db8500-prcmu.c 82.3 KB
Newer Older
L
Linus Walleij 已提交
1
/*
2 3
 * Copyright (C) STMicroelectronics 2009
 * Copyright (C) ST-Ericsson SA 2010
L
Linus Walleij 已提交
4 5
 *
 * License Terms: GNU General Public License v2
6 7
 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
L
Linus Walleij 已提交
8 9
 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
 *
10 11
 * U8500 PRCM Unit interface driver
 *
L
Linus Walleij 已提交
12 13
 */
#include <linux/module.h>
14 15
#include <linux/kernel.h>
#include <linux/delay.h>
L
Linus Walleij 已提交
16 17
#include <linux/errno.h>
#include <linux/err.h>
18
#include <linux/spinlock.h>
L
Linus Walleij 已提交
19
#include <linux/io.h>
20
#include <linux/slab.h>
L
Linus Walleij 已提交
21 22
#include <linux/mutex.h>
#include <linux/completion.h>
23
#include <linux/irq.h>
L
Linus Walleij 已提交
24 25
#include <linux/jiffies.h>
#include <linux/bitops.h>
26
#include <linux/fs.h>
27
#include <linux/of.h>
28 29 30
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/mfd/core.h>
31
#include <linux/mfd/dbx500-prcmu.h>
32
#include <linux/mfd/abx500/ab8500.h>
33 34
#include <linux/regulator/db8500-prcmu.h>
#include <linux/regulator/machine.h>
35
#include <linux/cpufreq.h>
36
#include <linux/platform_data/ux500_wdt.h>
37
#include <linux/platform_data/db8500_thermal.h>
38
#include "dbx500-prcmu-regs.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

/* Index of different voltages to be used when accessing AVSData */
#define PRCM_AVS_BASE		0x2FC
#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)

#define PRCM_AVS_VOLTAGE		0
#define PRCM_AVS_VOLTAGE_MASK		0x3f
#define PRCM_AVS_ISSLOWSTARTUP		6
#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
#define PRCM_AVS_ISMODEENABLE		7
#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)

#define PRCM_BOOT_STATUS	0xFFF
#define PRCM_ROMCODE_A2P	0xFFE
#define PRCM_ROMCODE_P2A	0xFFD
#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */

#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */

#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)

/* Req Mailboxes */
#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */

/* Ack Mailboxes */
#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */

/* Mailbox 0 headers */
#define MB0H_POWER_STATE_TRANS		0
#define MB0H_CONFIG_WAKEUPS_EXE		1
#define MB0H_READ_WAKEUP_ACK		3
#define MB0H_CONFIG_WAKEUPS_SLEEP	4

#define MB0H_WAKEUP_EXE 2
#define MB0H_WAKEUP_SLEEP 5

/* Mailbox 0 REQs */
#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)

/* Mailbox 0 ACKs */
#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20

/* Mailbox 1 headers */
#define MB1H_ARM_APE_OPP 0x0
#define MB1H_RESET_MODEM 0x2
#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
#define MB1H_RELEASE_USB_WAKEUP 0x5
127
#define MB1H_PLL_ON_OFF 0x6
128 129 130 131

/* Mailbox 1 Requests */
#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
132
#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
133 134
#define PLL_SOC0_OFF	0x1
#define PLL_SOC0_ON	0x2
135 136
#define PLL_SOC1_OFF	0x4
#define PLL_SOC1_ON	0x8
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

/* Mailbox 1 ACKs */
#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)

/* Mailbox 2 headers */
#define MB2H_DPS	0x0
#define MB2H_AUTO_PWR	0x1

/* Mailbox 2 REQs */
#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)

/* Mailbox 2 ACKs */
#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
#define HWACC_PWR_ST_OK 0xFE

/* Mailbox 3 headers */
#define MB3H_ANC	0x0
#define MB3H_SIDETONE	0x1
#define MB3H_SYSCLK	0xE

/* Mailbox 3 Requests */
#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)

/* Mailbox 4 headers */
#define MB4H_DDR_INIT	0x0
#define MB4H_MEM_ST	0x1
#define MB4H_HOTDOG	0x12
#define MB4H_HOTMON	0x13
#define MB4H_HOT_PERIOD	0x14
184 185 186 187 188
#define MB4H_A9WDOG_CONF 0x16
#define MB4H_A9WDOG_EN   0x17
#define MB4H_A9WDOG_DIS  0x18
#define MB4H_A9WDOG_LOAD 0x19
#define MB4H_A9WDOG_KICK 0x20
189 190 191 192 193 194 195 196 197 198 199 200

/* Mailbox 4 Requests */
#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
#define HOTMON_CONFIG_LOW			BIT(0)
#define HOTMON_CONFIG_HIGH			BIT(1)
201 202 203 204 205 206 207
#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
#define A9WDOG_AUTO_OFF_EN			BIT(7)
#define A9WDOG_AUTO_OFF_DIS			0
#define A9WDOG_ID_MASK				0xf
208 209 210 211 212 213

/* Mailbox 5 Requests */
#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
214 215
#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#define PRCMU_I2C_STOP_EN		BIT(3)

/* Mailbox 5 ACKs */
#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
#define I2C_WR_OK 0x1
#define I2C_RD_OK 0x2

#define NUM_MB 8
#define MBOX_BIT BIT
#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)

/*
 * Wakeups/IRQs
 */

#define WAKEUP_BIT_RTC BIT(0)
#define WAKEUP_BIT_RTT0 BIT(1)
#define WAKEUP_BIT_RTT1 BIT(2)
#define WAKEUP_BIT_HSI0 BIT(3)
#define WAKEUP_BIT_HSI1 BIT(4)
#define WAKEUP_BIT_CA_WAKE BIT(5)
#define WAKEUP_BIT_USB BIT(6)
#define WAKEUP_BIT_ABB BIT(7)
#define WAKEUP_BIT_ABB_FIFO BIT(8)
#define WAKEUP_BIT_SYSCLK_OK BIT(9)
#define WAKEUP_BIT_CA_SLEEP BIT(10)
#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
#define WAKEUP_BIT_ANC_OK BIT(13)
#define WAKEUP_BIT_SW_ERROR BIT(14)
#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
#define WAKEUP_BIT_ARM BIT(17)
#define WAKEUP_BIT_HOTMON_LOW BIT(18)
#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
#define WAKEUP_BIT_GPIO0 BIT(23)
#define WAKEUP_BIT_GPIO1 BIT(24)
#define WAKEUP_BIT_GPIO2 BIT(25)
#define WAKEUP_BIT_GPIO3 BIT(26)
#define WAKEUP_BIT_GPIO4 BIT(27)
#define WAKEUP_BIT_GPIO5 BIT(28)
#define WAKEUP_BIT_GPIO6 BIT(29)
#define WAKEUP_BIT_GPIO7 BIT(30)
#define WAKEUP_BIT_GPIO8 BIT(31)

262 263 264 265 266
static struct {
	bool valid;
	struct prcmu_fw_version version;
} fw_info;

267 268
static struct irq_domain *db8500_irq_domain;

269 270 271 272 273 274 275 276
/*
 * This vector maps irq numbers to the bits in the bit field used in
 * communication with the PRCMU firmware.
 *
 * The reason for having this is to keep the irq numbers contiguous even though
 * the bits in the bit field are not. (The bits also have a tendency to move
 * around, to further complicate matters.)
 */
277
#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278
#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

#define IRQ_PRCMU_RTC 0
#define IRQ_PRCMU_RTT0 1
#define IRQ_PRCMU_RTT1 2
#define IRQ_PRCMU_HSI0 3
#define IRQ_PRCMU_HSI1 4
#define IRQ_PRCMU_CA_WAKE 5
#define IRQ_PRCMU_USB 6
#define IRQ_PRCMU_ABB 7
#define IRQ_PRCMU_ABB_FIFO 8
#define IRQ_PRCMU_ARM 9
#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
#define IRQ_PRCMU_GPIO0 11
#define IRQ_PRCMU_GPIO1 12
#define IRQ_PRCMU_GPIO2 13
#define IRQ_PRCMU_GPIO3 14
#define IRQ_PRCMU_GPIO4 15
#define IRQ_PRCMU_GPIO5 16
#define IRQ_PRCMU_GPIO6 17
#define IRQ_PRCMU_GPIO7 18
#define IRQ_PRCMU_GPIO8 19
#define IRQ_PRCMU_CA_SLEEP 20
#define IRQ_PRCMU_HOTMON_LOW 21
#define IRQ_PRCMU_HOTMON_HIGH 22
#define NUM_PRCMU_WAKEUPS 23

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
	IRQ_ENTRY(RTC),
	IRQ_ENTRY(RTT0),
	IRQ_ENTRY(RTT1),
	IRQ_ENTRY(HSI0),
	IRQ_ENTRY(HSI1),
	IRQ_ENTRY(CA_WAKE),
	IRQ_ENTRY(USB),
	IRQ_ENTRY(ABB),
	IRQ_ENTRY(ABB_FIFO),
	IRQ_ENTRY(CA_SLEEP),
	IRQ_ENTRY(ARM),
	IRQ_ENTRY(HOTMON_LOW),
	IRQ_ENTRY(HOTMON_HIGH),
	IRQ_ENTRY(MODEM_SW_RESET_REQ),
	IRQ_ENTRY(GPIO0),
	IRQ_ENTRY(GPIO1),
	IRQ_ENTRY(GPIO2),
	IRQ_ENTRY(GPIO3),
	IRQ_ENTRY(GPIO4),
	IRQ_ENTRY(GPIO5),
	IRQ_ENTRY(GPIO6),
	IRQ_ENTRY(GPIO7),
	IRQ_ENTRY(GPIO8)
};

