xc5000.c 34.3 KB
Newer Older
1 2 3 4
/*
 *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
 *
 *  Copyright (c) 2007 Xceive Corporation
5
 *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6
 *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
26
#include <linux/videodev2.h>
27 28 29 30 31 32 33
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "xc5000.h"
34
#include "tuner-i2c.h"
35 36 37 38 39

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

40 41 42 43 44 45
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
	"\t\t1 keep device energized and with tuner ready all the times.\n"
	"\t\tFaster, but consumes more power and keeps the device hotter");

46 47 48
static DEFINE_MUTEX(xc5000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);

49
#define dprintk(level, fmt, arg...) if (debug >= level) \
50 51
	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)

52
struct xc5000_priv {
53 54
	struct tuner_i2c_props i2c_props;
	struct list_head hybrid_tuner_instance_list;
55

56
	u32 if_khz;
57
	u16 xtal_khz;
58 59 60 61
	u32 freq_hz;
	u32 bandwidth;
	u8  video_standard;
	u8  rf_mode;
62
	u8  radio_input;
63

64
	int chip_id;
65
	u16 pll_register_no;
66 67
	u8 init_status_supported;
	u8 fw_checksum_supported;
68 69
};

70
/* Misc Defines */
71
#define MAX_TV_STANDARD			24
72 73 74 75 76 77 78 79 80 81 82 83 84
#define XC_MAX_I2C_WRITE_LENGTH		64

/* Signal Types */
#define XC_RF_MODE_AIR			0
#define XC_RF_MODE_CABLE		1

/* Result codes */
#define XC_RESULT_SUCCESS		0
#define XC_RESULT_RESET_FAILURE		1
#define XC_RESULT_I2C_WRITE_FAILURE	2
#define XC_RESULT_I2C_READ_FAILURE	3
#define XC_RESULT_OUT_OF_RANGE		5

85 86 87 88
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
#define XC_PRODUCT_ID_FW_LOADED 	0x1388

89 90 91 92 93 94 95 96
/* Registers */
#define XREG_INIT         0x00
#define XREG_VIDEO_MODE   0x01
#define XREG_AUDIO_MODE   0x02
#define XREG_RF_FREQ      0x03
#define XREG_D_CODE       0x04
#define XREG_IF_OUT       0x05
#define XREG_SEEK_MODE    0x07
97
#define XREG_POWER_DOWN   0x0A /* Obsolete */
98 99
/* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
#define XREG_OUTPUT_AMP   0x0B
100 101 102
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_XTALFREQ     0x0F
103
#define XREG_FINERFREQ    0x10
104 105 106 107 108 109 110 111 112 113 114 115
#define XREG_DDIMODE      0x11

#define XREG_ADC_ENV      0x00
#define XREG_QUALITY      0x01
#define XREG_FRAME_LINES  0x02
#define XREG_HSYNC_FREQ   0x03
#define XREG_LOCK         0x04
#define XREG_FREQ_ERROR   0x05
#define XREG_SNR          0x06
#define XREG_VERSION      0x07
#define XREG_PRODUCT_ID   0x08
#define XREG_BUSY         0x09
116
#define XREG_BUILD        0x0D
117
#define XREG_TOTALGAIN    0x0F
118 119
#define XREG_FW_CHECKSUM  0x12
#define XREG_INIT_STATUS  0x13
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

/*
   Basic firmware description. This will remain with
   the driver for documentation purposes.

   This represents an I2C firmware file encoded as a
   string of unsigned char. Format is as follows:

   char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
   char[1  ]=len0_LSB  -> length of first write transaction
   char[2  ]=data0 -> first byte to be sent
   char[3  ]=data1
   char[4  ]=data2
   char[   ]=...
   char[M  ]=dataN  -> last byte to be sent
   char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
   char[M+2]=len1_LSB  -> length of second write transaction
   char[M+3]=data0
   char[M+4]=data1
   ...
   etc.

   The [len] value should be interpreted as follows:

   len= len_MSB _ len_LSB
   len=1111_1111_1111_1111   : End of I2C_SEQUENCE
   len=0000_0000_0000_0000   : Reset command: Do hardware reset
   len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
   len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms

   For the RESET and WAIT commands, the two following bytes will contain
   immediately the length of the following transaction.

