core-book3s.c 56.6 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39 40 41 42 43 44
	/*
	 * The order of the MMCR array is:
	 *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
	 *  - 32-bit, MMCR0, MMCR1, MMCR2
	 */
	unsigned long mmcr[4];
45 46
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 48 49
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50

51
	unsigned int txn_flags;
52
	int n_txn_start;
53 54 55

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
56
	unsigned int			bhrb_users;
57 58 59
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
60
	u64				ic_init;
61
};
62

63
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64

65
static struct power_pmu *ppmu;
66

67
/*
I
Ingo Molnar 已提交
68
 * Normally, to ignore kernel events we set the FCS (freeze counters
69 70 71 72 73
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
74
static unsigned int freeze_events_kernel = MMCR0_FCS;
75

76 77 78 79 80 81 82 83
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
84
#define MMCR0_FC56		0
85
#define MMCR0_PMAO		0
86
#define MMCR0_EBE		0
87
#define MMCR0_BHRBA		0
88 89
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
90 91 92 93 94 95 96 97 98 99 100 101 102

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
103 104 105 106
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
107 108 109 110 111
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

112 113 114 115 116
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

117 118 119 120
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
121
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122
{
123
	return cpuhw->mmcr[0];
124 125
}

126 127
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130
static void pmao_restore_workaround(bool ebb) { }
131 132
#endif /* CONFIG_PPC32 */

133 134
static bool regs_use_siar(struct pt_regs *regs)
{
135 136 137 138 139 140 141 142 143 144
	/*
	 * When we take a performance monitor exception the regs are setup
	 * using perf_read_regs() which overloads some fields, in particular
	 * regs->result to tell us whether to use SIAR.
	 *
	 * However if the regs are from another exception, eg. a syscall, then
	 * they have not been setup using perf_read_regs() and so regs->result
	 * is something random.
	 */
	return ((TRAP(regs) == 0xf00) && regs->result);
145 146
}

147 148 149 150 151 152 153 154 155
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

156
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
157 158 159 160
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
161

162 163 164 165 166 167 168 169
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
170 171
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
172 173 174 175
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
176
	bool sdar_valid;
177

178 179 180 181 182 183 184 185 186
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
187 188
		else if (ppmu->flags & PPMU_NO_SIAR)
			sdsync = MMCRA_SAMPLE_ENABLE;
189 190 191 192 193
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
194

195
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
196
		*addrp = mfspr(SPRN_SDAR);
197 198 199 200

	if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
		is_kernel_addr(mfspr(SPRN_SDAR)))
		*addrp = 0;
201 202
}

203
static bool regs_sihv(struct pt_regs *regs)
204 205 206
{
	unsigned long sihv = MMCRA_SIHV;

207 208 209
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

210 211 212
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

213
	return !!(regs->dsisr & sihv);
214 215
}

216
static bool regs_sipr(struct pt_regs *regs)
217 218 219
{
	unsigned long sipr = MMCRA_SIPR;

220 221 222
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

223 224 225
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

226
	return !!(regs->dsisr & sipr);
227 228
}

229 230 231 232 233 234 235 236 237
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

238 239
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
240
	bool use_siar = regs_use_siar(regs);
241

242
	if (!use_siar)
243 244 245 246 247 248 249 250
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
251
	if (ppmu->flags & PPMU_NO_SIPR) {
252
		unsigned long siar = mfspr(SPRN_SIAR);
253
		if (is_kernel_addr(siar))
254 255 256
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
257

258
	/* PR has priority over HV, so order below is important */
259
	if (regs_sipr(regs))
260
		return PERF_RECORD_MISC_USER;
261 262

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263
		return PERF_RECORD_MISC_HYPERVISOR;
264

265
	return PERF_RECORD_MISC_KERNEL;
266 267 268 269 270
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
271
 * Overload regs->dar to store SIER if we have it.
272 273
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
274 275 276
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
277 278 279 280
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

