db8500-prcmu.c 82.4 KB
Newer Older
L
Linus Walleij 已提交
1
/*
2 3
 * Copyright (C) STMicroelectronics 2009
 * Copyright (C) ST-Ericsson SA 2010
L
Linus Walleij 已提交
4 5
 *
 * License Terms: GNU General Public License v2
6 7
 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
L
Linus Walleij 已提交
8 9
 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
 *
10 11
 * U8500 PRCM Unit interface driver
 *
L
Linus Walleij 已提交
12 13
 */
#include <linux/module.h>
14 15
#include <linux/kernel.h>
#include <linux/delay.h>
L
Linus Walleij 已提交
16 17
#include <linux/errno.h>
#include <linux/err.h>
18
#include <linux/spinlock.h>
L
Linus Walleij 已提交
19
#include <linux/io.h>
20
#include <linux/slab.h>
L
Linus Walleij 已提交
21 22
#include <linux/mutex.h>
#include <linux/completion.h>
23
#include <linux/irq.h>
L
Linus Walleij 已提交
24 25
#include <linux/jiffies.h>
#include <linux/bitops.h>
26
#include <linux/fs.h>
27
#include <linux/of.h>
28
#include <linux/of_irq.h>
29 30 31
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/mfd/core.h>
32
#include <linux/mfd/dbx500-prcmu.h>
33
#include <linux/mfd/abx500/ab8500.h>
34 35
#include <linux/regulator/db8500-prcmu.h>
#include <linux/regulator/machine.h>
36
#include <linux/cpufreq.h>
37
#include <linux/platform_data/ux500_wdt.h>
38
#include <linux/platform_data/db8500_thermal.h>
39
#include "dbx500-prcmu-regs.h"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

/* Index of different voltages to be used when accessing AVSData */
#define PRCM_AVS_BASE		0x2FC
#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)

#define PRCM_AVS_VOLTAGE		0
#define PRCM_AVS_VOLTAGE_MASK		0x3f
#define PRCM_AVS_ISSLOWSTARTUP		6
#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
#define PRCM_AVS_ISMODEENABLE		7
#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)

#define PRCM_BOOT_STATUS	0xFFF
#define PRCM_ROMCODE_A2P	0xFFE
#define PRCM_ROMCODE_P2A	0xFFD
#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */

#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */

#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)

/* Req Mailboxes */
#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */

/* Ack Mailboxes */
#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */

/* Mailbox 0 headers */
#define MB0H_POWER_STATE_TRANS		0
#define MB0H_CONFIG_WAKEUPS_EXE		1
#define MB0H_READ_WAKEUP_ACK		3
#define MB0H_CONFIG_WAKEUPS_SLEEP	4

#define MB0H_WAKEUP_EXE 2
#define MB0H_WAKEUP_SLEEP 5

/* Mailbox 0 REQs */
#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)

/* Mailbox 0 ACKs */
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20

/* Mailbox 1 headers */
#define MB1H_ARM_APE_OPP 0x0
#define MB1H_RESET_MODEM 0x2
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
#define MB1H_RELEASE_USB_WAKEUP 0x5
128
#define MB1H_PLL_ON_OFF 0x6
129 130 131 132

/* Mailbox 1 Requests */
#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133
#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134 135
#define PLL_SOC0_OFF	0x1
#define PLL_SOC0_ON	0x2
136 137
#define PLL_SOC1_OFF	0x4
#define PLL_SOC1_ON	0x8
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

/* Mailbox 1 ACKs */
#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)

/* Mailbox 2 headers */
#define MB2H_DPS	0x0
#define MB2H_AUTO_PWR	0x1

/* Mailbox 2 REQs */
#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)

/* Mailbox 2 ACKs */
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
#define HWACC_PWR_ST_OK 0xFE

/* Mailbox 3 headers */
#define MB3H_ANC	0x0
#define MB3H_SIDETONE	0x1
#define MB3H_SYSCLK	0xE

/* Mailbox 3 Requests */
#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)

/* Mailbox 4 headers */
#define MB4H_DDR_INIT	0x0
#define MB4H_MEM_ST	0x1
#define MB4H_HOTDOG	0x12
#define MB4H_HOTMON	0x13
#define MB4H_HOT_PERIOD	0x14
185 186 187 188 189
#define MB4H_A9WDOG_CONF 0x16
#define MB4H_A9WDOG_EN   0x17
#define MB4H_A9WDOG_DIS  0x18
#define MB4H_A9WDOG_LOAD 0x19
#define MB4H_A9WDOG_KICK 0x20
190 191 192 193 194 195 196 197 198 199 200 201

/* Mailbox 4 Requests */
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
#define HOTMON_CONFIG_LOW			BIT(0)
#define HOTMON_CONFIG_HIGH			BIT(1)
202 203 204 205 206 207 208
#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
#define A9WDOG_AUTO_OFF_EN			BIT(7)
#define A9WDOG_AUTO_OFF_DIS			0
#define A9WDOG_ID_MASK				0xf
209 210 211 212 213 214

/* Mailbox 5 Requests */
#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215 216
#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#define PRCMU_I2C_STOP_EN		BIT(3)

/* Mailbox 5 ACKs */
#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
#define I2C_WR_OK 0x1
#define I2C_RD_OK 0x2

#define NUM_MB 8
#define MBOX_BIT BIT
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)

/*
 * Wakeups/IRQs
 */

#define WAKEUP_BIT_RTC BIT(0)
#define WAKEUP_BIT_RTT0 BIT(1)
#define WAKEUP_BIT_RTT1 BIT(2)
#define WAKEUP_BIT_HSI0 BIT(3)
#define WAKEUP_BIT_HSI1 BIT(4)
#define WAKEUP_BIT_CA_WAKE BIT(5)
#define WAKEUP_BIT_USB BIT(6)
#define WAKEUP_BIT_ABB BIT(7)
#define WAKEUP_BIT_ABB_FIFO BIT(8)
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
#define WAKEUP_BIT_CA_SLEEP BIT(10)
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
#define WAKEUP_BIT_ANC_OK BIT(13)
#define WAKEUP_BIT_SW_ERROR BIT(14)
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
#define WAKEUP_BIT_ARM BIT(17)
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
#define WAKEUP_BIT_GPIO0 BIT(23)
#define WAKEUP_BIT_GPIO1 BIT(24)
#define WAKEUP_BIT_GPIO2 BIT(25)
#define WAKEUP_BIT_GPIO3 BIT(26)
#define WAKEUP_BIT_GPIO4 BIT(27)
#define WAKEUP_BIT_GPIO5 BIT(28)
#define WAKEUP_BIT_GPIO6 BIT(29)
#define WAKEUP_BIT_GPIO7 BIT(30)
#define WAKEUP_BIT_GPIO8 BIT(31)

263 264 265 266 267
static struct {
	bool valid;
	struct prcmu_fw_version version;
} fw_info;

268 269
static struct irq_domain *db8500_irq_domain;

270 271 272 273 274 275 276 277
/*
 * This vector maps irq numbers to the bits in the bit field used in
 * communication with the PRCMU firmware.
 *
 * The reason for having this is to keep the irq numbers contiguous even though
 * the bits in the bit field are not. (The bits also have a tendency to move
 * around, to further complicate matters.)
 */
278
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

#define IRQ_PRCMU_RTC 0
#define IRQ_PRCMU_RTT0 1
#define IRQ_PRCMU_RTT1 2
#define IRQ_PRCMU_HSI0 3
#define IRQ_PRCMU_HSI1 4
#define IRQ_PRCMU_CA_WAKE 5
#define IRQ_PRCMU_USB 6
#define IRQ_PRCMU_ABB 7
#define IRQ_PRCMU_ABB_FIFO 8
#define IRQ_PRCMU_ARM 9
#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
#define IRQ_PRCMU_GPIO0 11
#define IRQ_PRCMU_GPIO1 12
#define IRQ_PRCMU_GPIO2 13
#define IRQ_PRCMU_GPIO3 14
#define IRQ_PRCMU_GPIO4 15
#define IRQ_PRCMU_GPIO5 16
#define IRQ_PRCMU_GPIO6 17
#define IRQ_PRCMU_GPIO7 18
#define IRQ_PRCMU_GPIO8 19
#define IRQ_PRCMU_CA_SLEEP 20
#define IRQ_PRCMU_HOTMON_LOW 21
#define IRQ_PRCMU_HOTMON_HIGH 22
#define NUM_PRCMU_WAKEUPS 23