*/
154
struct XC_TV_STANDARD {
155
	char *Name;
156 157
	u16 AudioMode;
	u16 VideoMode;
158
};
159 160

/* Tuner standards */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define MN_NTSC_PAL_BTSC	0
#define MN_NTSC_PAL_A2		1
#define MN_NTSC_PAL_EIAJ	2
#define MN_NTSC_PAL_Mono	3
#define BG_PAL_A2		4
#define BG_PAL_NICAM		5
#define BG_PAL_MONO		6
#define I_PAL_NICAM		7
#define I_PAL_NICAM_MONO	8
#define DK_PAL_A2		9
#define DK_PAL_NICAM		10
#define DK_PAL_MONO		11
#define DK_SECAM_A2DK1		12
#define DK_SECAM_A2LDK3 	13
#define DK_SECAM_A2MONO 	14
#define L_SECAM_NICAM		15
#define LC_SECAM_NICAM		16
#define DTV6			17
#define DTV8			18
#define DTV7_8			19
#define DTV7			20
#define FM_Radio_INPUT2 	21
#define FM_Radio_INPUT1 	22
184
#define FM_Radio_INPUT1_MONO	23
185

186
static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
187 188 189 190 191 192 193 194 195 196 197 198 199
	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
	{"B/G-PAL-A2",        0x0A00, 0x8049},
	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
	{"B/G-PAL-MONO",      0x0878, 0x8059},
	{"I-PAL-NICAM",       0x1080, 0x8009},
	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
	{"D/K-PAL-A2",        0x1600, 0x8009},
	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
	{"D/K-PAL-MONO",      0x1478, 0x8009},
	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
200
	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
201 202 203 204 205 206 207 208
	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
	{"L-SECAM-NICAM",     0x8E82, 0x0009},
	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
	{"DTV6",              0x00C0, 0x8002},
	{"DTV8",              0x00C0, 0x800B},
	{"DTV7/8",            0x00C0, 0x801B},
	{"DTV7",              0x00C0, 0x8007},
	{"FM Radio-INPUT2",   0x9802, 0x9002},
209 210
	{"FM Radio-INPUT1",   0x0208, 0x9002},
	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
211 212
};

213 214 215 216

struct xc5000_fw_cfg {
	char *name;
	u16 size;
217
	u16 pll_reg;
218 219
	u8 init_status_supported;
	u8 fw_checksum_supported;
220 221
};

222
#define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
223
static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
224
	.name = XC5000A_FIRMWARE,
225
	.size = 12401,
226
	.pll_reg = 0x806c,
227 228
};

229
#define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
230
static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
231
	.name = XC5000C_FIRMWARE,
232
	.size = 16497,
233
	.pll_reg = 0x13,
234 235
	.init_status_supported = 1,
	.fw_checksum_supported = 1,
236 237
};

238
static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
239
{
240
	switch (chip_id) {
241
	default:
242
	case XC5000A:
243
		return &xc5000a_1_6_114;
244
	case XC5000C:
245
		return &xc5000c_41_024_5;
246 247 248
	}
}

249
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
250
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
251
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
252
static int xc5000_TunerReset(struct dvb_frontend *fe);
253

254
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
255
{
256 257 258 259 260 261 262 263
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
			       .flags = 0, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
		return XC_RESULT_I2C_WRITE_FAILURE;
	}
	return XC_RESULT_SUCCESS;
264 265
}

266
#if 0
267 268 269
/* This routine is never used because the only time we read data from the
   i2c bus is when we read registers, and we want that to be an atomic i2c
   transaction in case we are on a multi-master bus */
270
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
271
{
272 273 274 275 276 277 278 279
	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
		.flags = I2C_M_RD, .buf = buf, .len = len };

	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
		return -EREMOTEIO;
	}
	return 0;
280
}
281
#endif
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
{
	u8 buf[2] = { reg >> 8, reg & 0xff };
	u8 bval[2] = { 0, 0 };
	struct i2c_msg msg[2] = {
		{ .addr = priv->i2c_props.addr,
			.flags = 0, .buf = &buf[0], .len = 2 },
		{ .addr = priv->i2c_props.addr,
			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
	};

	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
		printk(KERN_WARNING "xc5000: I2C read failed\n");
		return -EREMOTEIO;
	}

	*val = (bval[0] << 8) | bval[1];
	return XC_RESULT_SUCCESS;
}

303
static void xc_wait(int wait_ms)
304
{
305
	msleep(wait_ms);
306 307
}

308
static int xc5000_TunerReset(struct dvb_frontend *fe)
309 310 311 312
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;

313
	dprintk(1, "%s()\n", __func__);
314

315 316
	if (fe->callback) {
		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
317 318
					   fe->dvb->priv :
					   priv->i2c_props.adap->algo_data,
319
					   DVB_FRONTEND_COMPONENT_TUNER,
320
					   XC5000_TUNER_RESET, 0);
321
		if (ret) {
322
			printk(KERN_ERR "xc5000: reset failed\n");
323 324 325
			return XC_RESULT_RESET_FAILURE;
		}
	} else {
326
		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
327 328 329
		return XC_RESULT_RESET_FAILURE;
	}
	return XC_RESULT_SUCCESS;
330 331
}