281
	regs->dsisr = mmcra;
282

283 284
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
303 304
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
305 306
	else if ((ppmu->flags & PPMU_NO_SIAR))
		use_siar = 0;
307 308 309 310
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
311
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 313 314 315
		use_siar = 0;
	else
		use_siar = 1;

316
	regs->result = use_siar;
317 318 319 320 321 322 323 324
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
325
	return (regs->softe & IRQS_DISABLED);
326 327
}

328 329 330 331 332 333 334 335 336 337 338 339
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

340 341 342 343 344 345 346
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
347 348 349 350

	return 1;
}

351 352 353 354 355 356 357 358 359

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
360
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
361 362 363 364 365 366 367 368 369 370

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
371
	perf_sched_cb_inc(event->ctx->pmu);
372 373 374 375
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
376
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
377 378 379 380

	if (!ppmu->bhrb_nr)
		return;

381
	WARN_ON_ONCE(!cpuhw->bhrb_users);
382
	cpuhw->bhrb_users--;
383
	perf_sched_cb_dec(event->ctx->pmu);
384 385 386 387 388 389 390 391 392 393 394 395 396 397

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
398
static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
399
{
400 401 402 403
	if (!ppmu->bhrb_nr)
		return;

	if (sched_in)
404 405
		power_pmu_bhrb_reset();
}
406 407 408 409 410 411 412
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

413 414 415 416 417 418
	if (is_kernel_addr(addr)) {
		if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
			return 0;

		return branch_target(&instr);
	}
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
436 437

/* Processing BHRB entries */
438
static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
439 440 441
{
	u64 val;
	u64 addr;
442
	int r_index, u_index, pred;
443 444 445 446 447

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
448 449 450
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
451
			break;
452
		else {
453 454 455
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

456 457
			if (!addr)
				/* invalid entry */
458 459
				continue;

460 461 462 463 464 465 466 467 468 469
			/*
			 * BHRB rolling buffer could very much contain the kernel
			 * addresses at this point. Check the privileges before
			 * exporting it to userspace (avoid exposure of regions
			 * where we could have speculative execution)
			 */
			if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
				is_kernel_addr(addr))
				continue;

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
487 488

			if (val & BHRB_TARGET) {
489 490 491 492 493 494
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
495

496 497 498 499 500 501 502 503 504 505
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
506
			} else {
507 508
				/* Branches to immediate field 
				   (ie I or B form) */
509
				cpuhw->bhrb_entries[u_index].from = addr;
510 511
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
512 513 514
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
515 516
			u_index++;

517 518 519 520 521 522
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

523 524 525 526 527 528 529
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
530
	return (ppmu->flags & PPMU_ARCH_207S) &&
531
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

549 550 551 552 553
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

587
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
588
{
589 590
	unsigned long mmcr0 = cpuhw->mmcr[0];

591 592 593
	if (!ebb)
		goto out;

594 595
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
596

597 598 599 600 601
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
602 603
	mmcr0 |= current->thread.mmcr0;

604 605 606 607 608
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
609 610 611 612 613 614
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
615 616 617 618 619 620 621 622 623

	/*
	 * Merge the kernel & user values of MMCR2. The semantics we implement
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
	 * but not clear bits. If a task wants to be able to clear bits, ie.
	 * unfreeze counters, it should not set exclude_xxx in its events and
	 * instead manage the MMCR2 entirely by itself.
	 */
	mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
624 625 626
out:
	return mmcr0;
}
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
677
	 * disable to actually prevent the PMU exception from firing.
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
712

713 714
#endif /* CONFIG_PPC64 */

715
static void perf_event_interrupt(struct pt_regs *regs);
716

717
/*
I
Ingo Molnar 已提交
718
 * Read one performance monitor counter (PMC).
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
743
#ifdef CONFIG_PPC64
744 745 746 747 748 749
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
750
#endif /* CONFIG_PPC64 */
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
782
#ifdef CONFIG_PPC64
783 784 785 786 787 788
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
789
#endif /* CONFIG_PPC64 */
790 791 792 793 794
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