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
	IRQ_ENTRY(RTC),
	IRQ_ENTRY(RTT0),
	IRQ_ENTRY(RTT1),
	IRQ_ENTRY(HSI0),
	IRQ_ENTRY(HSI1),
	IRQ_ENTRY(CA_WAKE),
	IRQ_ENTRY(USB),
	IRQ_ENTRY(ABB),
	IRQ_ENTRY(ABB_FIFO),
	IRQ_ENTRY(CA_SLEEP),
	IRQ_ENTRY(ARM),
	IRQ_ENTRY(HOTMON_LOW),
	IRQ_ENTRY(HOTMON_HIGH),
	IRQ_ENTRY(MODEM_SW_RESET_REQ),
	IRQ_ENTRY(GPIO0),
	IRQ_ENTRY(GPIO1),
	IRQ_ENTRY(GPIO2),
	IRQ_ENTRY(GPIO3),
	IRQ_ENTRY(GPIO4),
	IRQ_ENTRY(GPIO5),
	IRQ_ENTRY(GPIO6),
	IRQ_ENTRY(GPIO7),
	IRQ_ENTRY(GPIO8)
};

#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
	WAKEUP_ENTRY(RTC),
	WAKEUP_ENTRY(RTT0),
	WAKEUP_ENTRY(RTT1),
	WAKEUP_ENTRY(HSI0),
	WAKEUP_ENTRY(HSI1),
	WAKEUP_ENTRY(USB),
	WAKEUP_ENTRY(ABB),
	WAKEUP_ENTRY(ABB_FIFO),
	WAKEUP_ENTRY(ARM)
};

/*
 * mb0_transfer - state needed for mailbox 0 communication.
 * @lock:		The transaction lock.
 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 *			the request data.
 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 * @req:		Request data that need to persist between requests.
 */
static struct {
	spinlock_t lock;
	spinlock_t dbb_irqs_lock;
	struct work_struct mask_work;
	struct mutex ac_wake_lock;
	struct completion ac_wake_work;
	struct {
		u32 dbb_irqs;
		u32 dbb_wakeups;
		u32 abb_events;
	} req;
} mb0_transfer;

/*
 * mb1_transfer - state needed for mailbox 1 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
371
 * @ape_opp:	The current APE OPP.
372 373 374 375 376
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
377
	u8 ape_opp;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	struct {
		u8 header;
		u8 arm_opp;
		u8 ape_opp;
		u8 ape_voltage_status;
	} ack;
} mb1_transfer;

/*
 * mb2_transfer - state needed for mailbox 2 communication.
 * @lock:            The transaction lock.
 * @work:            The transaction completion structure.
 * @auto_pm_lock:    The autonomous power management configuration lock.
 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 * @req:             Request data that need to persist between requests.
 * @ack:             Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	spinlock_t auto_pm_lock;
	bool auto_pm_enabled;
	struct {
		u8 status;
	} ack;
} mb2_transfer;

/*
 * mb3_transfer - state needed for mailbox 3 communication.
 * @lock:		The request lock.
 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 * @sysclk_work:	Work structure used for sysclk requests.
 */
static struct {
	spinlock_t lock;
	struct mutex sysclk_lock;
	struct completion sysclk_work;
} mb3_transfer;

/*
 * mb4_transfer - state needed for mailbox 4 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 */
static struct {
	struct mutex lock;
	struct completion work;
} mb4_transfer;

/*
 * mb5_transfer - state needed for mailbox 5 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	struct {
		u8 status;
		u8 value;
	} ack;
} mb5_transfer;

static atomic_t ac_wake_req_state = ATOMIC_INIT(0);

/* Spinlocks */
445
static DEFINE_SPINLOCK(prcmu_lock);
446 447 448 449
static DEFINE_SPINLOCK(clkout_lock);

/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
450
static __iomem void *prcmu_base;
451 452

struct clk_mgt {
453
	u32 offset;
454
	u32 pllsw;
455 456 457 458 459 460 461 462
	int branch;
	bool clk38div;
};

enum {
	PLL_RAW,
	PLL_FIX,
	PLL_DIV
463 464 465 466
};

static DEFINE_SPINLOCK(clk_mgt_lock);

467 468
#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469
static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
};

struct dsiclk {
	u32 divsel_mask;
	u32 divsel_shift;
	u32 divsel;
};

static struct dsiclk dsiclk[2] = {
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	},
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	}
};

struct dsiescclk {
	u32 en;
	u32 div_mask;
	u32 div_shift;
};

static struct dsiescclk dsiescclk[3] = {
	{
		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
	}
542 543
};

544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/*
* Used by MCDE to setup all necessary PRCMU registers
*/
#define PRCMU_RESET_DSIPLL		0x00004000
#define PRCMU_UNCLAMP_DSIPLL		0x00400800

#define PRCMU_CLK_PLL_DIV_SHIFT		0
#define PRCMU_CLK_PLL_SW_SHIFT		5
#define PRCMU_CLK_38			(1 << 9)
#define PRCMU_CLK_38_SRC		(1 << 10)
#define PRCMU_CLK_38_DIV		(1 << 11)

/* PLLDIV=12, PLLSW=4 (PLLDDR) */
#define PRCMU_DSI_CLOCK_SETTING		0x0000008C

/* DPI 50000000 Hz */
#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00

/* D=101, N=1, R=4, SELDIV2=0 */
#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165

#define PRCMU_ENABLE_PLLDSI		0x00000001
#define PRCMU_DISABLE_PLLDSI		0x00000000
#define PRCMU_RELEASE_RESET_DSS		0x0000400C
#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
/* ESC clk, div0=1, div1=1, div2=3 */
#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
#define PRCMU_DSI_RESET_SW		0x00000007

#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3

579
int db8500_prcmu_enable_dsipll(void)
580 581 582 583
{
	int i;

	/* Clear DSIPLL_RESETN */
584
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585
	/* Unclamp DSIPLL in/out */
586
	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 588

	/* Set DSI PLL FREQ */
589
	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590
	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591
	/* Enable Escape clocks */
592
	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 594

	/* Start DSI PLL */
595
	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596
	/* Reset DSI PLL */
597
	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598
	for (i = 0; i < 10; i++) {
599
		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 601 602 603 604
					== PRCMU_PLLDSI_LOCKP_LOCKED)
			break;
		udelay(100);
	}
	/* Set DSIPLL_RESETN */
605
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 607 608
	return 0;
}

609
int db8500_prcmu_disable_dsipll(void)
610 611
{
	/* Disable dsi pll */
612
	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613
	/* Disable  escapeclock */
614
	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 616 617
	return 0;
}

618
int db8500_prcmu_set_display_clocks(void)
619 620 621 622 623 624
{
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
625
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 627
		cpu_relax();

628 629 630
	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 632

	/* Release the HW semaphore. */
633
	writel(0, PRCM_SEM);
634 635 636 637 638 639

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

640 641
u32 db8500_prcmu_read(unsigned int reg)
{
642
	return readl(prcmu_base + reg);
643 644 645
}

void db8500_prcmu_write(unsigned int reg, u32 value)
646 647 648
{
	unsigned long flags;

649
	spin_lock_irqsave(&prcmu_lock, flags);
650
	writel(value, (prcmu_base + reg));
651
	spin_unlock_irqrestore(&prcmu_lock, flags);
652 653
}

654
void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655
{
656
	u32 val;
657 658
	unsigned long flags;

659
	spin_lock_irqsave(&prcmu_lock, flags);
660
	val = readl(prcmu_base + reg);
661
	val = ((val & ~mask) | (value & mask));
662
	writel(val, (prcmu_base + reg));
663
	spin_unlock_irqrestore(&prcmu_lock, flags);
664 665
}

666 667 668 669 670
struct prcmu_fw_version *prcmu_get_fw_version(void)
{
	return fw_info.valid ? &fw_info.version : NULL;
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
bool prcmu_has_arm_maxopp(void)
{
	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
}

/**
 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 * @val: Value to be set, i.e. transition requested
 * Returns: 0 on success, -EINVAL on invalid argument
 *
 * This function is used to run the following power state sequences -
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
int prcmu_set_rc_a2p(enum romcode_write val)
{
	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
		return -EINVAL;
	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
	return 0;
}

/**
 * prcmu_get_rc_p2a - This function is used to get power state sequences
 * Returns: the power transition that has last happened
 *
 * This function can return the following transitions-
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
enum romcode_read prcmu_get_rc_p2a(void)
{
	return readb(tcdm_base + PRCM_ROMCODE_P2A);
}

/**
 * prcmu_get_current_mode - Return the current XP70 power mode
 * Returns: Returns the current AP(ARM) power mode: init,
 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 */
enum ap_pwrst prcmu_get_xp70_current_state(void)
{
	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
}

/**
 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 * @clkout:	The CLKOUT number (0 or 1).
 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 * @div:	The divider to be applied.
 *
 * Configures one of the programmable clock outputs (CLKOUTs).
 * @div should be in the range [1,63] to request a configuration, or 0 to
 * inform that the configuration is no longer requested.
 */
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
	static int requests[2];
	int r = 0;
	unsigned long flags;
	u32 val;
	u32 bits;
	u32 mask;
	u32 div_mask;

	BUG_ON(clkout > 1);
	BUG_ON(div > 63);
	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));

	if (!div && !requests[clkout])
		return -EINVAL;