#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
	WAKEUP_ENTRY(RTC),
	WAKEUP_ENTRY(RTT0),
	WAKEUP_ENTRY(RTT1),
	WAKEUP_ENTRY(HSI0),
	WAKEUP_ENTRY(HSI1),
	WAKEUP_ENTRY(USB),
	WAKEUP_ENTRY(ABB),
	WAKEUP_ENTRY(ABB_FIFO),
	WAKEUP_ENTRY(ARM)
};

/*
 * mb0_transfer - state needed for mailbox 0 communication.
 * @lock:		The transaction lock.
 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 *			the request data.
 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 * @req:		Request data that need to persist between requests.
 */
static struct {
	spinlock_t lock;
	spinlock_t dbb_irqs_lock;
	struct work_struct mask_work;
	struct mutex ac_wake_lock;
	struct completion ac_wake_work;
	struct {
		u32 dbb_irqs;
		u32 dbb_wakeups;
		u32 abb_events;
	} req;
} mb0_transfer;

/*
 * mb1_transfer - state needed for mailbox 1 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
370
 * @ape_opp:	The current APE OPP.
371 372 373 374 375
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
376
	u8 ape_opp;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	struct {
		u8 header;
		u8 arm_opp;
		u8 ape_opp;
		u8 ape_voltage_status;
	} ack;
} mb1_transfer;

/*
 * mb2_transfer - state needed for mailbox 2 communication.
 * @lock:            The transaction lock.
 * @work:            The transaction completion structure.
 * @auto_pm_lock:    The autonomous power management configuration lock.
 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 * @req:             Request data that need to persist between requests.
 * @ack:             Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	spinlock_t auto_pm_lock;
	bool auto_pm_enabled;
	struct {
		u8 status;
	} ack;
} mb2_transfer;

/*
 * mb3_transfer - state needed for mailbox 3 communication.
 * @lock:		The request lock.
 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 * @sysclk_work:	Work structure used for sysclk requests.
 */
static struct {
	spinlock_t lock;
	struct mutex sysclk_lock;
	struct completion sysclk_work;
} mb3_transfer;

/*
 * mb4_transfer - state needed for mailbox 4 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 */
static struct {
	struct mutex lock;
	struct completion work;
} mb4_transfer;

/*
 * mb5_transfer - state needed for mailbox 5 communication.
 * @lock:	The transaction lock.
 * @work:	The transaction completion structure.
 * @ack:	Reply ("acknowledge") data.
 */
static struct {
	struct mutex lock;
	struct completion work;
	struct {
		u8 status;
		u8 value;
	} ack;
} mb5_transfer;

static atomic_t ac_wake_req_state = ATOMIC_INIT(0);

/* Spinlocks */
444
static DEFINE_SPINLOCK(prcmu_lock);
445 446 447 448
static DEFINE_SPINLOCK(clkout_lock);

/* Global var to runtime determine TCDM base for v2 or v1 */
static __iomem void *tcdm_base;
449
static __iomem void *prcmu_base;
450 451

struct clk_mgt {
452
	u32 offset;
453
	u32 pllsw;
454 455 456 457 458 459 460 461
	int branch;
	bool clk38div;
};

enum {
	PLL_RAW,
	PLL_FIX,
	PLL_DIV
462 463 464 465
};

static DEFINE_SPINLOCK(clk_mgt_lock);

466 467
#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468
struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 470 471 472 473 474 475 476 477 478 479 480 481 482
	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483
	CLK_MGT_ENTRY(BML8580CLK, PLL_DIV, true),
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
};

struct dsiclk {
	u32 divsel_mask;
	u32 divsel_shift;
	u32 divsel;
};

static struct dsiclk dsiclk[2] = {
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	},
	{
		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
	}
};

struct dsiescclk {
	u32 en;
	u32 div_mask;
	u32 div_shift;
};

static struct dsiescclk dsiescclk[3] = {
	{
		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
	},
	{
		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
	}
542 543
};

544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/*
* Used by MCDE to setup all necessary PRCMU registers
*/
#define PRCMU_RESET_DSIPLL		0x00004000
#define PRCMU_UNCLAMP_DSIPLL		0x00400800

#define PRCMU_CLK_PLL_DIV_SHIFT		0
#define PRCMU_CLK_PLL_SW_SHIFT		5
#define PRCMU_CLK_38			(1 << 9)
#define PRCMU_CLK_38_SRC		(1 << 10)
#define PRCMU_CLK_38_DIV		(1 << 11)

/* PLLDIV=12, PLLSW=4 (PLLDDR) */
#define PRCMU_DSI_CLOCK_SETTING		0x0000008C

/* DPI 50000000 Hz */
#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00

/* D=101, N=1, R=4, SELDIV2=0 */
#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165

#define PRCMU_ENABLE_PLLDSI		0x00000001
#define PRCMU_DISABLE_PLLDSI		0x00000000
#define PRCMU_RELEASE_RESET_DSS		0x0000400C
#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
/* ESC clk, div0=1, div1=1, div2=3 */
#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
#define PRCMU_DSI_RESET_SW		0x00000007

#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3

579
int db8500_prcmu_enable_dsipll(void)
580 581 582 583
{
	int i;

	/* Clear DSIPLL_RESETN */
584
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585
	/* Unclamp DSIPLL in/out */
586
	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 588

	/* Set DSI PLL FREQ */
589
	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590
	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591
	/* Enable Escape clocks */
592
	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 594

	/* Start DSI PLL */
595
	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596
	/* Reset DSI PLL */
597
	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598
	for (i = 0; i < 10; i++) {
599
		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 601 602 603 604
					== PRCMU_PLLDSI_LOCKP_LOCKED)
			break;
		udelay(100);
	}
	/* Set DSIPLL_RESETN */
605
	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 607 608
	return 0;
}

609
int db8500_prcmu_disable_dsipll(void)
610 611
{
	/* Disable dsi pll */
612
	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613
	/* Disable  escapeclock */
614
	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 616 617
	return 0;
}

618
int db8500_prcmu_set_display_clocks(void)
619 620 621 622 623 624
{
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
625
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 627
		cpu_relax();

628 629 630
	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 632

	/* Release the HW semaphore. */
633
	writel(0, PRCM_SEM);
634 635 636 637 638 639

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

640 641
u32 db8500_prcmu_read(unsigned int reg)
{
642
	return readl(prcmu_base + reg);
643 644 645
}

void db8500_prcmu_write(unsigned int reg, u32 value)
646 647 648
{
	unsigned long flags;

649
	spin_lock_irqsave(&prcmu_lock, flags);
650
	writel(value, (prcmu_base + reg));
651
	spin_unlock_irqrestore(&prcmu_lock, flags);
652 653
}

654
void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655
{
656
	u32 val;
657 658
	unsigned long flags;

659
	spin_lock_irqsave(&prcmu_lock, flags);
660
	val = readl(prcmu_base + reg);
661
	val = ((val & ~mask) | (value & mask));
662
	writel(val, (prcmu_base + reg));
663
	spin_unlock_irqrestore(&prcmu_lock, flags);
664 665
}

666 667 668 669 670
struct prcmu_fw_version *prcmu_get_fw_version(void)
{
	return fw_info.valid ? &fw_info.version : NULL;
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
bool prcmu_has_arm_maxopp(void)
{
	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
}

/**
 * prcmu_get_boot_status - PRCMU boot status checking
 * Returns: the current PRCMU boot status
 */
int prcmu_get_boot_status(void)
{
	return readb(tcdm_base + PRCM_BOOT_STATUS);
}

/**
 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 * @val: Value to be set, i.e. transition requested
 * Returns: 0 on success, -EINVAL on invalid argument
 *
 * This function is used to run the following power state sequences -
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
int prcmu_set_rc_a2p(enum romcode_write val)
{
	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
		return -EINVAL;
	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
	return 0;
}

/**
 * prcmu_get_rc_p2a - This function is used to get power state sequences
 * Returns: the power transition that has last happened
 *
 * This function can return the following transitions-
 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 */
enum romcode_read prcmu_get_rc_p2a(void)
{
	return readb(tcdm_base + PRCM_ROMCODE_P2A);
}

/**
 * prcmu_get_current_mode - Return the current XP70 power mode
 * Returns: Returns the current AP(ARM) power mode: init,
 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 */
enum ap_pwrst prcmu_get_xp70_current_state(void)
{
	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
}

/**
 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 * @clkout:	The CLKOUT number (0 or 1).
 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 * @div:	The divider to be applied.
 *
 * Configures one of the programmable clock outputs (CLKOUTs).
 * @div should be in the range [1,63] to request a configuration, or 0 to
 * inform that the configuration is no longer requested.
 */
int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
{
	static int requests[2];
	int r = 0;
	unsigned long flags;
	u32 val;
	u32 bits;
	u32 mask;
	u32 div_mask;

	BUG_ON(clkout > 1);
	BUG_ON(div > 63);
	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));

	if (!div && !requests[clkout])
		return -EINVAL;

	switch (clkout) {
	case 0:
		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
		break;
	case 1:
		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
			PRCM_CLKOCR_CLK1TYPE);
		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
		break;
	}
	bits &= mask;

	spin_lock_irqsave(&clkout_lock, flags);