332
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
333
{
334
	u8 buf[4];
335
	int WatchDogTimer = 100;
336 337 338 339 340 341 342
	int result;

	buf[0] = (regAddr >> 8) & 0xFF;
	buf[1] = regAddr & 0xFF;
	buf[2] = (i2cData >> 8) & 0xFF;
	buf[3] = i2cData & 0xFF;
	result = xc_send_i2c_data(priv, buf, 4);
343
	if (result == XC_RESULT_SUCCESS) {
344 345
		/* wait for busy flag to clear */
		while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
346
			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
347
			if (result == XC_RESULT_SUCCESS) {
348 349
				if ((buf[0] == 0) && (buf[1] == 0)) {
					/* busy flag cleared */
350
					break;
351 352 353
				} else {
					xc_wait(5); /* wait 5 ms */
					WatchDogTimer--;
354 355 356 357
				}
			}
		}
	}
358
	if (WatchDogTimer <= 0)
359 360 361 362 363
		result = XC_RESULT_I2C_WRITE_FAILURE;

	return result;
}

364
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
365 366 367 368 369
{
	struct xc5000_priv *priv = fe->tuner_priv;

	int i, nbytes_to_send, result;
	unsigned int len, pos, index;
370
	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
371

372 373 374 375
	index = 0;
	while ((i2c_sequence[index] != 0xFF) ||
		(i2c_sequence[index + 1] != 0xFF)) {
		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
376
		if (len == 0x0000) {
377
			/* RESET command */
378
			result = xc5000_TunerReset(fe);
379
			index += 2;
380
			if (result != XC_RESULT_SUCCESS)
381 382 383 384 385 386 387 388 389 390 391 392 393 394
				return result;
		} else if (len & 0x8000) {
			/* WAIT command */
			xc_wait(len & 0x7FFF);
			index += 2;
		} else {
			/* Send i2c data whilst ensuring individual transactions
			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
			 */
			index += 2;
			buf[0] = i2c_sequence[index];
			buf[1] = i2c_sequence[index + 1];
			pos = 2;
			while (pos < len) {
395 396 397 398
				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
					nbytes_to_send =
						XC_MAX_I2C_WRITE_LENGTH;
				else
399
					nbytes_to_send = (len - pos + 2);
400 401 402
				for (i = 2; i < nbytes_to_send; i++) {
					buf[i] = i2c_sequence[index + pos +
						i - 2];
403
				}
404 405
				result = xc_send_i2c_data(priv, buf,
					nbytes_to_send);
406

407
				if (result != XC_RESULT_SUCCESS)
408 409 410 411 412 413 414 415 416 417
					return result;

				pos += nbytes_to_send - 2;
			}
			index += len;
		}
	}
	return XC_RESULT_SUCCESS;
}

418
static int xc_initialize(struct xc5000_priv *priv)
419
{
420
	dprintk(1, "%s()\n", __func__);
421 422 423
	return xc_write_reg(priv, XREG_INIT, 0);
}

424 425
static int xc_SetTVStandard(struct xc5000_priv *priv,
	u16 VideoMode, u16 AudioMode)
426 427
{
	int ret;
428
	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
429
	dprintk(1, "%s() Standard = %s\n",
430
		__func__,
431 432 433 434 435 436 437 438 439
		XC5000_Standard[priv->video_standard].Name);

	ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
	if (ret == XC_RESULT_SUCCESS)
		ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);

	return ret;
}

440
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
441
{
442
	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
443 444
		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");

445
	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
446 447 448
		rf_mode = XC_RF_MODE_CABLE;
		printk(KERN_ERR
			"%s(), Invalid mode, defaulting to CABLE",
449
			__func__);
450 451 452 453
	}
	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}

454
static const struct dvb_tuner_ops xc5000_tuner_ops;
455

456 457 458
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
{
	u16 freq_code;
459

460
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
461

462 463
	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
		(freq_hz < xc5000_tuner_ops.info.frequency_min))
464 465
		return XC_RESULT_OUT_OF_RANGE;

466 467
	freq_code = (u16)(freq_hz / 15625);

468 469 470 471
	/* Starting in firmware version 1.1.44, Xceive recommends using the
	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
	   only be used for fast scanning for channel lock) */
	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
472 473 474
}


475 476 477 478
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
{
	u32 freq_code = (freq_khz * 1024)/1000;
	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
479
		__func__, freq_khz, freq_code);
480

481
	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
482 483 484
}


485
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
486
{
487
	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
488 489
}

490
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
491 492
{
	int result;
493
	u16 regData;
494 495
	u32 tmp;

496
	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
497
	if (result != XC_RESULT_SUCCESS)
498 499 500
		return result;

	tmp = (u32)regData;
501
	(*freq_error_hz) = (tmp * 15625) / 1000;
502 503 504
	return result;
}

505
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
506
{
507
	return xc5000_readreg(priv, XREG_LOCK, lock_status);
508 509
}

510 511 512
static int xc_get_version(struct xc5000_priv *priv,
	u8 *hw_majorversion, u8 *hw_minorversion,
	u8 *fw_majorversion, u8 *fw_minorversion)
513
{
514
	u16 data;
515 516
	int result;

517
	result = xc5000_readreg(priv, XREG_VERSION, &data);
518
	if (result != XC_RESULT_SUCCESS)
519 520
		return result;