742
	if (clkout == 0) {
743 744 745 746
		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747
	} else {
748 749 750 751 752 753 754 755 756 757
		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
			PRCM_CLKOCR_CLK1TYPE);
		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
	}
	bits &= mask;

	spin_lock_irqsave(&clkout_lock, flags);

758
	val = readl(PRCM_CLKOCR);
759 760 761 762 763 764 765 766 767 768 769 770 771
	if (val & div_mask) {
		if (div) {
			if ((val & mask) != bits) {
				r = -EBUSY;
				goto unlock_and_return;
			}
		} else {
			if ((val & mask & ~div_mask) != bits) {
				r = -EINVAL;
				goto unlock_and_return;
			}
		}
	}
772
	writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 774 775 776 777 778 779 780
	requests[clkout] += (div ? 1 : -1);

unlock_and_return:
	spin_unlock_irqrestore(&clkout_lock, flags);

	return r;
}

781
int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 783 784 785 786 787 788
{
	unsigned long flags;

	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));

	spin_lock_irqsave(&mb0_transfer.lock, flags);

789
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 791 792 793 794 795 796 797
		cpu_relax();

	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
	writeb((keep_ulp_clk ? 1 : 0),
		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799 800 801 802 803 804

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);

	return 0;
}

805 806 807 808 809
u8 db8500_prcmu_get_power_state_result(void)
{
	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/* This function should only be called while mb0_transfer.lock is held. */
static void config_wakeups(void)
{
	const u8 header[2] = {
		MB0H_CONFIG_WAKEUPS_EXE,
		MB0H_CONFIG_WAKEUPS_SLEEP
	};
	static u32 last_dbb_events;
	static u32 last_abb_events;
	u32 dbb_events;
	u32 abb_events;
	unsigned int i;

	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);

	abb_events = mb0_transfer.req.abb_events;

	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
		return;

	for (i = 0; i < 2; i++) {
832
		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 834 835 836
			cpu_relax();
		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837
		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 839 840 841 842
	}
	last_dbb_events = dbb_events;
	last_abb_events = abb_events;
}

843
void db8500_prcmu_enable_wakeups(u32 wakeups)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
{
	unsigned long flags;
	u32 bits;
	int i;

	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));

	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
		if (wakeups & BIT(i))
			bits |= prcmu_wakeup_bit[i];
	}

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.dbb_wakeups = bits;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

864
void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 866 867 868 869 870 871 872 873 874 875
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.abb_events = abb_events;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

876
void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 878 879 880 881 882 883 884
{
	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
	else
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
}

/**
885
 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886 887 888 889 890
 * @opp: The new ARM operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the the operating point of the ARM.
 */
891
int db8500_prcmu_set_arm_opp(u8 opp)
892 893 894 895 896 897 898 899 900 901
{
	int r;

	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
		return -EINVAL;

	r = 0;

	mutex_lock(&mb1_transfer.lock);

902
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 904 905 906 907 908
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));

909
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 911 912 913 914 915 916 917 918 919 920 921
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.arm_opp != opp))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
922
 * db8500_prcmu_get_arm_opp - get the current ARM OPP
923 924 925
 *
 * Returns: the current ARM OPP
 */
926
int db8500_prcmu_get_arm_opp(void)
927 928 929 930 931
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
}

/**
932
 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933 934 935
 *
 * Returns: the current DDR OPP
 */
936
int db8500_prcmu_get_ddr_opp(void)
937
{
938
	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 940 941
}

/**
942
 * db8500_set_ddr_opp - set the appropriate DDR OPP
943 944 945 946 947
 * @opp: The new DDR operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the DDR.
 */
948
static bool enable_set_ddr_opp;
949
int db8500_prcmu_set_ddr_opp(u8 opp)
950 951 952 953
{
	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
		return -EINVAL;
	/* Changing the DDR OPP can hang the hardware pre-v21 */
954
	if (enable_set_ddr_opp)
955
		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
956 957 958

	return 0;
}
959

960 961 962
/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
static void request_even_slower_clocks(bool enable)
{
963
	u32 clock_reg[] = {
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		PRCM_ACLK_MGT,
		PRCM_DMACLK_MGT
	};
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
		u32 val;
		u32 div;

980
		val = readl(prcmu_base + clock_reg[i]);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
		if (enable) {
			if ((div <= 1) || (div > 15)) {
				pr_err("prcmu: Bad clock divider %d in %s\n",
					div, __func__);
				goto unlock_and_return;
			}
			div <<= 1;
		} else {
			if (div <= 2)
				goto unlock_and_return;
			div >>= 1;
		}
		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
996
		writel(val, prcmu_base + clock_reg[i]);
997 998 999 1000 1001 1002 1003 1004 1005
	}

unlock_and_return:
	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

1006
/**
1007
 * db8500_set_ape_opp - set the appropriate APE OPP
1008 1009 1010 1011 1012
 * @opp: The new APE operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the APE.
 */
1013
int db8500_prcmu_set_ape_opp(u8 opp)
1014 1015 1016
{
	int r = 0;

1017 1018 1019
	if (opp == mb1_transfer.ape_opp)
		return 0;

1020 1021
	mutex_lock(&mb1_transfer.lock);

1022 1023 1024 1025 1026 1027
	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
		request_even_slower_clocks(false);

	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
		goto skip_message;

1028
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1029 1030 1031 1032
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1033 1034
	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1035

1036
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1037 1038 1039 1040 1041 1042
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.ape_opp != opp))
		r = -EIO;

1043 1044 1045 1046 1047 1048 1049
skip_message:
	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
		request_even_slower_clocks(true);
	if (!r)
		mb1_transfer.ape_opp = opp;

1050 1051 1052 1053 1054 1055
	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
1056
 * db8500_prcmu_get_ape_opp - get the current APE OPP
1057 1058 1059
 *
 * Returns: the current APE OPP
 */
1060
int db8500_prcmu_get_ape_opp(void)
1061 1062 1063 1064 1065
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
}

/**
1066
 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1067 1068 1069 1070
 * @enable: true to request the higher voltage, false to drop a request.
 *
 * Calls to this function to enable and disable requests must be balanced.
 */
1071
int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	int r = 0;
	u8 header;
	static unsigned int requests;

	mutex_lock(&mb1_transfer.lock);

	if (enable) {
		if (0 != requests++)
			goto unlock_and_return;
		header = MB1H_REQUEST_APE_OPP_100_VOLT;
	} else {
		if (requests == 0) {
			r = -EIO;
			goto unlock_and_return;
		} else if (1 != requests--) {
			goto unlock_and_return;
		}
		header = MB1H_RELEASE_APE_OPP_100_VOLT;
	}

1093
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1094 1095 1096 1097
		cpu_relax();

	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

1098
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != header) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
 *
 * This function releases the power state requirements of a USB wakeup.
 */
int prcmu_release_usb_wakeup_state(void)
{
	int r = 0;

	mutex_lock(&mb1_transfer.lock);

1122
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1123 1124 1125 1126 1127
		cpu_relax();

	writeb(MB1H_RELEASE_USB_WAKEUP,
		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

1128
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

1140 1141 1142 1143
static int request_pll(u8 clock, bool enable)
{
	int r = 0;

1144 1145 1146
	if (clock == PRCMU_PLLSOC0)
		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
	else if (clock == PRCMU_PLLSOC1)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
	else
		return -EINVAL;

	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

1170
/**
1171
 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1172 1173 1174 1175 1176 1177
 * @epod_id: The EPOD to set
 * @epod_state: The new EPOD state
 *
 * This function sets the state of a EPOD (power domain). It may not be called
 * from interrupt context.
 */
1178
int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	int r = 0;
	bool ram_retention = false;
	int i;

	/* check argument */
	BUG_ON(epod_id >= NUM_EPOD_ID);

	/* set flag if retention is possible */
	switch (epod_id) {
	case EPOD_ID_SVAMMDSP:
	case EPOD_ID_SIAMMDSP:
	case EPOD_ID_ESRAM12:
	case EPOD_ID_ESRAM34:
		ram_retention = true;
		break;
	}

	/* check argument */
	BUG_ON(epod_state > EPOD_STATE_ON);
	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);

	/* get lock */
	mutex_lock(&mb2_transfer.lock);

	/* wait for mailbox */
1205
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1206 1207 1208 1209 1210 1211 1212 1213 1214
		cpu_relax();

	/* fill in mailbox */
	for (i = 0; i < NUM_EPOD_ID; i++)
		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));

	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));

1215
	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

	/*
	 * The current firmware version does not handle errors correctly,
	 * and we cannot recover if there is an error.
	 * This is expected to change when the firmware is updated.
	 */
	if (!wait_for_completion_timeout(&mb2_transfer.work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
		goto unlock_and_return;
	}

	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb2_transfer.lock);
	return r;
}