770
	val = readl(PRCM_CLKOCR);
771 772 773 774 775 776 777 778 779 780 781 782 783
	if (val & div_mask) {
		if (div) {
			if ((val & mask) != bits) {
				r = -EBUSY;
				goto unlock_and_return;
			}
		} else {
			if ((val & mask & ~div_mask) != bits) {
				r = -EINVAL;
				goto unlock_and_return;
			}
		}
	}
784
	writel((bits | (val & ~mask)), PRCM_CLKOCR);
785 786 787 788 789 790 791 792
	requests[clkout] += (div ? 1 : -1);

unlock_and_return:
	spin_unlock_irqrestore(&clkout_lock, flags);

	return r;
}

793
int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
794 795 796 797 798 799 800
{
	unsigned long flags;

	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));

	spin_lock_irqsave(&mb0_transfer.lock, flags);

801
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
802 803 804 805 806 807 808 809
		cpu_relax();

	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
	writeb((keep_ulp_clk ? 1 : 0),
		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
810
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
811 812 813 814 815 816

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);

	return 0;
}

817 818 819 820 821
u8 db8500_prcmu_get_power_state_result(void)
{
	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/* This function should only be called while mb0_transfer.lock is held. */
static void config_wakeups(void)
{
	const u8 header[2] = {
		MB0H_CONFIG_WAKEUPS_EXE,
		MB0H_CONFIG_WAKEUPS_SLEEP
	};
	static u32 last_dbb_events;
	static u32 last_abb_events;
	u32 dbb_events;
	u32 abb_events;
	unsigned int i;

	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);

	abb_events = mb0_transfer.req.abb_events;

	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
		return;

	for (i = 0; i < 2; i++) {
844
		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
845 846 847 848
			cpu_relax();
		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
849
		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
850 851 852 853 854
	}
	last_dbb_events = dbb_events;
	last_abb_events = abb_events;
}

855
void db8500_prcmu_enable_wakeups(u32 wakeups)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
{
	unsigned long flags;
	u32 bits;
	int i;

	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));

	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
		if (wakeups & BIT(i))
			bits |= prcmu_wakeup_bit[i];
	}

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.dbb_wakeups = bits;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

876
void db8500_prcmu_config_abb_event_readout(u32 abb_events)
877 878 879 880 881 882 883 884 885 886 887
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	mb0_transfer.req.abb_events = abb_events;
	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

888
void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
889 890 891 892 893 894 895 896
{
	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
	else
		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
}

/**
897
 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
898 899 900 901 902
 * @opp: The new ARM operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the the operating point of the ARM.
 */
903
int db8500_prcmu_set_arm_opp(u8 opp)
904 905 906 907 908 909 910 911 912 913
{
	int r;

	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
		return -EINVAL;

	r = 0;

	mutex_lock(&mb1_transfer.lock);

914
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
915 916 917 918 919 920
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));

921
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
922 923 924 925 926 927 928 929 930 931 932 933
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.arm_opp != opp))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
934
 * db8500_prcmu_get_arm_opp - get the current ARM OPP
935 936 937
 *
 * Returns: the current ARM OPP
 */
938
int db8500_prcmu_get_arm_opp(void)
939 940 941 942 943
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
}

/**
944
 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
945 946 947
 *
 * Returns: the current DDR OPP
 */
948
int db8500_prcmu_get_ddr_opp(void)
949
{
950
	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
951 952 953
}

/**
954
 * db8500_set_ddr_opp - set the appropriate DDR OPP
955 956 957 958 959
 * @opp: The new DDR operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the DDR.
 */
960
static bool enable_set_ddr_opp;
961
int db8500_prcmu_set_ddr_opp(u8 opp)
962 963 964 965
{
	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
		return -EINVAL;
	/* Changing the DDR OPP can hang the hardware pre-v21 */
966
	if (enable_set_ddr_opp)
967
		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
968 969 970

	return 0;
}
971

972 973 974
/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
static void request_even_slower_clocks(bool enable)
{
975
	u32 clock_reg[] = {
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		PRCM_ACLK_MGT,
		PRCM_DMACLK_MGT
	};
	unsigned long flags;
	unsigned int i;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
		u32 val;
		u32 div;

992
		val = readl(prcmu_base + clock_reg[i]);
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
		if (enable) {
			if ((div <= 1) || (div > 15)) {
				pr_err("prcmu: Bad clock divider %d in %s\n",
					div, __func__);
				goto unlock_and_return;
			}
			div <<= 1;
		} else {
			if (div <= 2)
				goto unlock_and_return;
			div >>= 1;
		}
		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1008
		writel(val, prcmu_base + clock_reg[i]);
1009 1010 1011 1012 1013 1014 1015 1016 1017
	}

unlock_and_return:
	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

1018
/**
1019
 * db8500_set_ape_opp - set the appropriate APE OPP
1020 1021 1022 1023 1024
 * @opp: The new APE operating point to which transition is to be made
 * Returns: 0 on success, non-zero on failure
 *
 * This function sets the operating point of the APE.
 */
1025
int db8500_prcmu_set_ape_opp(u8 opp)
1026 1027 1028
{
	int r = 0;

1029 1030 1031
	if (opp == mb1_transfer.ape_opp)
		return 0;

1032 1033
	mutex_lock(&mb1_transfer.lock);

1034 1035 1036 1037 1038 1039
	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
		request_even_slower_clocks(false);

	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
		goto skip_message;

1040
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1041 1042 1043 1044
		cpu_relax();

	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1045 1046
	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1047

1048
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1049 1050 1051 1052 1053 1054
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
		(mb1_transfer.ack.ape_opp != opp))
		r = -EIO;

1055 1056 1057 1058 1059 1060 1061
skip_message:
	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
		request_even_slower_clocks(true);
	if (!r)
		mb1_transfer.ape_opp = opp;

1062 1063 1064 1065 1066 1067
	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
1068
 * db8500_prcmu_get_ape_opp - get the current APE OPP
1069 1070 1071
 *
 * Returns: the current APE OPP
 */
1072
int db8500_prcmu_get_ape_opp(void)
1073 1074 1075 1076 1077
{
	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
}

/**
1078
 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1079 1080 1081 1082
 * @enable: true to request the higher voltage, false to drop a request.
 *
 * Calls to this function to enable and disable requests must be balanced.
 */
1083
int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	int r = 0;
	u8 header;
	static unsigned int requests;

	mutex_lock(&mb1_transfer.lock);

	if (enable) {
		if (0 != requests++)
			goto unlock_and_return;
		header = MB1H_REQUEST_APE_OPP_100_VOLT;
	} else {
		if (requests == 0) {
			r = -EIO;
			goto unlock_and_return;
		} else if (1 != requests--) {
			goto unlock_and_return;
		}
		header = MB1H_RELEASE_APE_OPP_100_VOLT;
	}

1105
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1106 1107 1108 1109
		cpu_relax();

	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

1110
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != header) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb1_transfer.lock);

	return r;
}

/**
 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
 *
 * This function releases the power state requirements of a USB wakeup.
 */
int prcmu_release_usb_wakeup_state(void)
{
	int r = 0;

	mutex_lock(&mb1_transfer.lock);

1134
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 1136 1137 1138 1139
		cpu_relax();

	writeb(MB1H_RELEASE_USB_WAKEUP,
		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));

1140
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	wait_for_completion(&mb1_transfer.work);

	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

1152 1153 1154 1155
static int request_pll(u8 clock, bool enable)
{
	int r = 0;

1156 1157 1158
	if (clock == PRCMU_PLLSOC0)
		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
	else if (clock == PRCMU_PLLSOC1)
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
	else
		return -EINVAL;

	mutex_lock(&mb1_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
		cpu_relax();

	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));

	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb1_transfer.work);

	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
		r = -EIO;

	mutex_unlock(&mb1_transfer.lock);

	return r;
}

1182
/**
1183
 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1184 1185 1186 1187 1188 1189
 * @epod_id: The EPOD to set
 * @epod_state: The new EPOD state
 *
 * This function sets the state of a EPOD (power domain). It may not be called
 * from interrupt context.
 */
1190
int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	int r = 0;
	bool ram_retention = false;
	int i;

	/* check argument */
	BUG_ON(epod_id >= NUM_EPOD_ID);

	/* set flag if retention is possible */
	switch (epod_id) {
	case EPOD_ID_SVAMMDSP:
	case EPOD_ID_SIAMMDSP:
	case EPOD_ID_ESRAM12:
	case EPOD_ID_ESRAM34:
		ram_retention = true;
		break;
	}

	/* check argument */
	BUG_ON(epod_state > EPOD_STATE_ON);
	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);

	/* get lock */
	mutex_lock(&mb2_transfer.lock);

	/* wait for mailbox */
1217
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1218 1219 1220 1221 1222 1223 1224 1225 1226
		cpu_relax();

	/* fill in mailbox */
	for (i = 0; i < NUM_EPOD_ID; i++)
		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));

	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));

1227
	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	/*
	 * The current firmware version does not handle errors correctly,
	 * and we cannot recover if there is an error.
	 * This is expected to change when the firmware is updated.
	 */
	if (!wait_for_completion_timeout(&mb2_transfer.work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
		goto unlock_and_return;
	}

	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
		r = -EIO;

unlock_and_return:
	mutex_unlock(&mb2_transfer.lock);
	return r;
}

/**
 * prcmu_configure_auto_pm - Configure autonomous power management.
 * @sleep: Configuration for ApSleep.
 * @idle:  Configuration for ApIdle.
 */
void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
	struct prcmu_auto_pm_config *idle)
{
	u32 sleep_cfg;
	u32 idle_cfg;
	unsigned long flags;
L
Linus Walleij 已提交
1261

