i915_gem_tiling.c 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28 29 30 31
#include <linux/string.h>
#include <linux/bitops.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#include "i915_drv.h"

/** @file i915_gem_tiling.c
 *
 * Support for managing tiling state of buffer objects.
 *
 * The idea behind tiling is to increase cache hit rates by rearranging
 * pixel data so that a group of pixel accesses are in the same cacheline.
 * Performance improvement from doing this on the back/depth buffer are on
 * the order of 30%.
 *
 * Intel architectures make this somewhat more complicated, though, by
 * adjustments made to addressing of data when the memory is in interleaved
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 * For interleaved memory, the CPU sends every sequential 64 bytes
 * to an alternate memory channel so it can get the bandwidth from both.
 *
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 * it does it a little differently, since one walks addresses not just in the
 * X direction but also Y.  So, along with alternating channels when bit
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 * are common to both the 915 and 965-class hardware.
 *
 * The CPU also sometimes XORs in higher bits as well, to improve
 * bandwidth doing strided access like we do so frequently in graphics.  This
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 * decode.
 *
 * All of this bit 6 XORing has an effect on our memory management,
 * as we need to make sure that the 3d driver can correctly address object
 * contents.
 *
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 * required.
 *
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 * 17 is not just a page offset, so as we page an objet out and back in,
 * individual pages in it will have different bit 17 addresses, resulting in
 * each 64 bytes being swapped with its neighbor!
 *
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 * swizzling it needs to do is, since it's writing with the CPU to the pages
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 * to match what the GPU expects.
 */

/**
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 * access through main memory.
 */
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;

94 95 96 97
	if (IS_VALLEYVIEW(dev)) {
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	} else if (INTEL_INFO(dev)->gen >= 6) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		uint32_t dimm_c0, dimm_c1;
		dimm_c0 = I915_READ(MAD_DIMM_C0);
		dimm_c1 = I915_READ(MAD_DIMM_C1);
		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
		/* Enable swizzling when the channels are populated with
		 * identically sized dimms. We don't need to check the 3rd
		 * channel because no cpu with gpu attached ships in that
		 * configuration. Also, swizzling only makes sense for 2
		 * channels anyway. */
		if (dimm_c0 == dimm_c1) {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		}
D
Daniel Vetter 已提交
115
	} else if (IS_GEN5(dev)) {
116
		/* On Ironlake whatever DRAM config, GPU always do
Z
Zhenyu Wang 已提交
117 118 119 120
		 * same swizzling setup.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
		swizzle_y = I915_BIT_6_SWIZZLE_9;
121
	} else if (IS_GEN2(dev)) {
122 123 124 125 126
		/* As far as we know, the 865 doesn't have these bit 6
		 * swizzling issues.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127
	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128 129
		uint32_t dcc;

130
		/* On 9xx chipsets, channel interleave by the CPU is
131 132 133 134 135 136
		 * determined by DCC.  For single-channel, neither the CPU
		 * nor the GPU do swizzling.  For dual channel interleaved,
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
		 * 9 for Y tiled.  The CPU's interleave is independent, and
		 * can be based on either bit 11 (haven't seen this yet) or
		 * bit 17 (common).
137 138 139 140 141 142 143 144 145
		 */
		dcc = I915_READ(DCC);
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			break;
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146 147 148 149
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
				/* This is the base swizzling by the GPU for
				 * tiled buffers.
				 */
150 151
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
152 153
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
				/* Bit 11 swizzling by the CPU in addition. */
154 155 156
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
			} else {
157
				/* Bit 17 swizzling by the CPU in addition. */
158 159
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
			}
			break;
		}
		if (dcc == 0xffffffff) {
			DRM_ERROR("Couldn't read from MCHBAR.  "
				  "Disabling tiling.\n");
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}
	} else {
		/* The 965, G33, and newer, have a very flexible memory
		 * configuration.  It will enable dual-channel mode
		 * (interleaving) on as much memory as it can, and the GPU
		 * will additionally sometimes enable different bit 6
		 * swizzling for tiled objects from the CPU.
		 *
		 * Here's what I found on the G965:
		 *    slot fill         memory size  swizzling
		 * 0A   0B   1A   1B    1-ch   2-ch
		 * 512  0    0    0     512    0     O
		 * 512  0    512  0     16     1008  X
		 * 512  0    0    512   16     1008  X
		 * 0    512  0    512   16     1008  X
		 * 1024 1024 1024 0     2048   1024  O
		 *
		 * We could probably detect this based on either the DRB
		 * matching, which was the case for the swizzling required in
		 * the table above, or from the 1-ch value being less than
		 * the minimum size of a rank.
		 */
		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		}
	}