/**
 * prcmu_configure_auto_pm - Configure autonomous power management.
 * @sleep: Configuration for ApSleep.
 * @idle:  Configuration for ApIdle.
 */
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
	struct prcmu_auto_pm_config *idle)
{
	u32 sleep_cfg;
	u32 idle_cfg;
	unsigned long flags;
L
Linus Walleij 已提交
1249

1250
	BUG_ON((sleep == NULL) || (idle == NULL));
1251

1252 1253 1254 1255 1256 1257
	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
L
Linus Walleij 已提交
1258

1259 1260 1261 1262 1263 1264
	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
L
Linus Walleij 已提交
1265

1266
	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1267

1268 1269 1270 1271 1272 1273 1274
	/*
	 * The autonomous power management configuration is done through
	 * fields in mailbox 2, but these fields are only used as shared
	 * variables - i.e. there is no need to send a message.
	 */
	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1275

1276 1277 1278 1279 1280
	mb2_transfer.auto_pm_enabled =
		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1281

1282 1283 1284
	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
}
EXPORT_SYMBOL(prcmu_configure_auto_pm);
L
Linus Walleij 已提交
1285

1286 1287 1288 1289
bool prcmu_is_auto_pm_enabled(void)
{
	return mb2_transfer.auto_pm_enabled;
}
1290

1291 1292 1293 1294
static int request_sysclk(bool enable)
{
	int r;
	unsigned long flags;
L
Linus Walleij 已提交
1295

1296
	r = 0;
L
Linus Walleij 已提交
1297

1298
	mutex_lock(&mb3_transfer.sysclk_lock);
1299

1300
	spin_lock_irqsave(&mb3_transfer.lock, flags);
1301

1302
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1303
		cpu_relax();
1304

1305
	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
L
Linus Walleij 已提交
1306

1307
	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1308
	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	spin_unlock_irqrestore(&mb3_transfer.lock, flags);

	/*
	 * The firmware only sends an ACK if we want to enable the
	 * SysClk, and it succeeds.
	 */
	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
	}

	mutex_unlock(&mb3_transfer.sysclk_lock);

	return r;
}

static int request_timclk(bool enable)
{
	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);

	if (!enable)
		val |= PRCM_TCR_STOP_TIMERS;
1334
	writel(val, PRCM_TCR);
1335 1336 1337 1338

	return 0;
}

1339
static int request_clock(u8 clock, bool enable)
1340 1341 1342 1343 1344 1345 1346
{
	u32 val;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
1347
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1348 1349
		cpu_relax();

1350
	val = readl(prcmu_base + clk_mgt[clock].offset);
1351 1352 1353 1354 1355 1356
	if (enable) {
		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
	} else {
		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
	}
1357
	writel(val, prcmu_base + clk_mgt[clock].offset);
1358 1359

	/* Release the HW semaphore. */
1360
	writel(0, PRCM_SEM);
1361 1362 1363 1364 1365 1366

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static int request_sga_clock(u8 clock, bool enable)
{
	u32 val;
	int ret;

	if (enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

1377
	ret = request_clock(clock, enable);
1378 1379 1380 1381 1382 1383 1384 1385 1386

	if (!ret && !enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

	return ret;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static inline bool plldsi_locked(void)
{
	return (readl(PRCM_PLLDSI_LOCKP) &
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
}

static int request_plldsi(bool enable)
{
	int r = 0;
	u32 val;

	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));

	val = readl(PRCM_PLLDSI_ENABLE);
	if (enable)
		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	else
		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	writel(val, PRCM_PLLDSI_ENABLE);

	if (enable) {
		unsigned int i;
		bool locked = plldsi_locked();

		for (i = 10; !locked && (i > 0); --i) {
			udelay(100);
			locked = plldsi_locked();
		}
		if (locked) {
			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
				PRCM_APE_RESETN_SET);
		} else {
			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
				PRCM_MMIP_LS_CLAMP_SET);
			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
			writel(val, PRCM_PLLDSI_ENABLE);
			r = -EAGAIN;
		}
	} else {
		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
	}
	return r;
}

static int request_dsiclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
		dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
	return 0;
}

static int request_dsiescclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSITVCLK_DIV);
	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
	writel(val, PRCM_DSITVCLK_DIV);
	return 0;
}

1459
/**
1460
 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1461 1462 1463 1464 1465 1466
 * @clock:      The clock for which the request is made.
 * @enable:     Whether the clock should be enabled (true) or disabled (false).
 *
 * This function should only be used by the clock implementation.
 * Do not use it from any other place!
 */
1467
int db8500_prcmu_request_clock(u8 clock, bool enable)
1468
{
1469
	if (clock == PRCMU_SGACLK)
1470
		return request_sga_clock(clock, enable);
1471 1472 1473
	else if (clock < PRCMU_NUM_REG_CLOCKS)
		return request_clock(clock, enable);
	else if (clock == PRCMU_TIMCLK)
1474
		return request_timclk(enable);
1475 1476 1477 1478 1479 1480 1481
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
	else if (clock == PRCMU_PLLDSI)
		return request_plldsi(enable);
	else if (clock == PRCMU_SYSCLK)
1482
		return request_sysclk(enable);
1483
	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1484
		return request_pll(clock, enable);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	else
		return -EINVAL;
}

static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
	int branch)
{
	u64 rate;
	u32 val;
	u32 d;
	u32 div = 1;

	val = readl(reg);

	rate = src_rate;
	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);

	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
	if (d > 1)
		div *= d;

	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
	if (d > 1)
		div *= d;

	if (val & PRCM_PLL_FREQ_SELDIV2)
		div *= 2;

	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
		(val & PRCM_PLL_FREQ_DIV2EN) &&
		((reg == PRCM_PLLSOC0_FREQ) ||
1516
		 (reg == PRCM_PLLARM_FREQ) ||
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		 (reg == PRCM_PLLDDR_FREQ))))
		div *= 2;

	(void)do_div(rate, div);

	return (unsigned long)rate;
}

#define ROOT_CLOCK_RATE 38400000

static unsigned long clock_rate(u8 clock)
{
	u32 val;
	u32 pllsw;
	unsigned long rate = ROOT_CLOCK_RATE;

1533
	val = readl(prcmu_base + clk_mgt[clock].offset);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
			rate /= 2;
		return rate;
	}

	val |= clk_mgt[clock].pllsw;
	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);

	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
	else
		return 0;

	if ((clock == PRCMU_SGACLK) &&
		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
		u64 r = (rate * 10);

		(void)do_div(r, 25);
		return (unsigned long)r;
	}
	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
	if (val)
		return rate / val;
	else
		return 0;
}
1566

1567
static unsigned long armss_rate(void)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
{
	u32 r;
	unsigned long rate;

	r = readl(PRCM_ARM_CHGCLKREQ);

	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
		/* External ARMCLKFIX clock */

		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);

		/* Check PRCM_ARM_CHGCLKREQ divider */
		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
			rate /= 2;

		/* Check PRCM_ARMCLKFIX_MGT divider */
		r = readl(PRCM_ARMCLKFIX_MGT);
		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
		rate /= r;

	} else {/* ARM PLL */
		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
	}

1592
	return rate;
1593
}
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

static unsigned long dsiclk_rate(u8 n)
{
	u32 divsel;
	u32 div = 1;

	divsel = readl(PRCM_DSI_PLLOUT_SEL);
	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);

	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
		divsel = dsiclk[n].divsel;
1605 1606
	else
		dsiclk[n].divsel = divsel;
1607 1608 1609 1610 1611 1612 1613 1614 1615

	switch (divsel) {
	case PRCM_DSI_PLLOUT_SEL_PHI_4:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI_2:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI:
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW) / div;
1616
	default:
1617
		return 0;
1618
	}
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

static unsigned long dsiescclk_rate(u8 n)
{
	u32 div;

	div = readl(PRCM_DSITVCLK_DIV);
	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
}

unsigned long prcmu_clock_rate(u8 clock)
{
1632
	if (clock < PRCMU_NUM_REG_CLOCKS)
1633 1634 1635 1636 1637 1638 1639 1640 1641
		return clock_rate(clock);
	else if (clock == PRCMU_TIMCLK)
		return ROOT_CLOCK_RATE / 16;
	else if (clock == PRCMU_SYSCLK)
		return ROOT_CLOCK_RATE;
	else if (clock == PRCMU_PLLSOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLSOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1642 1643
	else if (clock == PRCMU_ARMSS)
		return armss_rate();
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	else if (clock == PRCMU_PLLDDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLDSI)
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return dsiclk_rate(clock - PRCMU_DSI0CLK);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
	else
		return 0;
}

static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
{
	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
		return ROOT_CLOCK_RATE;
	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
	else
		return 0;
}

static u32 clock_divider(unsigned long src_rate, unsigned long rate)
{
	u32 div;

	div = (src_rate / rate);
	if (div == 0)
		return 1;
	if (rate < (src_rate / div))
		div++;
	return div;
}

static long round_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

1691
	val = readl(prcmu_base + clk_mgt[clock].offset);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 2)
				div = 2;
		} else {
			div = 1;
		}
	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
		u64 r = (src_rate * 10);

