bit_17) != 0)) {
517 518
			i915_gem_swizzle_page(page);
			set_page_dirty(page);
519
		}
520
		i++;
521 522 523 524
	}
}

void
525
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
526
{
527
	struct sg_page_iter sg_iter;
528
	int page_count = obj->base.size >> PAGE_SHIFT;
529 530
	int i;

531
	if (obj->bit_17 == NULL) {
D
Daniel Vetter 已提交
532 533
		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
				      sizeof(long), GFP_KERNEL);
534
		if (obj->bit_17 == NULL) {
535 536 537 538 539 540
			DRM_ERROR("Failed to allocate memory for bit 17 "
				  "record\n");
			return;
		}
	}

541 542
	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
543
		if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
544
			__set_bit(i, obj->bit_17);
545
		else
546
			__clear_bit(i, obj->bit_17);
547
		i++;
548 549
	}
}