	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}

203
/* Check pitch constriants for all chips & tiling formats */
204
static bool
205 206
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
{
207
	int tile_width;
208 209 210 211 212

	/* Linear is always fine */
	if (tiling_mode == I915_TILING_NONE)
		return true;

213
	if (IS_GEN2(dev) ||
214
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215 216 217 218
		tile_width = 128;
	else
		tile_width = 512;

219
	/* check maximum stride & object size */
220
	if (INTEL_INFO(dev)->gen >= 4) {
221 222 223 224
		/* i965 stores the end address of the gtt mapping in the fence
		 * reg, so dont bother to check the size */
		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
			return false;
225
	} else {
226
		if (stride > 8192)
227
			return false;
228

229 230 231 232 233 234 235
		if (IS_GEN3(dev)) {
			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
				return false;
		} else {
			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
				return false;
		}
236 237
	}

238
	/* 965+ just needs multiples of tile width */
239
	if (INTEL_INFO(dev)->gen >= 4) {
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		if (stride & (tile_width - 1))
			return false;
		return true;
	}

	/* Pre-965 needs power of two tile widths */
	if (stride < tile_width)
		return false;

	if (stride & (stride - 1))
		return false;

	return true;
}

255 256
/* Is the current GTT allocation valid for the change in tiling? */
static bool
257
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
258
{
259
	u32 size;
260 261 262 263

	if (tiling_mode == I915_TILING_NONE)
		return true;

264
	if (INTEL_INFO(obj->base.dev)->gen >= 4)
265 266
		return true;

267 268
	if (INTEL_INFO(obj->base.dev)->gen == 3) {
		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
269 270
			return false;
	} else {
271
		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
272 273 274
			return false;
	}

275 276 277 278
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
279
	if (INTEL_INFO(obj->base.dev)->gen == 3)
280 281 282 283
		size = 1024*1024;
	else
		size = 512*1024;

284
	while (size < obj->base.size)
285 286
		size <<= 1;

287
	if (obj->gtt_space->size != size)
288 289
		return false;

290
	if (obj->gtt_offset & (size - 1))
291
		return false;
292 293 294 295

	return true;
}

296 297 298 299 300 301
/**
 * Sets the tiling mode of an object, returning the required swizzling of
 * bit 6 of addresses in the object.
 */
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
302
		   struct drm_file *file)
303 304 305
{
	struct drm_i915_gem_set_tiling *args = data;
	drm_i915_private_t *dev_priv = dev->dev_private;
306
	struct drm_i915_gem_object *obj;
307
	int ret = 0;
308

309
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
310
	if (&obj->base == NULL)
311
		return -ENOENT;
312

313 314 315
	if (!i915_tiling_ok(dev,
			    args->stride, obj->base.size, args->tiling_mode)) {
		drm_gem_object_unreference_unlocked(&obj->base);
316
		return -EINVAL;
317
	}
318

319 320
	if (obj->pin_count) {
		drm_gem_object_unreference_unlocked(&obj->base);
321 322 323
		return -EBUSY;
	}

324 325
	if (args->tiling_mode == I915_TILING_NONE) {
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
326
		args->stride = 0;
327 328 329 330 331
	} else {
		if (args->tiling_mode == I915_TILING_X)
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		else
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
332 333 334 335 336 337 338 339 340 341 342 343 344

		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
		 * from aborting the application on sw fallbacks to bit 17,
		 * and we use the pread/pwrite bit17 paths to swizzle for it.
		 * If there was a user that was relying on the swizzle
		 * information for drm_intel_bo_map()ed reads/writes this would
		 * break it, but we don't have any of those.
		 */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

345 346 347 348
		/* If we can't handle the swizzling, make it untiled. */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
			args->tiling_mode = I915_TILING_NONE;
			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
349
			args->stride = 0;
350 351
		}
	}
352

353
	mutex_lock(&dev->struct_mutex);
354 355
	if (args->tiling_mode != obj->tiling_mode ||
	    args->stride != obj->stride) {
356 357 358
		/* We need to rebind the object if its current allocation
		 * no longer meets the alignment restrictions for its new
		 * tiling mode. Otherwise we can just leave it alone, but
359 360 361
		 * need to ensure that any fence register is updated before
		 * the next fenced (either through the GTT or by the BLT unit
		 * on older GPUs) access.
362 363 364 365 366
		 *
		 * After updating the tiling parameters, we then flag whether
		 * we need to update an associated fence register. Note this
		 * has to also include the unfenced register the GPU uses
		 * whilst executing a fenced command for an untiled object.
367
		 */
368