1262
	BUG_ON((sleep == NULL) || (idle == NULL));
1263

1264 1265 1266 1267 1268 1269
	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
L
Linus Walleij 已提交
1270

1271 1272 1273 1274 1275 1276
	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
L
Linus Walleij 已提交
1277

1278
	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1279

1280 1281 1282 1283 1284 1285 1286
	/*
	 * The autonomous power management configuration is done through
	 * fields in mailbox 2, but these fields are only used as shared
	 * variables - i.e. there is no need to send a message.
	 */
	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1287

1288 1289 1290 1291 1292
	mb2_transfer.auto_pm_enabled =
		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1293

1294 1295 1296
	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
}
EXPORT_SYMBOL(prcmu_configure_auto_pm);
L
Linus Walleij 已提交
1297

1298 1299 1300 1301
bool prcmu_is_auto_pm_enabled(void)
{
	return mb2_transfer.auto_pm_enabled;
}
1302

1303 1304 1305 1306
static int request_sysclk(bool enable)
{
	int r;
	unsigned long flags;
L
Linus Walleij 已提交
1307

1308
	r = 0;
L
Linus Walleij 已提交
1309

1310
	mutex_lock(&mb3_transfer.sysclk_lock);
1311

1312
	spin_lock_irqsave(&mb3_transfer.lock, flags);
1313

1314
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1315
		cpu_relax();
1316

1317
	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
L
Linus Walleij 已提交
1318

1319
	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1320
	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	spin_unlock_irqrestore(&mb3_transfer.lock, flags);

	/*
	 * The firmware only sends an ACK if we want to enable the
	 * SysClk, and it succeeds.
	 */
	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
			msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
		r = -EIO;
	}

	mutex_unlock(&mb3_transfer.sysclk_lock);

	return r;
}

static int request_timclk(bool enable)
{
	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);

	if (!enable)
		val |= PRCM_TCR_STOP_TIMERS;
1346
	writel(val, PRCM_TCR);
1347 1348 1349 1350

	return 0;
}

1351
static int request_clock(u8 clock, bool enable)
1352 1353 1354 1355 1356 1357 1358
{
	u32 val;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
1359
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1360 1361
		cpu_relax();

1362
	val = readl(prcmu_base + clk_mgt[clock].offset);
1363 1364 1365 1366 1367 1368
	if (enable) {
		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
	} else {
		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
	}
1369
	writel(val, prcmu_base + clk_mgt[clock].offset);
1370 1371

	/* Release the HW semaphore. */
1372
	writel(0, PRCM_SEM);
1373 1374 1375 1376 1377 1378

	spin_unlock_irqrestore(&clk_mgt_lock, flags);

	return 0;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static int request_sga_clock(u8 clock, bool enable)
{
	u32 val;
	int ret;

	if (enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

1389
	ret = request_clock(clock, enable);
1390 1391 1392 1393 1394 1395 1396 1397 1398

	if (!ret && !enable) {
		val = readl(PRCM_CGATING_BYPASS);
		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
	}

	return ret;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static inline bool plldsi_locked(void)
{
	return (readl(PRCM_PLLDSI_LOCKP) &
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
}

static int request_plldsi(bool enable)
{
	int r = 0;
	u32 val;

	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));

	val = readl(PRCM_PLLDSI_ENABLE);
	if (enable)
		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	else
		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
	writel(val, PRCM_PLLDSI_ENABLE);

	if (enable) {
		unsigned int i;
		bool locked = plldsi_locked();

		for (i = 10; !locked && (i > 0); --i) {
			udelay(100);
			locked = plldsi_locked();
		}
		if (locked) {
			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
				PRCM_APE_RESETN_SET);
		} else {
			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
				PRCM_MMIP_LS_CLAMP_SET);
			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
			writel(val, PRCM_PLLDSI_ENABLE);
			r = -EAGAIN;
		}
	} else {
		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
	}
	return r;
}

static int request_dsiclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
		dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
	return 0;
}

static int request_dsiescclk(u8 n, bool enable)
{
	u32 val;

	val = readl(PRCM_DSITVCLK_DIV);
	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
	writel(val, PRCM_DSITVCLK_DIV);
	return 0;
}

1471
/**
1472
 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1473 1474 1475 1476 1477 1478
 * @clock:      The clock for which the request is made.
 * @enable:     Whether the clock should be enabled (true) or disabled (false).
 *
 * This function should only be used by the clock implementation.
 * Do not use it from any other place!
 */
1479
int db8500_prcmu_request_clock(u8 clock, bool enable)
1480
{
1481
	if (clock == PRCMU_SGACLK)
1482
		return request_sga_clock(clock, enable);
1483 1484 1485
	else if (clock < PRCMU_NUM_REG_CLOCKS)
		return request_clock(clock, enable);
	else if (clock == PRCMU_TIMCLK)
1486
		return request_timclk(enable);
1487 1488 1489 1490 1491 1492 1493
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
	else if (clock == PRCMU_PLLDSI)
		return request_plldsi(enable);
	else if (clock == PRCMU_SYSCLK)
1494
		return request_sysclk(enable);
1495
	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1496
		return request_pll(clock, enable);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	else
		return -EINVAL;
}

static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
	int branch)
{
	u64 rate;
	u32 val;
	u32 d;
	u32 div = 1;

	val = readl(reg);

	rate = src_rate;
	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);

	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
	if (d > 1)
		div *= d;

	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
	if (d > 1)
		div *= d;

	if (val & PRCM_PLL_FREQ_SELDIV2)
		div *= 2;

	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
		(val & PRCM_PLL_FREQ_DIV2EN) &&
		((reg == PRCM_PLLSOC0_FREQ) ||
1528
		 (reg == PRCM_PLLARM_FREQ) ||
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		 (reg == PRCM_PLLDDR_FREQ))))
		div *= 2;

	(void)do_div(rate, div);

	return (unsigned long)rate;
}

#define ROOT_CLOCK_RATE 38400000

static unsigned long clock_rate(u8 clock)
{
	u32 val;
	u32 pllsw;
	unsigned long rate = ROOT_CLOCK_RATE;

1545
	val = readl(prcmu_base + clk_mgt[clock].offset);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
			rate /= 2;
		return rate;
	}

	val |= clk_mgt[clock].pllsw;
	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);

	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
	else
		return 0;

	if ((clock == PRCMU_SGACLK) &&
		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
		u64 r = (rate * 10);

		(void)do_div(r, 25);
		return (unsigned long)r;
	}
	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
	if (val)
		return rate / val;
	else
		return 0;
}
1578

1579
static unsigned long armss_rate(void)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
{
	u32 r;
	unsigned long rate;

	r = readl(PRCM_ARM_CHGCLKREQ);

	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
		/* External ARMCLKFIX clock */

		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);

		/* Check PRCM_ARM_CHGCLKREQ divider */
		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
			rate /= 2;

		/* Check PRCM_ARMCLKFIX_MGT divider */
		r = readl(PRCM_ARMCLKFIX_MGT);
		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
		rate /= r;

	} else {/* ARM PLL */
		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
	}

1604
	return rate;
1605
}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

static unsigned long dsiclk_rate(u8 n)
{
	u32 divsel;
	u32 div = 1;

	divsel = readl(PRCM_DSI_PLLOUT_SEL);
	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);

	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
		divsel = dsiclk[n].divsel;
1617 1618
	else
		dsiclk[n].divsel = divsel;
1619 1620 1621 1622 1623 1624 1625 1626 1627

	switch (divsel) {
	case PRCM_DSI_PLLOUT_SEL_PHI_4:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI_2:
		div *= 2;
	case PRCM_DSI_PLLOUT_SEL_PHI:
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW) / div;
1628
	default:
1629
		return 0;
1630
	}
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
}

static unsigned long dsiescclk_rate(u8 n)
{
	u32 div;

	div = readl(PRCM_DSITVCLK_DIV);
	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
}

unsigned long prcmu_clock_rate(u8 clock)
{
1644
	if (clock < PRCMU_NUM_REG_CLOCKS)
1645 1646 1647 1648 1649 1650 1651 1652 1653
		return clock_rate(clock);
	else if (clock == PRCMU_TIMCLK)
		return ROOT_CLOCK_RATE / 16;
	else if (clock == PRCMU_SYSCLK)
		return ROOT_CLOCK_RATE;
	else if (clock == PRCMU_PLLSOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLSOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1654 1655
	else if (clock == PRCMU_ARMSS)
		return armss_rate();
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	else if (clock == PRCMU_PLLDDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
	else if (clock == PRCMU_PLLDSI)
		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
			PLL_RAW);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return dsiclk_rate(clock - PRCMU_DSI0CLK);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
	else
		return 0;
}

static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
{
	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
		return ROOT_CLOCK_RATE;
	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
	else
		return 0;
}

static u32 clock_divider(unsigned long src_rate, unsigned long rate)
{
	u32 div;

	div = (src_rate / rate);
	if (div == 0)
		return 1;
	if (rate < (src_rate / div))
		div++;
	return div;
}

static long round_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

1703
	val = readl(prcmu_base + clk_mgt[clock].offset);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 2)
				div = 2;
		} else {
			div = 1;
		}
	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
		u64 r = (src_rate * 10);