795 796 797 798 799 800 801
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

802 803 804 805 806
	if (!ppmu) {
		pr_info("Performance monitor hardware not registered.\n");
		return;
	}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

838
	if (ppmu->flags & PPMU_ARCH_207S) {
839 840 841 842 843 844 845 846 847 848 849 850
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

851 852 853 854
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
855
 * The feasible set is returned in event_id[].
856
 */
857 858
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
859
				   int n_ev)
860
{
861
	unsigned long mask, value, nv;
862 863
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
864
	int i, j;
865 866
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
867

868
	if (n_ev > ppmu->n_counter)
869 870 871 872
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
873
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
874 875
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
876
					       cpuhw->alternatives[i]);
877
			event_id[i] = cpuhw->alternatives[i][0];
878
		}
879
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
880
					 &cpuhw->avalues[i][0]))
881 882 883 884
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
885 886
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
887
		if ((((nv + tadd) ^ value) & mask) != 0 ||
888 889
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
890 891
			break;
		value = nv;
892
		mask |= cpuhw->amasks[i][0];
893 894 895 896 897 898 899 900
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
901
		choice[i] = 0;
902
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
903
						  cpuhw->alternatives[i]);
904
		for (j = 1; j < n_alt[i]; ++j)
905 906 907
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
908 909 910 911 912 913 914 915 916 917 918 919 920 921
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
922
		 * See if any alternative k for event_id i,
923 924 925
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
926 927
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
928
			if ((((nv + tadd) ^ value) & mask) == 0 &&
929 930
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
931 932 933 934 935
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
936
			 * to event_id i-1 and continue enumerating its
937 938 939 940 941 942
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
943 944 945
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
946 947 948 949 950 951
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
952
			mask |= cpuhw->amasks[i][j];
953 954 955 956 957 958 959
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
960
		event_id[i] = cpuhw->alternatives[i][choice[i]];
961 962 963
	return 0;
}

964
/*
965
 * Check if newly-added events have consistent settings for
966
 * exclude_{user,kernel,hv} with each other and any previously
967
 * added events.
968
 */
969
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
970
			  int n_prev, int n_new)
971
{
972 973
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
974
	struct perf_event *event;
975

976 977 978 979 980 981 982 983
	/*
	 * If the PMU we're on supports per event exclude settings then we
	 * don't need to do any of this logic. NB. This assumes no PMU has both
	 * per event exclude and limited PMCs.
	 */
	if (ppmu->flags & PPMU_ARCH_207S)
		return 0;

984 985 986 987
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

988 989 990 991 992 993
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
994
		event = ctrs[i];
995
		if (first) {
996 997 998
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
999
			first = 0;
1000 1001 1002
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
1003
			return -EAGAIN;
1004
		}
1005
	}
1006 1007 1008 1009 1010 1011

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

1012 1013 1014
	return 0;
}

1015 1016 1017 1018 1019 1020 1021 1022 1023
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
M
Michael Ellerman 已提交
1024
	 * number of events to rollback at once.  If we detect a rollback
1025 1026 1027 1028 1029 1030 1031 1032 1033
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

1034
static void power_pmu_read(struct perf_event *event)
1035
{
1036
	s64 val, delta, prev;
1037

P
Peter Zijlstra 已提交
1038 1039 1040
	if (event->hw.state & PERF_HES_STOPPED)
		return;

1041
	if (!event->hw.idx)
1042
		return;
1043 1044 1045 1046 1047 1048 1049

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

1050 1051 1052 1053 1054 1055
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
1056
		prev = local64_read(&event->hw.prev_count);
1057
		barrier();
1058
		val = read_pmc(event->hw.idx);
1059 1060 1061
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
1062
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1063

1064
	local64_add(delta, &event->count);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1081 1082
}