		(void)do_div(r, 25);
		if (r <= rate)
			return (unsigned long)r;
	}
	rounded_rate = (src_rate / min(div, (u32)31));

	return rounded_rate;
}

1714 1715
/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1716 1717 1718
	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1719 1720 1721 1722 1723 1724
	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
	{ .frequency = CPUFREQ_TABLE_END,},
};

static long round_armss_rate(unsigned long rate)
{
1725
	struct cpufreq_frequency_table *pos;
1726 1727 1728 1729 1730 1731
	long freq = 0;

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
1732 1733
	cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
		freq = pos->frequency;
1734 1735 1736 1737 1738 1739 1740 1741
		if (freq == rate)
			break;
	}

	/* Return the last valid value, even if a match was not found. */
	return freq * 1000;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
#define MIN_PLL_VCO_RATE 600000000ULL
#define MAX_PLL_VCO_RATE 1680640000ULL

static long round_plldsi_rate(unsigned long rate)
{
	long rounded_rate = 0;
	unsigned long src_rate;
	unsigned long rem;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		d *= src_rate;
		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * d)))
			continue;
		(void)do_div(d, r);
		if (rate < d) {
			if (rounded_rate == 0)
				rounded_rate = (long)d;
			break;
		}
		if ((rate - d) < rem) {
			rem = (rate - d);
			rounded_rate = (long)d;
		}
	}
	return rounded_rate;
}

static long round_dsiclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
		PLL_RAW);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / ((div > 2) ? 4 : div));

	return rounded_rate;
}

static long round_dsiescclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = clock_rate(PRCMU_TVCLK);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / min(div, (u32)255));

	return rounded_rate;
}

long prcmu_round_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		return round_clock_rate(clock, rate);
1813 1814
	else if (clock == PRCMU_ARMSS)
		return round_armss_rate(rate);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	else if (clock == PRCMU_PLLDSI)
		return round_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return round_dsiclk_rate(rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return round_dsiescclk_rate(rate);
	else
		return (long)prcmu_clock_rate(clock);
}

static void set_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

1838
	val = readl(prcmu_base + clk_mgt[clock].offset);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 1)
				val |= PRCM_CLK_MGT_CLK38DIV;
			else
				val &= ~PRCM_CLK_MGT_CLK38DIV;
		}
	} else if (clock == PRCMU_SGACLK) {
		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
		if (div == 3) {
			u64 r = (src_rate * 10);

			(void)do_div(r, 25);
			if (r <= rate) {
				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
				div = 0;
			}
		}
		val |= min(div, (u32)31);
	} else {
		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
		val |= min(div, (u32)31);
	}
1866
	writel(val, prcmu_base + clk_mgt[clock].offset);
1867 1868 1869 1870 1871 1872 1873

	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

1874 1875
static int set_armss_rate(unsigned long rate)
{
1876
	struct cpufreq_frequency_table *pos;
1877 1878 1879 1880 1881

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
1882 1883
	cpufreq_for_each_entry(pos, db8500_cpufreq_table)
		if (pos->frequency == rate)
1884 1885
			break;

1886
	if (pos->frequency != rate)
1887 1888 1889
		return -EINVAL;

	/* Set the new arm opp. */
1890
	return db8500_prcmu_set_arm_opp(pos->driver_data);
1891 1892
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int set_plldsi_rate(unsigned long rate)
{
	unsigned long src_rate;
	unsigned long rem;
	u32 pll_freq = 0;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;
		u64 hwrate;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		hwrate = (d * src_rate);
		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
			continue;
		(void)do_div(hwrate, r);
		if (rate < hwrate) {
			if (pll_freq == 0)
				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
					(r << PRCM_PLL_FREQ_R_SHIFT));
			break;
		}
		if ((rate - hwrate) < rem) {
			rem = (rate - hwrate);
			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
				(r << PRCM_PLL_FREQ_R_SHIFT));
		}
	}
	if (pll_freq == 0)
		return -EINVAL;

	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
	writel(pll_freq, PRCM_PLLDSI_FREQ);

	return 0;
}

static void set_dsiclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);

	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
}

static void set_dsiescclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
	val = readl(PRCM_DSITVCLK_DIV);
	val &= ~dsiescclk[n].div_mask;
	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
	writel(val, PRCM_DSITVCLK_DIV);
}

int prcmu_set_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		set_clock_rate(clock, rate);
1973 1974
	else if (clock == PRCMU_ARMSS)
		return set_armss_rate(rate);
1975 1976 1977 1978 1979 1980 1981
	else if (clock == PRCMU_PLLDSI)
		return set_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
	return 0;
1982 1983
}

1984
int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1985 1986 1987 1988 1989 1990 1991
{
	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
		return -EINVAL;

	mutex_lock(&mb4_transfer.lock);

1992
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1993 1994 1995 1996 1997 1998 1999 2000 2001
		cpu_relax();

	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
	writeb(DDR_PWR_STATE_ON,
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));

2002
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2003 2004 2005 2006 2007 2008 2009
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2010
int db8500_prcmu_config_hotdog(u8 threshold)
2011 2012 2013
{
	mutex_lock(&mb4_transfer.lock);

2014
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2015 2016 2017 2018 2019
		cpu_relax();

	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2020
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2021 2022 2023 2024 2025 2026 2027
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2028
int db8500_prcmu_config_hotmon(u8 low, u8 high)
2029 2030 2031
{
	mutex_lock(&mb4_transfer.lock);

2032
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2033 2034 2035 2036 2037 2038 2039 2040
		cpu_relax();

	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2041
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042 2043 2044 2045 2046 2047
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}
2048
EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2049 2050 2051 2052 2053

static int config_hot_period(u16 val)
{
	mutex_lock(&mb4_transfer.lock);

2054
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2055 2056 2057 2058 2059
		cpu_relax();

	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2060
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2061 2062 2063 2064 2065 2066 2067
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2068
int db8500_prcmu_start_temp_sense(u16 cycles32k)
2069 2070 2071 2072 2073 2074
{
	if (cycles32k == 0xFFFF)
		return -EINVAL;

	return config_hot_period(cycles32k);
}
2075
EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2076

2077
int db8500_prcmu_stop_temp_sense(void)
2078 2079 2080
{
	return config_hot_period(0xFFFF);
}
2081
EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
{

	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));

	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;

}

2107
int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2108 2109 2110 2111 2112 2113
{
	BUG_ON(num == 0 || num > 0xf);
	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
			    A9WDOG_AUTO_OFF_DIS);
}
2114
EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2115

2116
int db8500_prcmu_enable_a9wdog(u8 id)
2117 2118 2119
{
	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
}
2120
EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2121

2122
int db8500_prcmu_disable_a9wdog(u8 id)
2123 2124 2125
{
	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
}
2126
EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2127

2128
int db8500_prcmu_kick_a9wdog(u8 id)
2129 2130 2131
{
	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
}
2132
EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2133 2134 2135 2136

/*
 * timeout is 28 bit, in ms.
 */
2137
int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
{
	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
			    (id & A9WDOG_ID_MASK) |
			    /*
			     * Put the lowest 28 bits of timeout at
			     * offset 4. Four first bits are used for id.
			     */
			    (u8)((timeout << 4) & 0xf0),
			    (u8)((timeout >> 4) & 0xff),
			    (u8)((timeout >> 12) & 0xff),
			    (u8)((timeout >> 20) & 0xff));
}
2150
EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2151

L
Linus Walleij 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/**
 * prcmu_abb_read() - Read register value(s) from the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The read out value(s).
 * @size:	The number of registers to read.
 *
 * Reads register value(s) from the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
	int r;

	if (size != 1)
		return -EINVAL;

2169
	mutex_lock(&mb5_transfer.lock);
L
Linus Walleij 已提交
2170

2171
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
L
Linus Walleij 已提交
2172 2173
		cpu_relax();

2174
	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175 2176 2177 2178 2179
	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

2180
	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
2181 2182

	if (!wait_for_completion_timeout(&mb5_transfer.work,
2183 2184 2185
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
L
Linus Walleij 已提交
2186
		r = -EIO;
2187 2188
	} else {
		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
L
Linus Walleij 已提交
2189
	}
2190

L
Linus Walleij 已提交
2191 2192 2193 2194
	if (!r)
		*value = mb5_transfer.ack.value;

	mutex_unlock(&mb5_transfer.lock);
2195

L
Linus Walleij 已提交
2196 2197 2198 2199
	return r;
}

/**
2200
 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
L
Linus Walleij 已提交
2201 2202 2203
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
2204
 * @mask:	The mask(s) to use.
L
Linus Walleij 已提交
2205 2206
 * @size:	The number of registers to write.
 *
2207 2208 2209
 * Writes masked register value(s) to the ABB.
 * For each @value, only the bits set to 1 in the corresponding @mask
 * will be written. The other bits are not changed.
L
Linus Walleij 已提交
2210 2211
 * @size has to be 1 for the current firmware version.
 */
2212
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
L
Linus Walleij 已提交
2213 2214 2215 2216 2217 2218
{
	int r;

	if (size != 1)
		return -EINVAL;