		(void)do_div(r, 25);
		if (r <= rate)
			return (unsigned long)r;
	}
	rounded_rate = (src_rate / min(div, (u32)31));

	return rounded_rate;
}

1726 1727
/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1728 1729 1730
	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
	{ .frequency = CPUFREQ_TABLE_END,},
};

static long round_armss_rate(unsigned long rate)
{
	long freq = 0;
	int i = 0;

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
		freq = db8500_cpufreq_table[i].frequency;
		if (freq == rate)
			break;
		i++;
	}

	/* Return the last valid value, even if a match was not found. */
	return freq * 1000;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
#define MIN_PLL_VCO_RATE 600000000ULL
#define MAX_PLL_VCO_RATE 1680640000ULL

static long round_plldsi_rate(unsigned long rate)
{
	long rounded_rate = 0;
	unsigned long src_rate;
	unsigned long rem;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		d *= src_rate;
		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * d)))
			continue;
		(void)do_div(d, r);
		if (rate < d) {
			if (rounded_rate == 0)
				rounded_rate = (long)d;
			break;
		}
		if ((rate - d) < rem) {
			rem = (rate - d);
			rounded_rate = (long)d;
		}
	}
	return rounded_rate;
}

static long round_dsiclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
		PLL_RAW);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / ((div > 2) ? 4 : div));

	return rounded_rate;
}

static long round_dsiescclk_rate(unsigned long rate)
{
	u32 div;
	unsigned long src_rate;
	long rounded_rate;

	src_rate = clock_rate(PRCMU_TVCLK);
	div = clock_divider(src_rate, rate);
	rounded_rate = (src_rate / min(div, (u32)255));

	return rounded_rate;
}

long prcmu_round_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		return round_clock_rate(clock, rate);
1826 1827
	else if (clock == PRCMU_ARMSS)
		return round_armss_rate(rate);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	else if (clock == PRCMU_PLLDSI)
		return round_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		return round_dsiclk_rate(rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		return round_dsiescclk_rate(rate);
	else
		return (long)prcmu_clock_rate(clock);
}

static void set_clock_rate(u8 clock, unsigned long rate)
{
	u32 val;
	u32 div;
	unsigned long src_rate;
	unsigned long flags;

	spin_lock_irqsave(&clk_mgt_lock, flags);

	/* Grab the HW semaphore. */
	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
		cpu_relax();

1851
	val = readl(prcmu_base + clk_mgt[clock].offset);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
		clk_mgt[clock].branch);
	div = clock_divider(src_rate, rate);
	if (val & PRCM_CLK_MGT_CLK38) {
		if (clk_mgt[clock].clk38div) {
			if (div > 1)
				val |= PRCM_CLK_MGT_CLK38DIV;
			else
				val &= ~PRCM_CLK_MGT_CLK38DIV;
		}
	} else if (clock == PRCMU_SGACLK) {
		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
		if (div == 3) {
			u64 r = (src_rate * 10);

			(void)do_div(r, 25);
			if (r <= rate) {
				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
				div = 0;
			}
		}
		val |= min(div, (u32)31);
	} else {
		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
		val |= min(div, (u32)31);
	}
1879
	writel(val, prcmu_base + clk_mgt[clock].offset);
1880 1881 1882 1883 1884 1885 1886

	/* Release the HW semaphore. */
	writel(0, PRCM_SEM);

	spin_unlock_irqrestore(&clk_mgt_lock, flags);
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static int set_armss_rate(unsigned long rate)
{
	int i = 0;

	/* cpufreq table frequencies is in KHz. */
	rate = rate / 1000;

	/* Find the corresponding arm opp from the cpufreq table. */
	while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
		if (db8500_cpufreq_table[i].frequency == rate)
			break;
		i++;
	}

	if (db8500_cpufreq_table[i].frequency != rate)
		return -EINVAL;

	/* Set the new arm opp. */
1905
	return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static int set_plldsi_rate(unsigned long rate)
{
	unsigned long src_rate;
	unsigned long rem;
	u32 pll_freq = 0;
	u32 r;

	src_rate = clock_rate(PRCMU_HDMICLK);
	rem = rate;

	for (r = 7; (rem > 0) && (r > 0); r--) {
		u64 d;
		u64 hwrate;

		d = (r * rate);
		(void)do_div(d, src_rate);
		if (d < 6)
			d = 6;
		else if (d > 255)
			d = 255;
		hwrate = (d * src_rate);
		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
			continue;
		(void)do_div(hwrate, r);
		if (rate < hwrate) {
			if (pll_freq == 0)
				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
					(r << PRCM_PLL_FREQ_R_SHIFT));
			break;
		}
		if ((rate - hwrate) < rem) {
			rem = (rate - hwrate);
			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
				(r << PRCM_PLL_FREQ_R_SHIFT));
		}
	}
	if (pll_freq == 0)
		return -EINVAL;

	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
	writel(pll_freq, PRCM_PLLDSI_FREQ);

	return 0;
}

static void set_dsiclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);

	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;

	val = readl(PRCM_DSI_PLLOUT_SEL);
	val &= ~dsiclk[n].divsel_mask;
	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
	writel(val, PRCM_DSI_PLLOUT_SEL);
}

static void set_dsiescclk_rate(u8 n, unsigned long rate)
{
	u32 val;
	u32 div;

	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
	val = readl(PRCM_DSITVCLK_DIV);
	val &= ~dsiescclk[n].div_mask;
	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
	writel(val, PRCM_DSITVCLK_DIV);
}

int prcmu_set_clock_rate(u8 clock, unsigned long rate)
{
	if (clock < PRCMU_NUM_REG_CLOCKS)
		set_clock_rate(clock, rate);
1988 1989
	else if (clock == PRCMU_ARMSS)
		return set_armss_rate(rate);
1990 1991 1992 1993 1994 1995 1996
	else if (clock == PRCMU_PLLDSI)
		return set_plldsi_rate(rate);
	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
	return 0;
1997 1998
}

1999
int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 2001 2002 2003 2004 2005 2006
{
	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
		return -EINVAL;

	mutex_lock(&mb4_transfer.lock);

2007
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2008 2009 2010 2011 2012 2013 2014 2015 2016
		cpu_relax();

	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
	writeb(DDR_PWR_STATE_ON,
	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));

2017
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2018 2019 2020 2021 2022 2023 2024
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2025
int db8500_prcmu_config_hotdog(u8 threshold)
2026 2027 2028
{
	mutex_lock(&mb4_transfer.lock);

2029
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2030 2031 2032 2033 2034
		cpu_relax();

	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2035
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 2037 2038 2039 2040 2041 2042
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2043
int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 2045 2046
{
	mutex_lock(&mb4_transfer.lock);

2047
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 2049 2050 2051 2052 2053 2054 2055
		cpu_relax();

	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2056
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

static int config_hot_period(u16 val)
{
	mutex_lock(&mb4_transfer.lock);

2068
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069 2070 2071 2072 2073
		cpu_relax();

	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

2074
	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 2076 2077 2078 2079 2080 2081
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;
}

2082
int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 2084 2085 2086 2087 2088 2089
{
	if (cycles32k == 0xFFFF)
		return -EINVAL;

	return config_hot_period(cycles32k);
}

2090
int db8500_prcmu_stop_temp_sense(void)
2091 2092 2093 2094
{
	return config_hot_period(0xFFFF);
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
{

	mutex_lock(&mb4_transfer.lock);

	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
		cpu_relax();

	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));

	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));

	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
	wait_for_completion(&mb4_transfer.work);

	mutex_unlock(&mb4_transfer.lock);

	return 0;

}

2119
int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 2121 2122 2123 2124 2125
{
	BUG_ON(num == 0 || num > 0xf);
	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
			    A9WDOG_AUTO_OFF_DIS);
}
2126
EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2127

2128
int db8500_prcmu_enable_a9wdog(u8 id)
2129 2130 2131
{
	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
}
2132
EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2133

2134
int db8500_prcmu_disable_a9wdog(u8 id)
2135 2136 2137
{
	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
}
2138
EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2139

2140
int db8500_prcmu_kick_a9wdog(u8 id)
2141 2142 2143
{
	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
}
2144
EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2145 2146 2147 2148

/*
 * timeout is 28 bit, in ms.
 */
2149
int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
{
	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
			    (id & A9WDOG_ID_MASK) |
			    /*
			     * Put the lowest 28 bits of timeout at
			     * offset 4. Four first bits are used for id.
			     */
			    (u8)((timeout << 4) & 0xf0),
			    (u8)((timeout >> 4) & 0xff),
			    (u8)((timeout >> 12) & 0xff),
			    (u8)((timeout >> 20) & 0xff));
}
2162
EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2163

L
Linus Walleij 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/**
 * prcmu_abb_read() - Read register value(s) from the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The read out value(s).
 * @size:	The number of registers to read.
 *
 * Reads register value(s) from the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
{
	int r;

	if (size != 1)
		return -EINVAL;

2181
	mutex_lock(&mb5_transfer.lock);
L
Linus Walleij 已提交
2182

2183
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
L
Linus Walleij 已提交
2184 2185
		cpu_relax();

2186
	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2187 2188 2189 2190 2191
	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

2192
	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
2193 2194

	if (!wait_for_completion_timeout(&mb5_transfer.work,
2195 2196 2197
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
L
Linus Walleij 已提交
2198
		r = -EIO;
2199 2200
	} else {
		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
L
Linus Walleij 已提交
2201
	}
2202