521 522 523 524
	(*hw_majorversion) = (data >> 12) & 0x0F;
	(*hw_minorversion) = (data >>  8) & 0x0F;
	(*fw_majorversion) = (data >>  4) & 0x0F;
	(*fw_minorversion) = data & 0x0F;
525 526 527 528

	return 0;
}

529 530 531 532 533
static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
{
	return xc5000_readreg(priv, XREG_BUILD, buildrev);
}

534
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
535
{
536
	u16 regData;
537 538
	int result;

539
	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
540
	if (result != XC_RESULT_SUCCESS)
541 542 543 544 545 546
		return result;

	(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
	return result;
}

547
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
548
{
549
	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
550 551
}

552
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
553
{
554
	return xc5000_readreg(priv, XREG_QUALITY, quality);
555 556
}

557 558 559 560 561 562 563 564 565 566
static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
{
	return xc5000_readreg(priv, XREG_SNR, snr);
}

static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
{
	return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
}

567
static u16 WaitForLock(struct xc5000_priv *priv)
568
{
569
	u16 lockState = 0;
570
	int watchDogCount = 40;
571 572

	while ((lockState == 0) && (watchDogCount > 0)) {
573
		xc_get_lock_status(priv, &lockState);
574
		if (lockState != 1) {
575 576 577 578 579 580 581
			xc_wait(5);
			watchDogCount--;
		}
	}
	return lockState;
}

582 583 584
#define XC_TUNE_ANALOG  0
#define XC_TUNE_DIGITAL 1
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
585 586 587
{
	int found = 0;

588
	dprintk(1, "%s(%u)\n", __func__, freq_hz);
589

590
	if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
591 592
		return 0;

593 594 595 596
	if (mode == XC_TUNE_ANALOG) {
		if (WaitForLock(priv) == 1)
			found = 1;
	}
597 598 599 600

	return found;
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static int xc_set_xtal(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = XC_RESULT_SUCCESS;

	switch (priv->chip_id) {
	default:
	case XC5000A:
		/* 32.000 MHz xtal is default */
		break;
	case XC5000C:
		switch (priv->xtal_khz) {
		default:
		case 32000:
			/* 32.000 MHz xtal is default */
			break;
		case 31875:
			/* 31.875 MHz xtal configuration */
			ret = xc_write_reg(priv, 0x000f, 0x8081);
			break;
		}
		break;
	}
	return ret;
}
626

627
static int xc5000_fwupload(struct dvb_frontend *fe)
628 629 630 631
{
	struct xc5000_priv *priv = fe->tuner_priv;
	const struct firmware *fw;
	int ret;
632 633
	const struct xc5000_fw_cfg *desired_fw =
		xc5000_assign_firmware(priv->chip_id);
634
	priv->pll_register_no = desired_fw->pll_reg;
635 636
	priv->init_status_supported = desired_fw->init_status_supported;
	priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
637

638 639
	/* request the firmware, this will block and timeout */
	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
640
		desired_fw->name);
641

642
	ret = request_firmware(&fw, desired_fw->name,
643
		priv->i2c_props.adap->dev.parent);
644 645 646
	if (ret) {
		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
		ret = XC_RESULT_RESET_FAILURE;
647
		goto out;
648
	} else {
649
		printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
650
		       fw->size);
651 652 653
		ret = XC_RESULT_SUCCESS;
	}

654
	if (fw->size != desired_fw->size) {
655 656 657
		printk(KERN_ERR "xc5000: firmware incorrect size\n");
		ret = XC_RESULT_RESET_FAILURE;
	} else {
658
		printk(KERN_INFO "xc5000: firmware uploading...\n");
659
		ret = xc_load_i2c_sequence(fe,  fw->data);
660 661
		if (XC_RESULT_SUCCESS == ret)
			ret = xc_set_xtal(fe);
662 663 664 665
		if (XC_RESULT_SUCCESS == ret)
			printk(KERN_INFO "xc5000: firmware upload complete...\n");
		else
			printk(KERN_ERR "xc5000: firmware upload failed...\n");
666 667
	}

668
out:
669 670 671 672
	release_firmware(fw);
	return ret;
}

673
static void xc_debug_dump(struct xc5000_priv *priv)
674
{
675 676 677 678 679 680
	u16 adc_envelope;
	u32 freq_error_hz = 0;
	u16 lock_status;
	u32 hsync_freq_hz = 0;
	u16 frame_lines;
	u16 quality;
681 682
	u16 snr;
	u16 totalgain;
683 684
	u8 hw_majorversion = 0, hw_minorversion = 0;
	u8 fw_majorversion = 0, fw_minorversion = 0;
685
	u16 fw_buildversion = 0;
686
	u16 regval;
687 688 689 690 691

	/* Wait for stats to stabilize.
	 * Frame Lines needs two frame times after initial lock
	 * before it is valid.
	 */
692
	xc_wait(100);
693

