cpufreq_governor.c 15.6 KB
Newer Older
1 2 3 4 5
/*
 * drivers/cpufreq/cpufreq_governor.c
 *
 * CPUFREQ governors common code
 *
6 7 8 9 10 11
 * Copyright	(C) 2001 Russell King
 *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
 *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
 *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
 *
12 13 14 15 16
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

17 18
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

19 20
#include <linux/export.h>
#include <linux/kernel_stat.h>
21
#include <linux/slab.h>
22 23 24

#include "cpufreq_governor.h"

25 26 27
DEFINE_MUTEX(dbs_data_mutex);
EXPORT_SYMBOL_GPL(dbs_data_mutex);

28
static struct attribute_group *get_sysfs_attr(struct dbs_governor *gov)
29
{
30 31
	return have_governor_per_policy() ?
		gov->attr_group_gov_pol : gov->attr_group_gov_sys;
32 33
}

34
void dbs_check_cpu(struct cpufreq_policy *policy)
35
{
36
	int cpu = policy->cpu;
37
	struct dbs_governor *gov = dbs_governor_of(policy);
38 39
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
40 41
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
42
	unsigned int sampling_rate;
43 44 45 46
	unsigned int max_load = 0;
	unsigned int ignore_nice;
	unsigned int j;

47
	if (gov->governor == GOV_ONDEMAND) {
48
		struct od_cpu_dbs_info_s *od_dbs_info =
49
				gov->get_cpu_dbs_info_s(cpu);
50 51 52 53 54 55 56 57 58 59

		/*
		 * Sometimes, the ondemand governor uses an additional
		 * multiplier to give long delays. So apply this multiplier to
		 * the 'sampling_rate', so as to keep the wake-up-from-idle
		 * detection logic a bit conservative.
		 */
		sampling_rate = od_tuners->sampling_rate;
		sampling_rate *= od_dbs_info->rate_mult;

60
		ignore_nice = od_tuners->ignore_nice_load;
61 62
	} else {
		sampling_rate = cs_tuners->sampling_rate;
63
		ignore_nice = cs_tuners->ignore_nice_load;
64
	}
65

66
	/* Get Absolute Load */
67
	for_each_cpu(j, policy->cpus) {
68
		struct cpu_dbs_info *j_cdbs;
69 70
		u64 cur_wall_time, cur_idle_time;
		unsigned int idle_time, wall_time;
71
		unsigned int load;
72
		int io_busy = 0;
73

74
		j_cdbs = gov->get_cpu_cdbs(j);
75

76 77 78 79 80 81
		/*
		 * For the purpose of ondemand, waiting for disk IO is
		 * an indication that you're performance critical, and
		 * not that the system is actually idle. So do not add
		 * the iowait time to the cpu idle time.
		 */
82
		if (gov->governor == GOV_ONDEMAND)
83 84
			io_busy = od_tuners->io_is_busy;
		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
85 86 87 88 89

		wall_time = (unsigned int)
			(cur_wall_time - j_cdbs->prev_cpu_wall);
		j_cdbs->prev_cpu_wall = cur_wall_time;

90 91 92
		if (cur_idle_time < j_cdbs->prev_cpu_idle)
			cur_idle_time = j_cdbs->prev_cpu_idle;

93 94 95 96 97
		idle_time = (unsigned int)
			(cur_idle_time - j_cdbs->prev_cpu_idle);
		j_cdbs->prev_cpu_idle = cur_idle_time;

		if (ignore_nice) {
98
			struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
			u64 cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
					 cdbs->prev_cpu_nice;
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			cdbs->prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

		if (unlikely(!wall_time || wall_time < idle_time))
			continue;

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		/*
		 * If the CPU had gone completely idle, and a task just woke up
		 * on this CPU now, it would be unfair to calculate 'load' the
		 * usual way for this elapsed time-window, because it will show
		 * near-zero load, irrespective of how CPU intensive that task
		 * actually is. This is undesirable for latency-sensitive bursty
		 * workloads.
		 *
		 * To avoid this, we reuse the 'load' from the previous
		 * time-window and give this task a chance to start with a
		 * reasonably high CPU frequency. (However, we shouldn't over-do
		 * this copy, lest we get stuck at a high load (high frequency)
		 * for too long, even when the current system load has actually
		 * dropped down. So we perform the copy only once, upon the
		 * first wake-up from idle.)
		 *
135 136 137 138
		 * Detecting this situation is easy: the governor's utilization
		 * update handler would not have run during CPU-idle periods.
		 * Hence, an unusually large 'wall_time' (as compared to the
		 * sampling rate) indicates this scenario.
139 140 141 142 143
		 *
		 * prev_load can be zero in two cases and we must recalculate it
		 * for both cases:
		 * - during long idle intervals
		 * - explicitly set to zero
144
		 */
145 146
		if (unlikely(wall_time > (2 * sampling_rate) &&
			     j_cdbs->prev_load)) {
147
			load = j_cdbs->prev_load;
148 149 150 151 152 153 154