2219
	mutex_lock(&mb5_transfer.lock);
L
Linus Walleij 已提交
2220

2221
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
L
Linus Walleij 已提交
2222 2223
		cpu_relax();

2224
	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225 2226 2227 2228 2229
	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

2230
	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
2231 2232

	if (!wait_for_completion_timeout(&mb5_transfer.work,
2233 2234 2235
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
L
Linus Walleij 已提交
2236
		r = -EIO;
2237 2238
	} else {
		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
L
Linus Walleij 已提交
2239 2240 2241
	}

	mutex_unlock(&mb5_transfer.lock);
2242

L
Linus Walleij 已提交
2243 2244 2245
	return r;
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
/**
 * prcmu_abb_write() - Write register value(s) to the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
 * @size:	The number of registers to write.
 *
 * Writes register value(s) to the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
	u8 mask = ~0;

	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
}

2263 2264 2265
/**
 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
 */
2266
int prcmu_ac_wake_req(void)
2267
{
2268
	u32 val;
2269
	int ret = 0;
2270

2271
	mutex_lock(&mb0_transfer.ac_wake_lock);
2272

2273
	val = readl(PRCM_HOSTACCESS_REQ);
2274 2275
	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
		goto unlock_and_return;
2276

2277
	atomic_set(&ac_wake_req_state, 1);
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * Force Modem Wake-up before hostaccess_req ping-pong.
	 * It prevents Modem to enter in Sleep while acking the hostaccess
	 * request. The 31us delay has been calculated by HWI.
	 */
	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);

	udelay(31);

	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);
2291

2292
	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293
			msecs_to_jiffies(5000))) {
2294
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295
			__func__);
2296
		ret = -EFAULT;
2297
	}
2298

2299 2300
unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
2301
	return ret;
2302 2303 2304
}

/**
2305
 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2306
 */
2307
void prcmu_ac_sleep_req(void)
2308
{
2309 2310 2311 2312
	u32 val;

	mutex_lock(&mb0_transfer.ac_wake_lock);

2313
	val = readl(PRCM_HOSTACCESS_REQ);
2314 2315 2316 2317
	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
		goto unlock_and_return;

	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318
		PRCM_HOSTACCESS_REQ);
2319 2320

	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321
			msecs_to_jiffies(5000))) {
2322
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323 2324 2325 2326 2327 2328 2329
			__func__);
	}

	atomic_set(&ac_wake_req_state, 0);

unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
2330 2331
}

2332
bool db8500_prcmu_is_ac_wake_requested(void)
2333
{
2334
	return (atomic_read(&ac_wake_req_state) != 0);
2335 2336 2337
}

/**
2338
 * db8500_prcmu_system_reset - System reset
2339
 *
2340
 * Saves the reset reason code and then sets the APE_SOFTRST register which
2341
 * fires interrupt to fw
2342
 */
2343
void db8500_prcmu_system_reset(u16 reset_code)
2344
{
2345
	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346
	writel(1, PRCM_APE_SOFTRST);
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/**
 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
 *
 * Retrieves the reset reason code stored by prcmu_system_reset() before
 * last restart.
 */
u16 db8500_prcmu_get_reset_code(void)
{
	return readw(tcdm_base + PRCM_SW_RST_REASON);
}

2360
/**
2361
 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2362
 */
2363
void db8500_prcmu_modem_reset(void)
2364
{
2365 2366
	mutex_lock(&mb1_transfer.lock);

2367
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368 2369 2370
		cpu_relax();

	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372 2373 2374 2375 2376 2377 2378 2379
	wait_for_completion(&mb1_transfer.work);

	/*
	 * No need to check return from PRCMU as modem should go in reset state
	 * This state is already managed by upper layer
	 */

	mutex_unlock(&mb1_transfer.lock);
2380 2381
}

2382
static void ack_dbb_wakeup(void)
2383
{
2384 2385 2386 2387
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

2388
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389 2390 2391
		cpu_relax();

	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2393 2394

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2395 2396
}

2397
static inline void print_unknown_header_warning(u8 n, u8 header)
2398
{
2399 2400
	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
		header, n);
2401 2402
}

2403
static bool read_mailbox_0(void)
L
Linus Walleij 已提交
2404
{
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	bool r;
	u32 ev;
	unsigned int n;
	u8 header;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
	switch (header) {
	case MB0H_WAKEUP_EXE:
	case MB0H_WAKEUP_SLEEP:
		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
		else
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);

		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
			complete(&mb0_transfer.ac_wake_work);
		if (ev & WAKEUP_BIT_SYSCLK_OK)
			complete(&mb3_transfer.sysclk_work);

		ev &= mb0_transfer.req.dbb_irqs;

		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
			if (ev & prcmu_irq_bit[n])
2428
				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2429 2430 2431 2432 2433 2434 2435 2436
		}
		r = true;
		break;
	default:
		print_unknown_header_warning(0, header);
		r = false;
		break;
	}
2437
	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438
	return r;
L
Linus Walleij 已提交
2439 2440
}

2441
static bool read_mailbox_1(void)
L
Linus Walleij 已提交
2442
{
2443 2444 2445 2446 2447 2448 2449
	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
	mb1_transfer.ack.arm_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_ARM_OPP);
	mb1_transfer.ack.ape_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_APE_OPP);
	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450
	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451
	complete(&mb1_transfer.work);
2452
	return false;
L
Linus Walleij 已提交
2453 2454
}

2455
static bool read_mailbox_2(void)
L
Linus Walleij 已提交
2456
{
2457
	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458
	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459 2460
	complete(&mb2_transfer.work);
	return false;
L
Linus Walleij 已提交
2461 2462
}

2463
static bool read_mailbox_3(void)
L
Linus Walleij 已提交
2464
{
2465
	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466
	return false;
L
Linus Walleij 已提交
2467 2468
}

2469
static bool read_mailbox_4(void)
L
Linus Walleij 已提交
2470
{
2471 2472 2473 2474 2475 2476 2477 2478 2479
	u8 header;
	bool do_complete = true;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
	switch (header) {
	case MB4H_MEM_ST:
	case MB4H_HOTDOG:
	case MB4H_HOTMON:
	case MB4H_HOT_PERIOD:
2480 2481 2482 2483 2484
	case MB4H_A9WDOG_CONF:
	case MB4H_A9WDOG_EN:
	case MB4H_A9WDOG_DIS:
	case MB4H_A9WDOG_LOAD:
	case MB4H_A9WDOG_KICK:
2485 2486 2487 2488 2489 2490 2491
		break;
	default:
		print_unknown_header_warning(4, header);
		do_complete = false;
		break;
	}

2492
	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2493 2494 2495 2496 2497

	if (do_complete)
		complete(&mb4_transfer.work);

	return false;
L
Linus Walleij 已提交
2498 2499
}

2500
static bool read_mailbox_5(void)
L
Linus Walleij 已提交
2501
{
2502 2503
	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504
	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
L
Linus Walleij 已提交
2505
	complete(&mb5_transfer.work);
2506
	return false;
L
Linus Walleij 已提交
2507 2508
}

2509
static bool read_mailbox_6(void)
L
Linus Walleij 已提交
2510
{
2511
	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512
	return false;
L
Linus Walleij 已提交
2513 2514
}

2515
static bool read_mailbox_7(void)
L
Linus Walleij 已提交
2516
{
2517
	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518
	return false;
L
Linus Walleij 已提交
2519 2520
}

2521
static bool (* const read_mailbox[NUM_MB])(void) = {
L
Linus Walleij 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	read_mailbox_0,
	read_mailbox_1,
	read_mailbox_2,
	read_mailbox_3,
	read_mailbox_4,
	read_mailbox_5,
	read_mailbox_6,
	read_mailbox_7
};

static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
	u32 bits;
	u8 n;
2536
	irqreturn_t r;
L
Linus Walleij 已提交
2537

2538
	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
L
Linus Walleij 已提交
2539 2540 2541
	if (unlikely(!bits))
		return IRQ_NONE;

2542
	r = IRQ_HANDLED;
L
Linus Walleij 已提交
2543 2544 2545
	for (n = 0; bits; n++) {
		if (bits & MBOX_BIT(n)) {
			bits -= MBOX_BIT(n);
2546 2547
			if (read_mailbox[n]())
				r = IRQ_WAKE_THREAD;
L
Linus Walleij 已提交
2548 2549
		}
	}
2550 2551 2552 2553 2554 2555
	return r;
}

static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
{
	ack_dbb_wakeup();
L
Linus Walleij 已提交
2556 2557 2558
	return IRQ_HANDLED;
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
static void prcmu_mask_work(struct work_struct *work)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

static void prcmu_irq_mask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

2576
	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void prcmu_irq_unmask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