369 370 371 372
		obj->map_and_fenceable =
			obj->gtt_space == NULL ||
			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
			 i915_gem_object_fence_ok(obj, args->tiling_mode));
373

374 375 376
		/* Rebind if we need a change of alignment */
		if (!obj->map_and_fenceable) {
			u32 unfenced_alignment =
377 378 379
				i915_gem_get_unfenced_gtt_alignment(dev,
								    obj->base.size,
								    args->tiling_mode);
380 381 382 383 384
			if (obj->gtt_offset & (unfenced_alignment - 1))
				ret = i915_gem_object_unbind(obj);
		}

		if (ret == 0) {
385 386 387 388
			obj->fence_dirty =
				obj->fenced_gpu_access ||
				obj->fence_reg != I915_FENCE_REG_NONE;

389 390
			obj->tiling_mode = args->tiling_mode;
			obj->stride = args->stride;
391 392 393

			/* Force the fence to be reacquired for GTT access */
			i915_gem_release_mmap(obj);
394
		}
395
	}
396 397 398
	/* we have to maintain this existing ABI... */
	args->stride = obj->stride;
	args->tiling_mode = obj->tiling_mode;
399
	drm_gem_object_unreference(&obj->base);
400
	mutex_unlock(&dev->struct_mutex);
401

402
	return ret;
403 404 405 406 407 408 409
}

/**
 * Returns the current tiling mode and required bit 6 swizzling for the object.
 */
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
410
		   struct drm_file *file)
411 412 413
{
	struct drm_i915_gem_get_tiling *args = data;
	drm_i915_private_t *dev_priv = dev->dev_private;
414
	struct drm_i915_gem_object *obj;
415

416
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
417
	if (&obj->base == NULL)
418
		return -ENOENT;
419 420 421

	mutex_lock(&dev->struct_mutex);

422 423
	args->tiling_mode = obj->tiling_mode;
	switch (obj->tiling_mode) {
424 425 426 427 428 429 430 431 432 433 434 435 436
	case I915_TILING_X:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		break;
	case I915_TILING_Y:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
		break;
	case I915_TILING_NONE:
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
		break;
	default:
		DRM_ERROR("unknown tiling mode\n");
	}

437 438 439 440 441 442
	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

443
	drm_gem_object_unreference(&obj->base);
444
	mutex_unlock(&dev->struct_mutex);
445 446 447

	return 0;
}
448 449 450 451 452 453

/**
 * Swap every 64 bytes of this page around, to account for it having a new
 * bit 17 of its physical address and therefore being interpreted differently
 * by the GPU.
 */
454
static void
455 456
i915_gem_swizzle_page(struct page *page)
{
457
	char temp[64];
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	char *vaddr;
	int i;

	vaddr = kmap(page);

	for (i = 0; i < PAGE_SIZE; i += 128) {
		memcpy(temp, &vaddr[i], 64);
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
		memcpy(&vaddr[i + 64], temp, 64);
	}

	kunmap(page);
}

void
473
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
474
{
475
	struct scatterlist *sg;
476
	int page_count = obj->base.size >> PAGE_SHIFT;
477 478
	int i;

479
	if (obj->bit_17 == NULL)
480 481
		return;

482 483 484
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
		struct page *page = sg_page(sg);
		char new_bit_17 = page_to_phys(page) >> 17;
485
		if ((new_bit_17 & 0x1) !=
486
		    (test_bit(i, obj->bit_17) != 0)) {
487 488
			i915_gem_swizzle_page(page);
			set_page_dirty(page);
489 490 491 492 493
		}
	}
}

void
494
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
495
{
496
	struct scatterlist *sg;
497
	int page_count = obj->base.size >> PAGE_SHIFT;
498 499
	int i;

500 501
	if (obj->bit_17 == NULL) {
		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
502
					   sizeof(long), GFP_KERNEL);
503
		if (obj->bit_17 == NULL) {
504 505 506 507 508 509
			DRM_ERROR("Failed to allocate memory for bit 17 "
				  "record\n");
			return;
		}
	}

510 511 512
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
		struct page *page = sg_page(sg);
		if (page_to_phys(page) & (1 << 17))
513
			__set_bit(i, obj->bit_17);
514
		else
515
			__clear_bit(i, obj->bit_17);
516 517
	}
}