			/*
			 * Perform a destructive copy, to ensure that we copy
			 * the previous load only once, upon the first wake-up
			 * from idle.
			 */
			j_cdbs->prev_load = 0;
155 156 157 158
		} else {
			load = 100 * (wall_time - idle_time) / wall_time;
			j_cdbs->prev_load = load;
		}
159 160 161 162 163

		if (load > max_load)
			max_load = load;
	}

164
	gov->gov_check_cpu(cpu, max_load);
165 166 167
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);

168
void gov_set_update_util(struct policy_dbs_info *policy_dbs,
169
			 unsigned int delay_us)
170
{
171
	struct cpufreq_policy *policy = policy_dbs->policy;
172
	struct dbs_governor *gov = dbs_governor_of(policy);
173
	int cpu;
174

175 176
	gov_update_sample_delay(policy_dbs, delay_us);
	policy_dbs->last_sample_time = 0;
177

178
	for_each_cpu(cpu, policy->cpus) {
179
		struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
180 181

		cpufreq_set_update_util_data(cpu, &cdbs->update_util);
182 183
	}
}
184
EXPORT_SYMBOL_GPL(gov_set_update_util);
185

186
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
187 188
{
	int i;
189

190 191 192 193
	for_each_cpu(i, policy->cpus)
		cpufreq_set_update_util_data(i, NULL);

	synchronize_rcu();
194 195
}

196
static void gov_cancel_work(struct policy_dbs_info *policy_dbs)
197
{
198
	/* Tell dbs_update_util_handler() to skip queuing up work items. */
199
	atomic_inc(&policy_dbs->work_count);
200
	/*
201
	 * If dbs_update_util_handler() is already running, it may not notice
202
	 * the incremented work_count, so wait for it to complete to prevent its
203
	 * work item from being queued up after the cancel_work_sync() below.
204
	 */
205 206 207
	gov_clear_update_util(policy_dbs->policy);
	irq_work_sync(&policy_dbs->irq_work);
	cancel_work_sync(&policy_dbs->work);
208
	atomic_set(&policy_dbs->work_count, 0);
209
}
210

211
static void dbs_work_handler(struct work_struct *work)
212
{
213
	struct policy_dbs_info *policy_dbs;
214
	struct cpufreq_policy *policy;
215
	struct dbs_governor *gov;
216
	unsigned int delay;
217

218 219
	policy_dbs = container_of(work, struct policy_dbs_info, work);
	policy = policy_dbs->policy;
220
	gov = dbs_governor_of(policy);
221

222
	/*
223 224
	 * Make sure cpufreq_governor_limits() isn't evaluating load or the
	 * ondemand governor isn't updating the sampling rate in parallel.
225
	 */
226
	mutex_lock(&policy_dbs->timer_mutex);
227
	delay = gov->gov_dbs_timer(policy);
228 229
	policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
	mutex_unlock(&policy_dbs->timer_mutex);
230

231 232 233 234 235 236
	/*
	 * If the atomic operation below is reordered with respect to the
	 * sample delay modification, the utilization update handler may end
	 * up using a stale sample delay value.
	 */
	smp_mb__before_atomic();
237
	atomic_dec(&policy_dbs->work_count);
238 239 240 241
}

static void dbs_irq_work(struct irq_work *irq_work)
{
242
	struct policy_dbs_info *policy_dbs;
243

244 245
	policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
	schedule_work(&policy_dbs->work);
246 247
}

248
static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
249
{
250
#ifdef CONFIG_SMP
251
	irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
252
#else
253
	irq_work_queue(&policy_dbs->irq_work);
254 255 256 257 258 259 260
#endif
}

static void dbs_update_util_handler(struct update_util_data *data, u64 time,
				    unsigned long util, unsigned long max)
{
	struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
261
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
262 263

	/*
264 265 266 267 268
	 * The work may not be allowed to be queued up right now.
	 * Possible reasons:
	 * - Work has already been queued up or is in progress.
	 * - The governor is being stopped.
	 * - It is too early (too little time from the previous sample).
269
	 */
270
	if (atomic_inc_return(&policy_dbs->work_count) == 1) {
271 272
		u64 delta_ns;