L
Linus Walleij 已提交
2203 2204 2205 2206
	if (!r)
		*value = mb5_transfer.ack.value;

	mutex_unlock(&mb5_transfer.lock);
2207

L
Linus Walleij 已提交
2208 2209 2210 2211
	return r;
}

/**
2212
 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
L
Linus Walleij 已提交
2213 2214 2215
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
2216
 * @mask:	The mask(s) to use.
L
Linus Walleij 已提交
2217 2218
 * @size:	The number of registers to write.
 *
2219 2220 2221
 * Writes masked register value(s) to the ABB.
 * For each @value, only the bits set to 1 in the corresponding @mask
 * will be written. The other bits are not changed.
L
Linus Walleij 已提交
2222 2223
 * @size has to be 1 for the current firmware version.
 */
2224
int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
L
Linus Walleij 已提交
2225 2226 2227 2228 2229 2230
{
	int r;

	if (size != 1)
		return -EINVAL;

2231
	mutex_lock(&mb5_transfer.lock);
L
Linus Walleij 已提交
2232

2233
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
L
Linus Walleij 已提交
2234 2235
		cpu_relax();

2236
	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2237 2238 2239 2240 2241
	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));

2242
	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
L
Linus Walleij 已提交
2243 2244

	if (!wait_for_completion_timeout(&mb5_transfer.work,
2245 2246 2247
				msecs_to_jiffies(20000))) {
		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
			__func__);
L
Linus Walleij 已提交
2248
		r = -EIO;
2249 2250
	} else {
		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
L
Linus Walleij 已提交
2251 2252 2253
	}

	mutex_unlock(&mb5_transfer.lock);
2254

L
Linus Walleij 已提交
2255 2256 2257
	return r;
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/**
 * prcmu_abb_write() - Write register value(s) to the ABB.
 * @slave:	The I2C slave address.
 * @reg:	The (start) register address.
 * @value:	The value(s) to write.
 * @size:	The number of registers to write.
 *
 * Writes register value(s) to the ABB.
 * @size has to be 1 for the current firmware version.
 */
int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
{
	u8 mask = ~0;

	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
}

2275 2276 2277
/**
 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
 */
2278
int prcmu_ac_wake_req(void)
2279
{
2280
	u32 val;
2281
	int ret = 0;
2282

2283
	mutex_lock(&mb0_transfer.ac_wake_lock);
2284

2285
	val = readl(PRCM_HOSTACCESS_REQ);
2286 2287
	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
		goto unlock_and_return;
2288

2289
	atomic_set(&ac_wake_req_state, 1);
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * Force Modem Wake-up before hostaccess_req ping-pong.
	 * It prevents Modem to enter in Sleep while acking the hostaccess
	 * request. The 31us delay has been calculated by HWI.
	 */
	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);

	udelay(31);

	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
	writel(val, PRCM_HOSTACCESS_REQ);
2303

2304
	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2305
			msecs_to_jiffies(5000))) {
2306 2307 2308
#if defined(CONFIG_DBX500_PRCMU_DEBUG)
		db8500_prcmu_debug_dump(__func__, true, true);
#endif
2309
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2310
			__func__);
2311
		ret = -EFAULT;
2312
	}
2313

2314 2315
unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
2316
	return ret;
2317 2318 2319
}

/**
2320
 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2321
 */
2322
void prcmu_ac_sleep_req(void)
2323
{
2324 2325 2326 2327
	u32 val;

	mutex_lock(&mb0_transfer.ac_wake_lock);

2328
	val = readl(PRCM_HOSTACCESS_REQ);
2329 2330 2331 2332
	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
		goto unlock_and_return;

	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2333
		PRCM_HOSTACCESS_REQ);
2334 2335

	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2336
			msecs_to_jiffies(5000))) {
2337
		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2338 2339 2340 2341 2342 2343 2344
			__func__);
	}

	atomic_set(&ac_wake_req_state, 0);

unlock_and_return:
	mutex_unlock(&mb0_transfer.ac_wake_lock);
2345 2346
}

2347
bool db8500_prcmu_is_ac_wake_requested(void)
2348
{
2349
	return (atomic_read(&ac_wake_req_state) != 0);
2350 2351 2352
}

/**
2353
 * db8500_prcmu_system_reset - System reset
2354
 *
2355
 * Saves the reset reason code and then sets the APE_SOFTRST register which
2356
 * fires interrupt to fw
2357
 */
2358
void db8500_prcmu_system_reset(u16 reset_code)
2359
{
2360
	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2361
	writel(1, PRCM_APE_SOFTRST);
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/**
 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
 *
 * Retrieves the reset reason code stored by prcmu_system_reset() before
 * last restart.
 */
u16 db8500_prcmu_get_reset_code(void)
{
	return readw(tcdm_base + PRCM_SW_RST_REASON);
}

2375
/**
2376
 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2377
 */
2378
void db8500_prcmu_modem_reset(void)
2379
{
2380 2381
	mutex_lock(&mb1_transfer.lock);

2382
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2383 2384 2385
		cpu_relax();

	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2386
	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2387 2388 2389 2390 2391 2392 2393 2394
	wait_for_completion(&mb1_transfer.work);

	/*
	 * No need to check return from PRCMU as modem should go in reset state
	 * This state is already managed by upper layer
	 */

	mutex_unlock(&mb1_transfer.lock);
2395 2396
}

2397
static void ack_dbb_wakeup(void)
2398
{
2399 2400 2401 2402
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

2403
	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2404 2405 2406
		cpu_relax();

	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2407
	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2408 2409

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2410 2411
}

2412
static inline void print_unknown_header_warning(u8 n, u8 header)
2413
{
2414 2415
	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
		header, n);
2416 2417
}

2418
static bool read_mailbox_0(void)
L
Linus Walleij 已提交
2419
{
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	bool r;
	u32 ev;
	unsigned int n;
	u8 header;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
	switch (header) {
	case MB0H_WAKEUP_EXE:
	case MB0H_WAKEUP_SLEEP:
		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
		else
			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);

		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
			complete(&mb0_transfer.ac_wake_work);
		if (ev & WAKEUP_BIT_SYSCLK_OK)
			complete(&mb3_transfer.sysclk_work);

		ev &= mb0_transfer.req.dbb_irqs;

		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
			if (ev & prcmu_irq_bit[n])
2443
				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2444 2445 2446 2447 2448 2449 2450 2451
		}
		r = true;
		break;
	default:
		print_unknown_header_warning(0, header);
		r = false;
		break;
	}
2452
	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2453
	return r;
L
Linus Walleij 已提交
2454 2455
}

2456
static bool read_mailbox_1(void)
L
Linus Walleij 已提交
2457
{
2458 2459 2460 2461 2462 2463 2464
	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
	mb1_transfer.ack.arm_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_ARM_OPP);
	mb1_transfer.ack.ape_opp = readb(tcdm_base +
		PRCM_ACK_MB1_CURRENT_APE_OPP);
	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2465
	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2466
	complete(&mb1_transfer.work);
2467
	return false;
L
Linus Walleij 已提交
2468 2469
}

2470
static bool read_mailbox_2(void)
L
Linus Walleij 已提交
2471
{
2472
	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2473
	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2474 2475
	complete(&mb2_transfer.work);
	return false;
L
Linus Walleij 已提交
2476 2477
}

2478
static bool read_mailbox_3(void)
L
Linus Walleij 已提交
2479
{
2480
	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2481
	return false;
L
Linus Walleij 已提交
2482 2483
}

2484
static bool read_mailbox_4(void)
L
Linus Walleij 已提交
2485
{
2486 2487 2488 2489 2490 2491 2492 2493 2494
	u8 header;
	bool do_complete = true;

	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
	switch (header) {
	case MB4H_MEM_ST:
	case MB4H_HOTDOG:
	case MB4H_HOTMON:
	case MB4H_HOT_PERIOD:
2495 2496 2497 2498 2499
	case MB4H_A9WDOG_CONF:
	case MB4H_A9WDOG_EN:
	case MB4H_A9WDOG_DIS:
	case MB4H_A9WDOG_LOAD:
	case MB4H_A9WDOG_KICK:
2500 2501 2502 2503 2504 2505 2506
		break;
	default:
		print_unknown_header_warning(4, header);
		do_complete = false;
		break;
	}

2507
	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2508 2509 2510 2511 2512

	if (do_complete)
		complete(&mb4_transfer.work);

	return false;
L
Linus Walleij 已提交
2513 2514
}

2515
static bool read_mailbox_5(void)
L
Linus Walleij 已提交
2516
{
2517 2518
	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2519
	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
L
Linus Walleij 已提交
2520
	complete(&mb5_transfer.work);
2521
	return false;
L
Linus Walleij 已提交
2522 2523
}

2524
static bool read_mailbox_6(void)
L
Linus Walleij 已提交
2525
{
2526
	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2527
	return false;
L
Linus Walleij 已提交
2528 2529
}

2530
static bool read_mailbox_7(void)
L
Linus Walleij 已提交
2531
{
2532
	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2533
	return false;
L
Linus Walleij 已提交
2534 2535
}

2536
static bool (* const read_mailbox[NUM_MB])(void) = {
L
Linus Walleij 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	read_mailbox_0,
	read_mailbox_1,
	read_mailbox_2,
	read_mailbox_3,
	read_mailbox_4,
	read_mailbox_5,
	read_mailbox_6,
	read_mailbox_7
};

static irqreturn_t prcmu_irq_handler(int irq, void *data)
{
	u32 bits;
	u8 n;
2551
	irqreturn_t r;
L
Linus Walleij 已提交
2552