2590
	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void noop(struct irq_data *d)
{
}

static struct irq_chip prcmu_irq_chip = {
	.name		= "prcmu",
	.irq_disable	= prcmu_irq_mask,
	.irq_ack	= noop,
	.irq_mask	= prcmu_irq_mask,
	.irq_unmask	= prcmu_irq_unmask,
};

2610
static __init char *fw_project_name(u32 project)
2611 2612 2613 2614
{
	switch (project) {
	case PRCMU_FW_PROJECT_U8500:
		return "U8500";
2615 2616
	case PRCMU_FW_PROJECT_U8400:
		return "U8400";
2617 2618
	case PRCMU_FW_PROJECT_U9500:
		return "U9500";
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	case PRCMU_FW_PROJECT_U8500_MBB:
		return "U8500 MBB";
	case PRCMU_FW_PROJECT_U8500_C1:
		return "U8500 C1";
	case PRCMU_FW_PROJECT_U8500_C2:
		return "U8500 C2";
	case PRCMU_FW_PROJECT_U8500_C3:
		return "U8500 C3";
	case PRCMU_FW_PROJECT_U8500_C4:
		return "U8500 C4";
	case PRCMU_FW_PROJECT_U9500_MBL:
		return "U9500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL:
		return "U8500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL2:
		return "U8500 MBL2";
2635
	case PRCMU_FW_PROJECT_U8520:
2636
		return "U8520 MBL";
2637 2638
	case PRCMU_FW_PROJECT_U8420:
		return "U8420";
2639 2640 2641 2642 2643 2644 2645 2646
	case PRCMU_FW_PROJECT_U9540:
		return "U9540";
	case PRCMU_FW_PROJECT_A9420:
		return "A9420";
	case PRCMU_FW_PROJECT_L8540:
		return "L8540";
	case PRCMU_FW_PROJECT_L8580:
		return "L8580";
2647 2648 2649 2650 2651
	default:
		return "Unknown";
	}
}

2652 2653 2654 2655 2656 2657 2658 2659 2660
static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
				irq_hw_number_t hwirq)
{
	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
				handle_simple_irq);

	return 0;
}

2661
static const struct irq_domain_ops db8500_irq_ops = {
2662 2663
	.map    = db8500_irq_map,
	.xlate  = irq_domain_xlate_twocell,
2664 2665
};

2666
static int db8500_irq_init(struct device_node *np)
2667
{
2668
	int i;
2669 2670

	db8500_irq_domain = irq_domain_add_simple(
2671
		np, NUM_PRCMU_WAKEUPS, 0,
2672
		&db8500_irq_ops, NULL);
2673 2674 2675 2676 2677 2678

	if (!db8500_irq_domain) {
		pr_err("Failed to create irqdomain\n");
		return -ENOSYS;
	}

2679 2680 2681 2682
	/* All wakeups will be used, so create mappings for all */
	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
		irq_create_mapping(db8500_irq_domain, i);

2683 2684 2685
	return 0;
}

2686 2687
static void dbx500_fw_version_init(struct platform_device *pdev,
			    u32 version_offset)
2688
{
2689 2690
	struct resource *res;
	void __iomem *tcpm_base;
2691
	u32 version;
2692

2693 2694 2695 2696 2697 2698 2699 2700
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					   "prcmu-tcpm");
	if (!res) {
		dev_err(&pdev->dev,
			"Error: no prcmu tcpm memory region provided\n");
		return;
	}
	tcpm_base = ioremap(res->start, resource_size(res));
2701 2702 2703
	if (!tcpm_base) {
		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
		return;
2704
	}
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

	version = readl(tcpm_base + version_offset);
	fw_info.version.project = (version & 0xFF);
	fw_info.version.api_version = (version >> 8) & 0xFF;
	fw_info.version.func_version = (version >> 16) & 0xFF;
	fw_info.version.errata = (version >> 24) & 0xFF;
	strncpy(fw_info.version.project_name,
		fw_project_name(fw_info.version.project),
		PRCMU_FW_PROJECT_NAME_LEN);
	fw_info.valid = true;
	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
		fw_info.version.project_name,
		fw_info.version.project,
		fw_info.version.api_version,
		fw_info.version.func_version,
		fw_info.version.errata);
	iounmap(tcpm_base);
2722
}
2723

2724
void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2725
{
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	/*
	 * This is a temporary remap to bring up the clocks. It is
	 * subsequently replaces with a real remap. After the merge of
	 * the mailbox subsystem all of this early code goes away, and the
	 * clock driver can probe independently. An early initcall will
	 * still be needed, but it can be diverted into drivers/clk/ux500.
	 */
	prcmu_base = ioremap(phy_base, size);
	if (!prcmu_base)
		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);

2737 2738 2739 2740
	spin_lock_init(&mb0_transfer.lock);
	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
	mutex_init(&mb0_transfer.ac_wake_lock);
	init_completion(&mb0_transfer.ac_wake_work);
2741 2742
	mutex_init(&mb1_transfer.lock);
	init_completion(&mb1_transfer.work);
2743
	mb1_transfer.ape_opp = APE_NO_CHANGE;
2744 2745 2746 2747 2748 2749 2750 2751
	mutex_init(&mb2_transfer.lock);
	init_completion(&mb2_transfer.work);
	spin_lock_init(&mb2_transfer.auto_pm_lock);
	spin_lock_init(&mb3_transfer.lock);
	mutex_init(&mb3_transfer.sysclk_lock);
	init_completion(&mb3_transfer.sysclk_work);
	mutex_init(&mb4_transfer.lock);
	init_completion(&mb4_transfer.work);
L
Linus Walleij 已提交
2752 2753 2754
	mutex_init(&mb5_transfer.lock);
	init_completion(&mb5_transfer.work);

2755 2756 2757
	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
}

2758
static void __init init_prcm_registers(void)
2759 2760 2761 2762 2763 2764 2765 2766 2767
{
	u32 val;

	val = readl(PRCM_A9PL_FORCE_CLKEN);
	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
	writel(val, (PRCM_A9PL_FORCE_CLKEN));
}

2768 2769 2770 2771 2772 2773 2774 2775 2776
/*
 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
 */
static struct regulator_consumer_supply db8500_vape_consumers[] = {
	REGULATOR_SUPPLY("v-ape", NULL),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2777
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	/* "v-mmc" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "sdi0"),
	REGULATOR_SUPPLY("vcore", "sdi1"),
	REGULATOR_SUPPLY("vcore", "sdi2"),
	REGULATOR_SUPPLY("vcore", "sdi3"),
	REGULATOR_SUPPLY("vcore", "sdi4"),
	REGULATOR_SUPPLY("v-dma", "dma40.0"),
	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
	/* "v-uart" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "uart0"),
	REGULATOR_SUPPLY("vcore", "uart1"),
	REGULATOR_SUPPLY("vcore", "uart2"),
	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2791
	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2792
	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2793 2794 2795 2796 2797 2798 2799 2800 2801
};

static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
	/* AV8100 regulator */
	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
};

static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2802
	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	REGULATOR_SUPPLY("vsupply", "mcde"),
};

/* SVA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
};

/* SVA pipe regulator switch */
static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
};

/* SIA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
};

/* SIA pipe regulator switch */
static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
};

static struct regulator_consumer_supply db8500_sga_consumers[] = {
	REGULATOR_SUPPLY("v-mali", NULL),
};

/* ESRAM1 and 2 regulator switch */
static struct regulator_consumer_supply db8500_esram12_consumers[] = {
	REGULATOR_SUPPLY("esram12", "cm_control"),
};

/* ESRAM3 and 4 regulator switch */
static struct regulator_consumer_supply db8500_esram34_consumers[] = {
	REGULATOR_SUPPLY("v-esram34", "mcde"),
	REGULATOR_SUPPLY("esram34", "cm_control"),
2839
	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2840 2841 2842 2843 2844 2845 2846
};