273 274 275 276
		delta_ns = time - policy_dbs->last_sample_time;
		if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
			policy_dbs->last_sample_time = time;
			gov_queue_irq_work(policy_dbs);
277 278 279
			return;
		}
	}
280
	atomic_dec(&policy_dbs->work_count);
281
}
282

283
static void set_sampling_rate(struct dbs_data *dbs_data,
284 285
			      struct dbs_governor *gov,
			      unsigned int sampling_rate)
286
{
287
	if (gov->governor == GOV_CONSERVATIVE) {
288 289 290 291 292 293 294 295
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
		cs_tuners->sampling_rate = sampling_rate;
	} else {
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
		od_tuners->sampling_rate = sampling_rate;
	}
}

296 297
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
						     struct dbs_governor *gov)
298
{
299
	struct policy_dbs_info *policy_dbs;
300 301 302
	int j;

	/* Allocate memory for the common information for policy->cpus */
303 304
	policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
	if (!policy_dbs)
305
		return NULL;
306

307
	mutex_init(&policy_dbs->timer_mutex);
308
	atomic_set(&policy_dbs->work_count, 0);
309 310
	init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
	INIT_WORK(&policy_dbs->work, dbs_work_handler);
311 312 313 314 315 316 317 318

	/* Set policy_dbs for all CPUs, online+offline */
	for_each_cpu(j, policy->related_cpus) {
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);

		j_cdbs->policy_dbs = policy_dbs;
		j_cdbs->update_util.func = dbs_update_util_handler;
	}
319
	return policy_dbs;
320 321
}

322
static void free_policy_dbs_info(struct cpufreq_policy *policy,
323
				 struct dbs_governor *gov)
324
{
325
	struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
326
	struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
327 328
	int j;

329
	mutex_destroy(&policy_dbs->timer_mutex);
330

331 332
	for_each_cpu(j, policy->related_cpus) {
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
333

334 335 336
		j_cdbs->policy_dbs = NULL;
		j_cdbs->update_util.func = NULL;
	}
337
	kfree(policy_dbs);
338 339
}

340
static int cpufreq_governor_init(struct cpufreq_policy *policy)
341
{
342
	struct dbs_governor *gov = dbs_governor_of(policy);
343
	struct dbs_data *dbs_data = gov->gdbs_data;
344
	struct policy_dbs_info *policy_dbs;
345 346
	unsigned int latency;
	int ret;
347

348 349 350 351
	/* State should be equivalent to EXIT */
	if (policy->governor_data)
		return -EBUSY;

352 353 354
	policy_dbs = alloc_policy_dbs_info(policy, gov);
	if (!policy_dbs)
		return -ENOMEM;
355

356 357 358 359 360
	if (dbs_data) {
		if (WARN_ON(have_governor_per_policy())) {
			ret = -EINVAL;
			goto free_policy_dbs_info;
		}
361
		dbs_data->usage_count++;
362 363
		policy_dbs->dbs_data = dbs_data;
		policy->governor_data = policy_dbs;
364 365
		return 0;
	}
366

367
	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
368 369 370 371
	if (!dbs_data) {
		ret = -ENOMEM;
		goto free_policy_dbs_info;
	}
372

373
	dbs_data->usage_count = 1;
374

375
	ret = gov->init(dbs_data, !policy->governor->initialized);
376
	if (ret)
377
		goto free_policy_dbs_info;
378

379 380 381 382
	/* policy latency is in ns. Convert it to us first */
	latency = policy->cpuinfo.transition_latency / 1000;
	if (latency == 0)
		latency = 1;
383

384 385 386
	/* Bring kernel and HW constraints together */
	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
					  MIN_LATENCY_MULTIPLIER * latency);
387
	set_sampling_rate(dbs_data, gov, max(dbs_data->min_sampling_rate,
388
					latency * LATENCY_MULTIPLIER));
389

390
	if (!have_governor_per_policy())
391
		gov->gdbs_data = dbs_data;
392

393 394
	policy_dbs->dbs_data = dbs_data;
	policy->governor_data = policy_dbs;
395

396
	ret = sysfs_create_group(get_governor_parent_kobj(policy),
397
				 get_sysfs_attr(gov));
398 399
	if (!ret)
		return 0;
400

401
	/* Failure, so roll back. */
402

403 404
	policy->governor_data = NULL;

405
	if (!have_governor_per_policy())
406 407
		gov->gdbs_data = NULL;
	gov->exit(dbs_data, !policy->governor->initialized);
408 409
	kfree(dbs_data);

410 411
free_policy_dbs_info:
	free_policy_dbs_info(policy, gov);
412 413
	return ret;
}
414

415
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
416
{
417
	struct dbs_governor *gov = dbs_governor_of(policy);
418 419
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
420 421