694 695
	xc_get_ADC_Envelope(priv,  &adc_envelope);
	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
696

697 698
	xc_get_frequency_error(priv, &freq_error_hz);
	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
699

700 701
	xc_get_lock_status(priv,  &lock_status);
	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
702 703 704
		lock_status);

	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
705
		&fw_majorversion, &fw_minorversion);
706
	xc_get_buildversion(priv,  &fw_buildversion);
707
	dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
708
		hw_majorversion, hw_minorversion,
709
		fw_majorversion, fw_minorversion, fw_buildversion);
710

711 712
	xc_get_hsync_freq(priv,  &hsync_freq_hz);
	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
713

714 715
	xc_get_frame_lines(priv,  &frame_lines);
	dprintk(1, "*** Frame lines = %d\n", frame_lines);
716

717
	xc_get_quality(priv,  &quality);
718
	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
719 720 721 722 723 724 725

	xc_get_analogsnr(priv,  &snr);
	dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);

	xc_get_totalgain(priv,  &totalgain);
	dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
		(totalgain % 256) * 100 / 256);
726 727 728 729 730

	if (priv->pll_register_no) {
		xc5000_readreg(priv, priv->pll_register_no, &regval);
		dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
	}
731 732
}

733
static int xc5000_set_params(struct dvb_frontend *fe)
734
{
735
	int ret, b;
736
	struct xc5000_priv *priv = fe->tuner_priv;
737 738 739
	u32 bw = fe->dtv_property_cache.bandwidth_hz;
	u32 freq = fe->dtv_property_cache.frequency;
	u32 delsys  = fe->dtv_property_cache.delivery_system;
740

741
	if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
742 743
		dprintk(1, "Unable to load firmware and init tuner\n");
		return -EINVAL;
744
	}
745

746
	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
747

748 749 750 751 752 753 754 755 756 757 758 759 760
	switch (delsys) {
	case SYS_ATSC:
		dprintk(1, "%s() VSB modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_AIR;
		priv->freq_hz = freq - 1750000;
		priv->video_standard = DTV6;
		break;
	case SYS_DVBC_ANNEX_B:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
		priv->freq_hz = freq - 1750000;
		priv->video_standard = DTV6;
		break;
761 762 763 764 765 766
	case SYS_ISDBT:
		/* All ISDB-T are currently for 6 MHz bw */
		if (!bw)
			bw = 6000000;
		/* fall to OFDM handling */
	case SYS_DMBTH:
767 768
	case SYS_DVBT:
	case SYS_DVBT2:
769
		dprintk(1, "%s() OFDM\n", __func__);
770 771
		switch (bw) {
		case 6000000:
772
			priv->video_standard = DTV6;
773
			priv->freq_hz = freq - 1750000;
774
			break;
775
		case 7000000:
776
			priv->video_standard = DTV7;
777
			priv->freq_hz = freq - 2250000;
778
			break;
779
		case 8000000:
780
			priv->video_standard = DTV8;
781
			priv->freq_hz = freq - 2750000;
782 783 784 785 786
			break;
		default:
			printk(KERN_ERR "xc5000 bandwidth not set!\n");
			return -EINVAL;
		}
787
		priv->rf_mode = XC_RF_MODE_AIR;
788
		break;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	case SYS_DVBC_ANNEX_A:
	case SYS_DVBC_ANNEX_C:
		dprintk(1, "%s() QAM modulation\n", __func__);
		priv->rf_mode = XC_RF_MODE_CABLE;
		if (bw <= 6000000) {
			priv->video_standard = DTV6;
			priv->freq_hz = freq - 1750000;
			b = 6;
		} else if (bw <= 7000000) {
			priv->video_standard = DTV7;
			priv->freq_hz = freq - 2250000;
			b = 7;
		} else {
			priv->video_standard = DTV7_8;
			priv->freq_hz = freq - 2750000;
			b = 8;
805
		}
806 807 808 809 810
		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
			b, bw);
		break;
	default:
		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
811 812 813
		return -EINVAL;
	}

814 815
	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
		__func__, freq, priv->freq_hz);
816

817 818 819 820 821 822 823
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}
824

825
	ret = xc_SetTVStandard(priv,
826 827
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
828 829 830 831 832
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

833
	ret = xc_set_IF_frequency(priv, priv->if_khz);
834 835
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
836
		       priv->if_khz);
837 838 839
		return -EIO;
	}

840 841
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);

842
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
843

844 845
	if (debug)
		xc_debug_dump(priv);
846

847 848
	priv->bandwidth = bw;

849 850 851
	return 0;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret;
	u16 id;

	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
	if (ret == XC_RESULT_SUCCESS) {
		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
			ret = XC_RESULT_RESET_FAILURE;
		else
			ret = XC_RESULT_SUCCESS;
	}

	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
		ret == XC_RESULT_SUCCESS ? "True" : "False", id);
	return ret;
}