static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
	[DB8500_REGULATOR_VAPE] = {
		.constraints = {
			.name = "db8500-vape",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847
			.always_on = true,
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
		},
		.consumer_supplies = db8500_vape_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
	},
	[DB8500_REGULATOR_VARM] = {
		.constraints = {
			.name = "db8500-varm",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VMODEM] = {
		.constraints = {
			.name = "db8500-vmodem",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VPLL] = {
		.constraints = {
			.name = "db8500-vpll",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS1] = {
		.constraints = {
			.name = "db8500-vsmps1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS2] = {
		.constraints = {
			.name = "db8500-vsmps2",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_vsmps2_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
	},
	[DB8500_REGULATOR_VSMPS3] = {
		.constraints = {
			.name = "db8500-vsmps3",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VRF1] = {
		.constraints = {
			.name = "db8500-vrf1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2897
		/* dependency to u8500-vape is handled outside regulator framework */
2898 2899 2900 2901
		.constraints = {
			.name = "db8500-sva-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2902 2903
		.consumer_supplies = db8500_svammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2904 2905 2906 2907 2908 2909 2910 2911 2912
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
		.constraints = {
			/* "ret" means "retention" */
			.name = "db8500-sva-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2913
		/* dependency to u8500-vape is handled outside regulator framework */
2914 2915 2916 2917
		.constraints = {
			.name = "db8500-sva-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2918 2919
		.consumer_supplies = db8500_svapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2920 2921
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2922
		/* dependency to u8500-vape is handled outside regulator framework */
2923 2924 2925 2926
		.constraints = {
			.name = "db8500-sia-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2927 2928
		.consumer_supplies = db8500_siammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2929 2930 2931 2932 2933 2934 2935 2936
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
		.constraints = {
			.name = "db8500-sia-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2937
		/* dependency to u8500-vape is handled outside regulator framework */
2938 2939 2940 2941
		.constraints = {
			.name = "db8500-sia-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2942 2943
		.consumer_supplies = db8500_siapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2944 2945 2946 2947 2948 2949 2950
	},
	[DB8500_REGULATOR_SWITCH_SGA] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-sga",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2951 2952 2953
		.consumer_supplies = db8500_sga_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	},
	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-b2r2-mcde",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_b2r2_mcde_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2965 2966 2967 2968
		/*
		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
2969 2970 2971 2972
		.constraints = {
			.name = "db8500-esram12",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2973 2974
		.consumer_supplies = db8500_esram12_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2975 2976 2977 2978 2979 2980 2981 2982
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
		.constraints = {
			.name = "db8500-esram12-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2983 2984 2985 2986
		/*
		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
2987 2988 2989 2990
		.constraints = {
			.name = "db8500-esram34",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2991 2992
		.consumer_supplies = db8500_esram34_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2993 2994 2995 2996 2997 2998 2999 3000 3001
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
		.constraints = {
			.name = "db8500-esram34-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
};

3002 3003 3004 3005
static struct ux500_wdt_data db8500_wdt_pdata = {
	.timeout = 600, /* 10 minutes */
	.has_28_bits_resolution = true,
};
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
/*
 * Thermal Sensor
 */

static struct resource db8500_thsens_resources[] = {
	{
		.name = "IRQ_HOTMON_LOW",
		.start  = IRQ_PRCMU_HOTMON_LOW,
		.end    = IRQ_PRCMU_HOTMON_LOW,
		.flags  = IORESOURCE_IRQ,
	},
	{
		.name = "IRQ_HOTMON_HIGH",
		.start  = IRQ_PRCMU_HOTMON_HIGH,
		.end    = IRQ_PRCMU_HOTMON_HIGH,
		.flags  = IORESOURCE_IRQ,
	},
};

static struct db8500_thsens_platform_data db8500_thsens_data = {
	.trip_points[0] = {
		.temp = 70000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[1] = {
		.temp = 75000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[2] = {
		.temp = 80000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[3] = {
		.temp = 85000,
		.type = THERMAL_TRIP_CRITICAL,
	},
	.num_trips = 4,
};
3053

3054
static const struct mfd_cell common_prcmu_devs[] = {
3055 3056 3057 3058 3059 3060 3061 3062
	{
		.name = "ux500_wdt",
		.platform_data = &db8500_wdt_pdata,
		.pdata_size = sizeof(db8500_wdt_pdata),
		.id = -1,
	},
};

3063
static const struct mfd_cell db8500_prcmu_devs[] = {
3064 3065
	{
		.name = "db8500-prcmu-regulators",
3066
		.of_compatible = "stericsson,db8500-prcmu-regulator",
3067 3068
		.platform_data = &db8500_regulators,
		.pdata_size = sizeof(db8500_regulators),
3069 3070
	},
	{
3071 3072
		.name = "cpufreq-ux500",
		.of_compatible = "stericsson,cpufreq-ux500",
3073 3074
		.platform_data = &db8500_cpufreq_table,
		.pdata_size = sizeof(db8500_cpufreq_table),
3075
	},
3076 3077 3078 3079
	{
		.name = "cpuidle-dbx500",
		.of_compatible = "stericsson,cpuidle-dbx500",
	},
3080
	{
3081 3082 3083 3084
		.name = "db8500-thermal",
		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
		.resources = db8500_thsens_resources,
		.platform_data = &db8500_thsens_data,
3085
		.pdata_size = sizeof(db8500_thsens_data),
3086
	},
3087 3088
};

3089 3090 3091 3092
static void db8500_prcmu_update_cpufreq(void)
{
	if (prcmu_has_arm_maxopp()) {
		db8500_cpufreq_table[3].frequency = 1000000;
3093
		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3094 3095 3096
	}
}

3097
static int db8500_prcmu_register_ab8500(struct device *parent,
3098
					struct ab8500_platform_data *pdata)
3099
{
3100 3101
	struct device_node *np;
	struct resource ab8500_resource;
3102
	const struct mfd_cell ab8500_cell = {
3103 3104 3105 3106 3107 3108 3109 3110 3111
		.name = "ab8500-core",
		.of_compatible = "stericsson,ab8500",
		.id = AB8500_VERSION_AB8500,
		.platform_data = pdata,
		.pdata_size = sizeof(struct ab8500_platform_data),
		.resources = &ab8500_resource,
		.num_resources = 1,
	};

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	if (!parent->of_node)
		return -ENODEV;

	/* Look up the device node, sneak the IRQ out of it */
	for_each_child_of_node(parent->of_node, np) {
		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
			break;
	}
	if (!np) {
		dev_info(parent, "could not find AB8500 node in the device tree\n");
		return -ENODEV;
	}
	of_irq_to_resource_table(np, &ab8500_resource, 1);

3126 3127 3128
	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
}

3129 3130 3131 3132
/**
 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
 *
 */
B
Bill Pemberton 已提交
3133
static int db8500_prcmu_probe(struct platform_device *pdev)
3134
{
3135
	struct device_node *np = pdev->dev.of_node;
3136
	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3137
	int irq = 0, err = 0;
3138
	struct resource *res;
3139

3140 3141 3142
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3143
		return -EINVAL;
3144 3145 3146 3147 3148
	}
	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
	if (!prcmu_base) {
		dev_err(&pdev->dev,
			"failed to ioremap prcmu register memory\n");
3149
		return -ENOMEM;
3150
	}
3151
	init_prcm_registers();
3152 3153 3154 3155
	dbx500_fw_version_init(pdev, pdata->version_offset);
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3156
		return -EINVAL;
3157 3158 3159
	}
	tcdm_base = devm_ioremap(&pdev->dev, res->start,
			resource_size(res));
3160 3161 3162
	if (!tcdm_base) {
		dev_err(&pdev->dev,
			"failed to ioremap prcmu-tcdm register memory\n");
3163
		return -ENOMEM;
3164
	}
3165

L
Linus Walleij 已提交
3166
	/* Clean up the mailbox interrupts after pre-kernel code. */
3167
	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168

3169 3170 3171
	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(&pdev->dev, "no prcmu irq provided\n");
3172
		return irq;
3173
	}
3174 3175 3176

	err = request_threaded_irq(irq, prcmu_irq_handler,
	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 3178
	if (err < 0) {
		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179
		return err;
3180 3181
	}

3182
	db8500_irq_init(np);
3183

3184
	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3185

3186 3187
	db8500_prcmu_update_cpufreq();

3188 3189
	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3190 3191 3192
	if (err) {
		pr_err("prcmu: Failed to add subdevices\n");
		return err;
3193
	}
L
Linus Walleij 已提交
3194

3195 3196 3197 3198 3199 3200 3201 3202
	/* TODO: Remove restriction when clk definitions are available. */
	if (!of_machine_is_compatible("st-ericsson,u8540")) {
		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
				      db8500_irq_domain);
		if (err) {
			mfd_remove_devices(&pdev->dev);
			pr_err("prcmu: Failed to add subdevices\n");
3203
			return err;
3204 3205 3206
		}
	}

3207
	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3208 3209 3210
	if (err) {
		mfd_remove_devices(&pdev->dev);
		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3211
		return err;
3212 3213
	}

3214
	pr_info("DB8500 PRCMU initialized\n");
3215 3216
	return err;
}
3217 3218 3219 3220
static const struct of_device_id db8500_prcmu_match[] = {
	{ .compatible = "stericsson,db8500-prcmu"},
	{ },
};
3221 3222 3223 3224

static struct platform_driver db8500_prcmu_driver = {
	.driver = {
		.name = "db8500-prcmu",
3225
		.of_match_table = db8500_prcmu_match,
3226
	},
3227
	.probe = db8500_prcmu_probe,
3228 3229 3230 3231
};

static int __init db8500_prcmu_init(void)
{
3232
	return platform_driver_register(&db8500_prcmu_driver);
L
Linus Walleij 已提交
3233 3234
}

3235
core_initcall(db8500_prcmu_init);
3236 3237 3238 3239

MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
MODULE_LICENSE("GPL v2");