	/* State should be equivalent to INIT */
422
	if (policy_dbs->policy)
423
		return -EBUSY;
424

425 426
	if (!--dbs_data->usage_count) {
		sysfs_remove_group(get_governor_parent_kobj(policy),
427
				   get_sysfs_attr(gov));
428

429 430
		policy->governor_data = NULL;

431
		if (!have_governor_per_policy())
432
			gov->gdbs_data = NULL;
433

434
		gov->exit(dbs_data, policy->governor->initialized == 1);
435
		kfree(dbs_data);
436 437
	} else {
		policy->governor_data = NULL;
438
	}
439

440
	free_policy_dbs_info(policy, gov);
441
	return 0;
442
}
443

444
static int cpufreq_governor_start(struct cpufreq_policy *policy)
445
{
446
	struct dbs_governor *gov = dbs_governor_of(policy);
447 448
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
449 450 451 452 453 454
	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
	int io_busy = 0;

	if (!policy->cur)
		return -EINVAL;

455
	/* State should be equivalent to INIT */
456
	if (policy_dbs->policy)
457 458
		return -EBUSY;

459
	if (gov->governor == GOV_CONSERVATIVE) {
460
		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
461 462

		sampling_rate = cs_tuners->sampling_rate;
463
		ignore_nice = cs_tuners->ignore_nice_load;
464
	} else {
465 466
		struct od_dbs_tuners *od_tuners = dbs_data->tuners;

467
		sampling_rate = od_tuners->sampling_rate;
468
		ignore_nice = od_tuners->ignore_nice_load;
469
		io_busy = od_tuners->io_is_busy;
470 471
	}

472
	for_each_cpu(j, policy->cpus) {
473
		struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
474
		unsigned int prev_load;
475

476 477
		j_cdbs->prev_cpu_idle =
			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
478

479 480 481 482
		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
					    j_cdbs->prev_cpu_idle);
		j_cdbs->prev_load = 100 * prev_load /
				    (unsigned int)j_cdbs->prev_cpu_wall;
483

484 485 486
		if (ignore_nice)
			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
	}
487
	policy_dbs->policy = policy;
488

489
	if (gov->governor == GOV_CONSERVATIVE) {
490
		struct cs_cpu_dbs_info_s *cs_dbs_info =
491
			gov->get_cpu_dbs_info_s(cpu);
492

493 494 495
		cs_dbs_info->down_skip = 0;
		cs_dbs_info->requested_freq = policy->cur;
	} else {
496 497
		struct od_ops *od_ops = gov->gov_ops;
		struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
498

499 500 501 502
		od_dbs_info->rate_mult = 1;
		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
		od_ops->powersave_bias_init_cpu(cpu);
	}
503

504
	gov_set_update_util(policy_dbs, sampling_rate);
505 506 507
	return 0;
}

508
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
509
{
510
	struct policy_dbs_info *policy_dbs = policy->governor_data;
511

512
	/* State should be equivalent to START */
513
	if (!policy_dbs->policy)
514 515
		return -EBUSY;

516 517
	gov_cancel_work(policy_dbs);
	policy_dbs->policy = NULL;
518

519
	return 0;
520
}
521

522
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
523
{
524
	struct policy_dbs_info *policy_dbs = policy->governor_data;
525

526
	/* State should be equivalent to START */
527
	if (!policy_dbs->policy)
528
		return -EBUSY;
529

530 531 532 533 534
	mutex_lock(&policy_dbs->timer_mutex);
	if (policy->max < policy->cur)
		__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
	else if (policy->min > policy->cur)
		__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
535
	dbs_check_cpu(policy);
536
	mutex_unlock(&policy_dbs->timer_mutex);
537 538

	return 0;
539
}
540

541
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
542
{
543
	int ret = -EINVAL;
544

545
	/* Lock governor to block concurrent initialization of governor */
546
	mutex_lock(&dbs_data_mutex);
547

548
	if (event == CPUFREQ_GOV_POLICY_INIT) {
549
		ret = cpufreq_governor_init(policy);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	} else if (policy->governor_data) {
		switch (event) {
		case CPUFREQ_GOV_POLICY_EXIT:
			ret = cpufreq_governor_exit(policy);
			break;
		case CPUFREQ_GOV_START:
			ret = cpufreq_governor_start(policy);
			break;
		case CPUFREQ_GOV_STOP:
			ret = cpufreq_governor_stop(policy);
			break;
		case CPUFREQ_GOV_LIMITS:
			ret = cpufreq_governor_limits(policy);
			break;
		}
565
	}
566

567
	mutex_unlock(&dbs_data_mutex);
568
	return ret;
569 570
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);