2553
	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
L
Linus Walleij 已提交
2554 2555 2556
	if (unlikely(!bits))
		return IRQ_NONE;

2557
	r = IRQ_HANDLED;
L
Linus Walleij 已提交
2558 2559 2560
	for (n = 0; bits; n++) {
		if (bits & MBOX_BIT(n)) {
			bits -= MBOX_BIT(n);
2561 2562
			if (read_mailbox[n]())
				r = IRQ_WAKE_THREAD;
L
Linus Walleij 已提交
2563 2564
		}
	}
2565 2566 2567 2568 2569 2570
	return r;
}

static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
{
	ack_dbb_wakeup();
L
Linus Walleij 已提交
2571 2572 2573
	return IRQ_HANDLED;
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
static void prcmu_mask_work(struct work_struct *work)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.lock, flags);

	config_wakeups();

	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
}

static void prcmu_irq_mask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

2591
	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void prcmu_irq_unmask(struct irq_data *d)
{
	unsigned long flags;

	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);

2605
	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);

	if (d->irq != IRQ_PRCMU_CA_SLEEP)
		schedule_work(&mb0_transfer.mask_work);
}

static void noop(struct irq_data *d)
{
}

static struct irq_chip prcmu_irq_chip = {
	.name		= "prcmu",
	.irq_disable	= prcmu_irq_mask,
	.irq_ack	= noop,
	.irq_mask	= prcmu_irq_mask,
	.irq_unmask	= prcmu_irq_unmask,
};

2625
static __init char *fw_project_name(u32 project)
2626 2627 2628 2629
{
	switch (project) {
	case PRCMU_FW_PROJECT_U8500:
		return "U8500";
2630 2631
	case PRCMU_FW_PROJECT_U8400:
		return "U8400";
2632 2633
	case PRCMU_FW_PROJECT_U9500:
		return "U9500";
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	case PRCMU_FW_PROJECT_U8500_MBB:
		return "U8500 MBB";
	case PRCMU_FW_PROJECT_U8500_C1:
		return "U8500 C1";
	case PRCMU_FW_PROJECT_U8500_C2:
		return "U8500 C2";
	case PRCMU_FW_PROJECT_U8500_C3:
		return "U8500 C3";
	case PRCMU_FW_PROJECT_U8500_C4:
		return "U8500 C4";
	case PRCMU_FW_PROJECT_U9500_MBL:
		return "U9500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL:
		return "U8500 MBL";
	case PRCMU_FW_PROJECT_U8500_MBL2:
		return "U8500 MBL2";
2650
	case PRCMU_FW_PROJECT_U8520:
2651
		return "U8520 MBL";
2652 2653
	case PRCMU_FW_PROJECT_U8420:
		return "U8420";
2654 2655 2656 2657 2658 2659 2660 2661
	case PRCMU_FW_PROJECT_U9540:
		return "U9540";
	case PRCMU_FW_PROJECT_A9420:
		return "A9420";
	case PRCMU_FW_PROJECT_L8540:
		return "L8540";
	case PRCMU_FW_PROJECT_L8580:
		return "L8580";
2662 2663 2664 2665 2666
	default:
		return "Unknown";
	}
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
				irq_hw_number_t hwirq)
{
	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
				handle_simple_irq);
	set_irq_flags(virq, IRQF_VALID);

	return 0;
}

static struct irq_domain_ops db8500_irq_ops = {
2678 2679
	.map    = db8500_irq_map,
	.xlate  = irq_domain_xlate_twocell,
2680 2681
};

2682
static int db8500_irq_init(struct device_node *np, int irq_base)
2683
{
2684
	int i;
2685 2686

	/* In the device tree case, just take some IRQs */
2687 2688
	if (np)
		irq_base = 0;
2689 2690 2691 2692

	db8500_irq_domain = irq_domain_add_simple(
		np, NUM_PRCMU_WAKEUPS, irq_base,
		&db8500_irq_ops, NULL);
2693 2694 2695 2696 2697 2698

	if (!db8500_irq_domain) {
		pr_err("Failed to create irqdomain\n");
		return -ENOSYS;
	}

2699 2700 2701 2702
	/* All wakeups will be used, so create mappings for all */
	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
		irq_create_mapping(db8500_irq_domain, i);

2703 2704 2705
	return 0;
}

2706 2707
static void dbx500_fw_version_init(struct platform_device *pdev,
			    u32 version_offset)
2708
{
2709 2710
	struct resource *res;
	void __iomem *tcpm_base;
2711
	u32 version;
2712

2713 2714 2715 2716 2717 2718 2719 2720
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					   "prcmu-tcpm");
	if (!res) {
		dev_err(&pdev->dev,
			"Error: no prcmu tcpm memory region provided\n");
		return;
	}
	tcpm_base = ioremap(res->start, resource_size(res));
2721 2722 2723
	if (!tcpm_base) {
		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
		return;
2724
	}
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	version = readl(tcpm_base + version_offset);
	fw_info.version.project = (version & 0xFF);
	fw_info.version.api_version = (version >> 8) & 0xFF;
	fw_info.version.func_version = (version >> 16) & 0xFF;
	fw_info.version.errata = (version >> 24) & 0xFF;
	strncpy(fw_info.version.project_name,
		fw_project_name(fw_info.version.project),
		PRCMU_FW_PROJECT_NAME_LEN);
	fw_info.valid = true;
	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
		fw_info.version.project_name,
		fw_info.version.project,
		fw_info.version.api_version,
		fw_info.version.func_version,
		fw_info.version.errata);
	iounmap(tcpm_base);
2742
}
2743

2744
void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2745
{
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	/*
	 * This is a temporary remap to bring up the clocks. It is
	 * subsequently replaces with a real remap. After the merge of
	 * the mailbox subsystem all of this early code goes away, and the
	 * clock driver can probe independently. An early initcall will
	 * still be needed, but it can be diverted into drivers/clk/ux500.
	 */
	prcmu_base = ioremap(phy_base, size);
	if (!prcmu_base)
		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);

2757 2758 2759 2760
	spin_lock_init(&mb0_transfer.lock);
	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
	mutex_init(&mb0_transfer.ac_wake_lock);
	init_completion(&mb0_transfer.ac_wake_work);
2761 2762
	mutex_init(&mb1_transfer.lock);
	init_completion(&mb1_transfer.work);
2763
	mb1_transfer.ape_opp = APE_NO_CHANGE;
2764 2765 2766 2767 2768 2769 2770 2771
	mutex_init(&mb2_transfer.lock);
	init_completion(&mb2_transfer.work);
	spin_lock_init(&mb2_transfer.auto_pm_lock);
	spin_lock_init(&mb3_transfer.lock);
	mutex_init(&mb3_transfer.sysclk_lock);
	init_completion(&mb3_transfer.sysclk_work);
	mutex_init(&mb4_transfer.lock);
	init_completion(&mb4_transfer.work);
L
Linus Walleij 已提交
2772 2773 2774
	mutex_init(&mb5_transfer.lock);
	init_completion(&mb5_transfer.work);

2775 2776 2777
	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
}

2778
static void __init init_prcm_registers(void)
2779 2780 2781 2782 2783 2784 2785 2786 2787
{
	u32 val;

	val = readl(PRCM_A9PL_FORCE_CLKEN);
	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
	writel(val, (PRCM_A9PL_FORCE_CLKEN));
}

2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
 */
static struct regulator_consumer_supply db8500_vape_consumers[] = {
	REGULATOR_SUPPLY("v-ape", NULL),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2797
	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	/* "v-mmc" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "sdi0"),
	REGULATOR_SUPPLY("vcore", "sdi1"),
	REGULATOR_SUPPLY("vcore", "sdi2"),
	REGULATOR_SUPPLY("vcore", "sdi3"),
	REGULATOR_SUPPLY("vcore", "sdi4"),
	REGULATOR_SUPPLY("v-dma", "dma40.0"),
	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
	/* "v-uart" changed to "vcore" in the mainline kernel */
	REGULATOR_SUPPLY("vcore", "uart0"),
	REGULATOR_SUPPLY("vcore", "uart1"),
	REGULATOR_SUPPLY("vcore", "uart2"),
	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2811
	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2812
	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2813 2814 2815 2816 2817 2818 2819 2820 2821
};

static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
	/* AV8100 regulator */
	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
};

static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2822
	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	REGULATOR_SUPPLY("vsupply", "mcde"),
};

/* SVA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
};

/* SVA pipe regulator switch */
static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
};

/* SIA MMDSP regulator switch */
static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
};

/* SIA pipe regulator switch */
static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
};

static struct regulator_consumer_supply db8500_sga_consumers[] = {
	REGULATOR_SUPPLY("v-mali", NULL),
};

/* ESRAM1 and 2 regulator switch */
static struct regulator_consumer_supply db8500_esram12_consumers[] = {
	REGULATOR_SUPPLY("esram12", "cm_control"),
};