871
static int xc5000_set_tv_freq(struct dvb_frontend *fe,
872 873 874
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
875
	u16 pll_lock_status;
876 877 878
	int ret;

	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
879
		__func__, params->frequency);
880

881 882 883 884
	/* Fix me: it could be air. */
	priv->rf_mode = params->mode;
	if (params->mode > XC_RF_MODE_CABLE)
		priv->rf_mode = XC_RF_MODE_CABLE;
885 886 887 888 889 890 891

	/* params->frequency is in units of 62.5khz */
	priv->freq_hz = params->frequency * 62500;

	/* FIX ME: Some video standards may have several possible audio
		   standards. We simply default to one of them here.
	 */
892
	if (params->std & V4L2_STD_MN) {
893 894 895 896 897
		/* default to BTSC audio standard */
		priv->video_standard = MN_NTSC_PAL_BTSC;
		goto tune_channel;
	}

898
	if (params->std & V4L2_STD_PAL_BG) {
899 900 901 902 903
		/* default to NICAM audio standard */
		priv->video_standard = BG_PAL_NICAM;
		goto tune_channel;
	}

904
	if (params->std & V4L2_STD_PAL_I) {
905 906 907 908 909
		/* default to NICAM audio standard */
		priv->video_standard = I_PAL_NICAM;
		goto tune_channel;
	}

910
	if (params->std & V4L2_STD_PAL_DK) {
911 912 913 914 915
		/* default to NICAM audio standard */
		priv->video_standard = DK_PAL_NICAM;
		goto tune_channel;
	}

916
	if (params->std & V4L2_STD_SECAM_DK) {
917 918 919 920 921
		/* default to A2 DK1 audio standard */
		priv->video_standard = DK_SECAM_A2DK1;
		goto tune_channel;
	}

922
	if (params->std & V4L2_STD_SECAM_L) {
923 924 925 926
		priv->video_standard = L_SECAM_NICAM;
		goto tune_channel;
	}

927
	if (params->std & V4L2_STD_SECAM_LC) {
928 929 930 931 932 933 934
		priv->video_standard = LC_SECAM_NICAM;
		goto tune_channel;
	}

tune_channel:
	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
935
		printk(KERN_ERR
936 937 938 939 940 941 942 943 944 945 946 947 948
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

	ret = xc_SetTVStandard(priv,
		XC5000_Standard[priv->video_standard].VideoMode,
		XC5000_Standard[priv->video_standard].AudioMode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

949 950
	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);

951
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
952 953 954 955

	if (debug)
		xc_debug_dump(priv);

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	if (priv->pll_register_no != 0) {
		msleep(20);
		xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
		if (pll_lock_status > 63) {
			/* PLL is unlocked, force reload of the firmware */
			dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
				pll_lock_status);
			if (xc_load_fw_and_init_tuner(fe, 1) != XC_RESULT_SUCCESS) {
				printk(KERN_ERR "xc5000: Unable to reload fw\n");
				return -EREMOTEIO;
			}
			goto tune_channel;
		}
	}

971 972 973
	return 0;
}

974 975 976 977 978
static int xc5000_set_radio_freq(struct dvb_frontend *fe,
	struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;
979
	u8 radio_input;
980 981 982 983

	dprintk(1, "%s() frequency=%d (in units of khz)\n",
		__func__, params->frequency);

984 985 986 987 988 989 990 991 992
	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
		dprintk(1, "%s() radio input not configured\n", __func__);
		return -EINVAL;
	}

	if (priv->radio_input == XC5000_RADIO_FM1)
		radio_input = FM_Radio_INPUT1;
	else if  (priv->radio_input == XC5000_RADIO_FM2)
		radio_input = FM_Radio_INPUT2;
993 994
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		radio_input = FM_Radio_INPUT1_MONO;
995 996 997 998 999 1000
	else {
		dprintk(1, "%s() unknown radio input %d\n", __func__,
			priv->radio_input);
		return -EINVAL;
	}

1001 1002 1003 1004
	priv->freq_hz = params->frequency * 125 / 2;

	priv->rf_mode = XC_RF_MODE_AIR;

1005 1006
	ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
			       XC5000_Standard[radio_input].AudioMode);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
		return -EREMOTEIO;
	}

	ret = xc_SetSignalSource(priv, priv->rf_mode);
	if (ret != XC_RESULT_SUCCESS) {
		printk(KERN_ERR
			"xc5000: xc_SetSignalSource(%d) failed\n",
			priv->rf_mode);
		return -EREMOTEIO;
	}

1021 1022 1023 1024 1025 1026
	if ((priv->radio_input == XC5000_RADIO_FM1) ||
				(priv->radio_input == XC5000_RADIO_FM2))
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);

	return 0;
}

static int xc5000_set_analog_params(struct dvb_frontend *fe,
			     struct analog_parameters *params)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	int ret = -EINVAL;

	if (priv->i2c_props.adap == NULL)
		return -EINVAL;

1041
	if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
1042 1043
		dprintk(1, "Unable to load firmware and init tuner\n");
		return -EINVAL;
1044
	}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	switch (params->mode) {
	case V4L2_TUNER_RADIO:
		ret = xc5000_set_radio_freq(fe, params);
		break;
	case V4L2_TUNER_ANALOG_TV:
	case V4L2_TUNER_DIGITAL_TV:
		ret = xc5000_set_tv_freq(fe, params);
		break;
	}

	return ret;
}


1060 1061 1062
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1063
	dprintk(1, "%s()\n", __func__);
1064
	*freq = priv->freq_hz;
1065 1066 1067
	return 0;
}

1068 1069 1070 1071 1072 1073 1074 1075
static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	dprintk(1, "%s()\n", __func__);
	*freq = priv->if_khz * 1000;
	return 0;
}

1076 1077 1078
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1079
	dprintk(1, "%s()\n", __func__);
1080

1081 1082 1083 1084 1085 1086 1087
	*bw = priv->bandwidth;
	return 0;
}

static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1088
	u16 lock_status = 0;
1089 1090 1091

	xc_get_lock_status(priv, &lock_status);

1092
	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1093 1094 1095 1096 1097 1098

	*status = lock_status;

	return 0;
}

1099
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1100 1101
{
	struct xc5000_priv *priv = fe->tuner_priv;
1102
	int ret = XC_RESULT_SUCCESS;
1103
	u16 pll_lock_status;
1104
	u16 fw_ck;
1105 1106 1107 1108

	if (force || xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {

fw_retry:
1109 1110

		ret = xc5000_fwupload(fe);
1111 1112
		if (ret != XC_RESULT_SUCCESS)
			return ret;
1113

1114 1115
		msleep(20);

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		if (priv->fw_checksum_supported) {
			if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)
			    != XC_RESULT_SUCCESS) {
				dprintk(1, "%s() FW checksum reading failed.\n",
					__func__);
				goto fw_retry;
			}

			if (fw_ck == 0) {
				dprintk(1, "%s() FW checksum failed = 0x%04x\n",
					__func__, fw_ck);
				goto fw_retry;
			}
		}

1131 1132
		/* Start the tuner self-calibration process */
		ret |= xc_initialize(priv);
1133

1134 1135 1136
		if (ret != XC_RESULT_SUCCESS)
			goto fw_retry;

1137 1138 1139 1140 1141 1142
		/* Wait for calibration to complete.
		 * We could continue but XC5000 will clock stretch subsequent
		 * I2C transactions until calibration is complete.  This way we
		 * don't have to rely on clock stretching working.
		 */
		xc_wait(100);
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		if (priv->init_status_supported) {
			if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck) != XC_RESULT_SUCCESS) {
				dprintk(1, "%s() FW failed reading init status.\n",
					__func__);
				goto fw_retry;
			}

			if (fw_ck == 0) {
				dprintk(1, "%s() FW init status failed = 0x%04x\n", __func__, fw_ck);
				goto fw_retry;
			}
		}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		if (priv->pll_register_no) {
			xc5000_readreg(priv, priv->pll_register_no,
				       &pll_lock_status);
			if (pll_lock_status > 63) {
				/* PLL is unlocked, force reload of the firmware */
				printk(KERN_ERR "xc5000: PLL not running after fwload.\n");
				goto fw_retry;
			}
		}

1167 1168 1169
		/* Default to "CABLE" mode */
		ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
	}
1170 1171 1172 1173

	return ret;
}

1174 1175
static int xc5000_sleep(struct dvb_frontend *fe)
{
1176 1177
	int ret;

1178
	dprintk(1, "%s()\n", __func__);
1179

1180 1181 1182 1183
	/* Avoid firmware reload on slow devices */
	if (no_poweroff)
		return 0;

1184 1185 1186 1187
	/* According to Xceive technical support, the "powerdown" register
	   was removed in newer versions of the firmware.  The "supported"
	   way to sleep the tuner is to pull the reset pin low for 10ms */
	ret = xc5000_TunerReset(fe);
1188
	if (ret != XC_RESULT_SUCCESS) {
1189 1190
		printk(KERN_ERR
			"xc5000: %s() unable to shutdown tuner\n",
1191
			__func__);
1192
		return -EREMOTEIO;
1193
	} else
1194
		return XC_RESULT_SUCCESS;
1195 1196
}

1197 1198 1199
static int xc5000_init(struct dvb_frontend *fe)
{
	struct xc5000_priv *priv = fe->tuner_priv;
1200
	dprintk(1, "%s()\n", __func__);
1201

1202
	if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
1203 1204 1205 1206 1207 1208
		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
		return -EREMOTEIO;
	}

	if (debug)
		xc_debug_dump(priv);
1209 1210 1211 1212 1213 1214

	return 0;
}

static int xc5000_release(struct dvb_frontend *fe)
{
1215 1216
	struct xc5000_priv *priv = fe->tuner_priv;