/* ESRAM3 and 4 regulator switch */
static struct regulator_consumer_supply db8500_esram34_consumers[] = {
	REGULATOR_SUPPLY("v-esram34", "mcde"),
	REGULATOR_SUPPLY("esram34", "cm_control"),
2859
	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2860 2861 2862 2863 2864 2865 2866
};

static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
	[DB8500_REGULATOR_VAPE] = {
		.constraints = {
			.name = "db8500-vape",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2867
			.always_on = true,
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		},
		.consumer_supplies = db8500_vape_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
	},
	[DB8500_REGULATOR_VARM] = {
		.constraints = {
			.name = "db8500-varm",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VMODEM] = {
		.constraints = {
			.name = "db8500-vmodem",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VPLL] = {
		.constraints = {
			.name = "db8500-vpll",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS1] = {
		.constraints = {
			.name = "db8500-vsmps1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VSMPS2] = {
		.constraints = {
			.name = "db8500-vsmps2",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_vsmps2_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
	},
	[DB8500_REGULATOR_VSMPS3] = {
		.constraints = {
			.name = "db8500-vsmps3",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_VRF1] = {
		.constraints = {
			.name = "db8500-vrf1",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2917
		/* dependency to u8500-vape is handled outside regulator framework */
2918 2919 2920 2921
		.constraints = {
			.name = "db8500-sva-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2922 2923
		.consumer_supplies = db8500_svammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2924 2925 2926 2927 2928 2929 2930 2931 2932
	},
	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
		.constraints = {
			/* "ret" means "retention" */
			.name = "db8500-sva-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2933
		/* dependency to u8500-vape is handled outside regulator framework */
2934 2935 2936 2937
		.constraints = {
			.name = "db8500-sva-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2938 2939
		.consumer_supplies = db8500_svapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2940 2941
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2942
		/* dependency to u8500-vape is handled outside regulator framework */
2943 2944 2945 2946
		.constraints = {
			.name = "db8500-sia-mmdsp",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2947 2948
		.consumer_supplies = db8500_siammdsp_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2949 2950 2951 2952 2953 2954 2955 2956
	},
	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
		.constraints = {
			.name = "db8500-sia-mmdsp-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2957
		/* dependency to u8500-vape is handled outside regulator framework */
2958 2959 2960 2961
		.constraints = {
			.name = "db8500-sia-pipe",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2962 2963
		.consumer_supplies = db8500_siapipe_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2964 2965 2966 2967 2968 2969 2970
	},
	[DB8500_REGULATOR_SWITCH_SGA] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-sga",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2971 2972 2973
		.consumer_supplies = db8500_sga_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
	},
	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
		.supply_regulator = "db8500-vape",
		.constraints = {
			.name = "db8500-b2r2-mcde",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
		.consumer_supplies = db8500_b2r2_mcde_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2985 2986 2987 2988
		/*
		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
2989 2990 2991 2992
		.constraints = {
			.name = "db8500-esram12",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
2993 2994
		.consumer_supplies = db8500_esram12_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2995 2996 2997 2998 2999 3000 3001 3002
	},
	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
		.constraints = {
			.name = "db8500-esram12-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
3003 3004 3005 3006
		/*
		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
		 * no need to hold Vape
		 */
3007 3008 3009 3010
		.constraints = {
			.name = "db8500-esram34",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
3011 3012
		.consumer_supplies = db8500_esram34_consumers,
		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3013 3014 3015 3016 3017 3018 3019 3020 3021
	},
	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
		.constraints = {
			.name = "db8500-esram34-ret",
			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
		},
	},
};

3022 3023 3024 3025
static struct ux500_wdt_data db8500_wdt_pdata = {
	.timeout = 600, /* 10 minutes */
	.has_28_bits_resolution = true,
};
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/*
 * Thermal Sensor
 */

static struct resource db8500_thsens_resources[] = {
	{
		.name = "IRQ_HOTMON_LOW",
		.start  = IRQ_PRCMU_HOTMON_LOW,
		.end    = IRQ_PRCMU_HOTMON_LOW,
		.flags  = IORESOURCE_IRQ,
	},
	{
		.name = "IRQ_HOTMON_HIGH",
		.start  = IRQ_PRCMU_HOTMON_HIGH,
		.end    = IRQ_PRCMU_HOTMON_HIGH,
		.flags  = IORESOURCE_IRQ,
	},
};

static struct db8500_thsens_platform_data db8500_thsens_data = {
	.trip_points[0] = {
		.temp = 70000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[1] = {
		.temp = 75000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[2] = {
		.temp = 80000,
		.type = THERMAL_TRIP_ACTIVE,
		.cdev_name = {
			[0] = "thermal-cpufreq-0",
		},
	},
	.trip_points[3] = {
		.temp = 85000,
		.type = THERMAL_TRIP_CRITICAL,
	},
	.num_trips = 4,
};
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082
static struct mfd_cell common_prcmu_devs[] = {
	{
		.name = "ux500_wdt",
		.platform_data = &db8500_wdt_pdata,
		.pdata_size = sizeof(db8500_wdt_pdata),
		.id = -1,
	},
};

3083 3084 3085
static struct mfd_cell db8500_prcmu_devs[] = {
	{
		.name = "db8500-prcmu-regulators",
3086
		.of_compatible = "stericsson,db8500-prcmu-regulator",
3087 3088
		.platform_data = &db8500_regulators,
		.pdata_size = sizeof(db8500_regulators),
3089 3090
	},
	{
3091 3092
		.name = "cpufreq-ux500",
		.of_compatible = "stericsson,cpufreq-ux500",
3093 3094
		.platform_data = &db8500_cpufreq_table,
		.pdata_size = sizeof(db8500_cpufreq_table),
3095
	},
3096
	{
3097 3098 3099 3100
		.name = "db8500-thermal",
		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
		.resources = db8500_thsens_resources,
		.platform_data = &db8500_thsens_data,
3101
		.pdata_size = sizeof(db8500_thsens_data),
3102
	},
3103 3104
};

3105 3106 3107 3108
static void db8500_prcmu_update_cpufreq(void)
{
	if (prcmu_has_arm_maxopp()) {
		db8500_cpufreq_table[3].frequency = 1000000;
3109
		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3110 3111 3112
	}
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
static int db8500_prcmu_register_ab8500(struct device *parent,
					struct ab8500_platform_data *pdata,
					int irq)
{
	struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
	struct mfd_cell ab8500_cell = {
		.name = "ab8500-core",
		.of_compatible = "stericsson,ab8500",
		.id = AB8500_VERSION_AB8500,
		.platform_data = pdata,
		.pdata_size = sizeof(struct ab8500_platform_data),
		.resources = &ab8500_resource,
		.num_resources = 1,
	};

	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
}

3131 3132 3133 3134
/**
 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
 *
 */
B
Bill Pemberton 已提交
3135
static int db8500_prcmu_probe(struct platform_device *pdev)
3136
{
3137
	struct device_node *np = pdev->dev.of_node;
3138
	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3139
	int irq = 0, err = 0;
3140
	struct resource *res;
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu memory region provided\n");
		return -ENOENT;
	}
	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
	if (!prcmu_base) {
		dev_err(&pdev->dev,
			"failed to ioremap prcmu register memory\n");
		return -ENOENT;
	}
3153
	init_prcm_registers();
3154 3155 3156 3157 3158 3159 3160 3161 3162
	dbx500_fw_version_init(pdev, pdata->version_offset);
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
	if (!res) {
		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
		return -ENOENT;
	}
	tcdm_base = devm_ioremap(&pdev->dev, res->start,
			resource_size(res));

L
Linus Walleij 已提交
3163
	/* Clean up the mailbox interrupts after pre-kernel code. */
3164
	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3165

3166 3167 3168 3169 3170
	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(&pdev->dev, "no prcmu irq provided\n");
		return -ENOENT;
	}
3171 3172 3173

	err = request_threaded_irq(irq, prcmu_irq_handler,
	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3174 3175 3176 3177 3178 3179
	if (err < 0) {
		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
		err = -EBUSY;
		goto no_irq_return;
	}

3180
	db8500_irq_init(np, pdata->irq_base);
3181

3182
	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3183

3184 3185
	db8500_prcmu_update_cpufreq();

3186 3187
	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3188 3189 3190
	if (err) {
		pr_err("prcmu: Failed to add subdevices\n");
		return err;
3191
	}
L
Linus Walleij 已提交
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	/* TODO: Remove restriction when clk definitions are available. */
	if (!of_machine_is_compatible("st-ericsson,u8540")) {
		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
				      db8500_irq_domain);
		if (err) {
			mfd_remove_devices(&pdev->dev);
			pr_err("prcmu: Failed to add subdevices\n");
			goto no_irq_return;
		}
	}

3205 3206 3207 3208 3209 3210 3211 3212
	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
					   pdata->ab_irq);
	if (err) {
		mfd_remove_devices(&pdev->dev);
		pr_err("prcmu: Failed to add ab8500 subdevice\n");
		goto no_irq_return;
	}

3213
	pr_info("DB8500 PRCMU initialized\n");
3214 3215 3216 3217

no_irq_return:
	return err;
}
3218 3219 3220 3221
static const struct of_device_id db8500_prcmu_match[] = {
	{ .compatible = "stericsson,db8500-prcmu"},
	{ },
};
3222 3223 3224 3225 3226

static struct platform_driver db8500_prcmu_driver = {
	.driver = {
		.name = "db8500-prcmu",
		.owner = THIS_MODULE,
3227
		.of_match_table = db8500_prcmu_match,
3228
	},
3229
	.probe = db8500_prcmu_probe,
3230 3231 3232 3233
};

static int __init db8500_prcmu_init(void)
{
3234
	return platform_driver_register(&db8500_prcmu_driver);
L
Linus Walleij 已提交
3235 3236
}

3237
core_initcall(db8500_prcmu_init);
3238 3239 3240 3241

MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
MODULE_LICENSE("GPL v2");