1217
	dprintk(1, "%s()\n", __func__);
1218 1219 1220 1221 1222 1223 1224 1225

	mutex_lock(&xc5000_list_mutex);

	if (priv)
		hybrid_tuner_release_state(priv);

	mutex_unlock(&xc5000_list_mutex);

1226
	fe->tuner_priv = NULL;
1227

1228 1229 1230
	return 0;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
{
	struct xc5000_priv *priv = fe->tuner_priv;
	struct xc5000_config *p = priv_cfg;

	dprintk(1, "%s()\n", __func__);

	if (p->if_khz)
		priv->if_khz = p->if_khz;

	if (p->radio_input)
		priv->radio_input = p->radio_input;

	return 0;
}


1248 1249 1250 1251 1252 1253 1254 1255
static const struct dvb_tuner_ops xc5000_tuner_ops = {
	.info = {
		.name           = "Xceive XC5000",
		.frequency_min  =    1000000,
		.frequency_max  = 1023000000,
		.frequency_step =      50000,
	},

1256 1257 1258
	.release	   = xc5000_release,
	.init		   = xc5000_init,
	.sleep		   = xc5000_sleep,
1259

1260
	.set_config	   = xc5000_set_config,
1261 1262 1263
	.set_params	   = xc5000_set_params,
	.set_analog_params = xc5000_set_analog_params,
	.get_frequency	   = xc5000_get_frequency,
1264
	.get_if_frequency  = xc5000_get_if_frequency,
1265 1266
	.get_bandwidth	   = xc5000_get_bandwidth,
	.get_status	   = xc5000_get_status
1267 1268
};

1269 1270
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
				   struct i2c_adapter *i2c,
1271
				   const struct xc5000_config *cfg)
1272 1273
{
	struct xc5000_priv *priv = NULL;
1274
	int instance;
1275 1276
	u16 id = 0;

1277 1278 1279
	dprintk(1, "%s(%d-%04x)\n", __func__,
		i2c ? i2c_adapter_id(i2c) : -1,
		cfg ? cfg->i2c_address : -1);
1280

1281
	mutex_lock(&xc5000_list_mutex);
1282

1283 1284 1285 1286 1287 1288 1289 1290 1291
	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
					      hybrid_tuner_instance_list,
					      i2c, cfg->i2c_address, "xc5000");
	switch (instance) {
	case 0:
		goto fail;
		break;
	case 1:
		/* new tuner instance */
1292
		priv->bandwidth = 6000000;
1293 1294 1295 1296 1297 1298 1299
		fe->tuner_priv = priv;
		break;
	default:
		/* existing tuner instance */
		fe->tuner_priv = priv;
		break;
	}
1300

1301 1302 1303 1304 1305 1306 1307
	if (priv->if_khz == 0) {
		/* If the IF hasn't been set yet, use the value provided by
		   the caller (occurs in hybrid devices where the analog
		   call to xc5000_attach occurs before the digital side) */
		priv->if_khz = cfg->if_khz;
	}

1308 1309 1310
	if (priv->xtal_khz == 0)
		priv->xtal_khz = cfg->xtal_khz;

1311 1312 1313
	if (priv->radio_input == 0)
		priv->radio_input = cfg->radio_input;

1314
	/* don't override chip id if it's already been set
1315
	   unless explicitly specified */
1316 1317 1318 1319
	if ((priv->chip_id == 0) || (cfg->chip_id))
		/* use default chip id if none specified, set to 0 so
		   it can be overridden if this is a hybrid driver */
		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1320

1321 1322 1323
	/* Check if firmware has been loaded. It is possible that another
	   instance of the driver has loaded the firmware.
	 */
1324
	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1325
		goto fail;
1326

1327
	switch (id) {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	case XC_PRODUCT_ID_FW_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has been loaded previously\n");
		break;
	case XC_PRODUCT_ID_FW_NOT_LOADED:
		printk(KERN_INFO
			"xc5000: Successfully identified at address 0x%02x\n",
			cfg->i2c_address);
		printk(KERN_INFO
			"xc5000: Firmware has not been loaded previously\n");
		break;
	default:
1343 1344 1345
		printk(KERN_ERR
			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
			cfg->i2c_address, id);
1346
		goto fail;
1347 1348
	}

1349 1350
	mutex_unlock(&xc5000_list_mutex);

1351 1352 1353 1354
	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
		sizeof(struct dvb_tuner_ops));

	return fe;
1355 1356 1357 1358 1359
fail:
	mutex_unlock(&xc5000_list_mutex);

	xc5000_release(fe);
	return NULL;
1360 1361 1362 1363
}
EXPORT_SYMBOL(xc5000_attach);

MODULE_AUTHOR("Steven Toth");
1364
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1365
MODULE_LICENSE("GPL");
1366 1367
MODULE_FIRMWARE(XC5000A_FIRMWARE);
MODULE_FIRMWARE(XC5000C_FIRMWARE);