1083 1084 1085
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1086
 * us if `event' is using such a PMC.
1087 1088 1089
 */
static int is_limited_pmc(int pmcnum)
{
1090 1091
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1092 1093
}

1094
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1095 1096
				    unsigned long pmc5, unsigned long pmc6)
{
1097
	struct perf_event *event;
1098 1099 1100 1101
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1102
		event = cpuhw->limited_counter[i];
1103
		if (!event->hw.idx)
1104
			continue;
1105
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1106
		prev = local64_read(&event->hw.prev_count);
1107
		event->hw.idx = 0;
1108 1109 1110
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1111 1112 1113
	}
}

1114
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1115 1116
				  unsigned long pmc5, unsigned long pmc6)
{
1117
	struct perf_event *event;
1118
	u64 val, prev;
1119 1120 1121
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1122
		event = cpuhw->limited_counter[i];
1123 1124
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125 1126 1127
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1128
		perf_event_update_userpage(event);
1129 1130 1131 1132
	}
}

/*
1133
 * Since limited events don't respect the freeze conditions, we
1134
 * have to read them immediately after freezing or unfreezing the
1135 1136
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1137
 * cycles and instructions) between freezing/unfreezing and reading
1138 1139
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1140 1141 1142
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1143
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1154 1155
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1156
	 * events, we first write MMCR0 with the event overflow
1157
	 * interrupt enable bits turned off.
1158 1159 1160
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1161 1162
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1163 1164 1165
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1166
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1167
	else
1168
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1169 1170

	/*
1171
	 * Write the full MMCR0 including the event overflow interrupt
1172 1173 1174 1175
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1176 1177
}

1178
/*
1179 1180
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1181
 */
P
Peter Zijlstra 已提交
1182
static void power_pmu_disable(struct pmu *pmu)
1183
{
1184
	struct cpu_hw_events *cpuhw;
1185
	unsigned long flags, mmcr0, val;
1186

1187 1188
	if (!ppmu)
		return;
1189
	local_irq_save(flags);
1190
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1191

1192
	if (!cpuhw->disabled) {
1193 1194 1195 1196
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1197
			ppc_enable_pmcs();
1198 1199 1200
			cpuhw->pmcs_enabled = 1;
		}

1201
		/*
1202
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1203
		 */
1204
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1205
		val |= MMCR0_FC;
1206 1207
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1208 1209 1210 1211 1212 1213 1214 1215

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();
1216
		isync();
1217

1218 1219 1220 1221 1222 1223 1224
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
1225
			isync();
1226 1227
		}

1228 1229
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1230 1231

		ebb_switch_out(mmcr0);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_PPC64
		/*
		 * These are readable by userspace, may contain kernel
		 * addresses and are not switched by context switch, so clear
		 * them now to avoid leaking anything to userspace in general
		 * including to another process.
		 */
		if (ppmu->flags & PPMU_ARCH_207S) {
			mtspr(SPRN_SDAR, 0);
			mtspr(SPRN_SIAR, 0);
		}
#endif
1245
	}
1246

1247 1248 1249 1250
	local_irq_restore(flags);
}

/*
1251 1252
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1253 1254
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1255
static void power_pmu_enable(struct pmu *pmu)
1256
{
1257 1258
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1259 1260
	unsigned long flags;
	long i;
1261
	unsigned long val, mmcr0;
1262
	s64 left;
1263
	unsigned int hwc_index[MAX_HWEVENTS];
1264 1265
	int n_lim;
	int idx;
1266
	bool ebb;
1267

1268 1269
	if (!ppmu)
		return;
1270
	local_irq_save(flags);
1271

1272
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1273 1274 1275
	if (!cpuhw->disabled)
		goto out;

1276 1277 1278 1279 1280
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1281 1282
	cpuhw->disabled = 0;

1283 1284 1285 1286 1287 1288 1289
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1290
	/*
1291
	 * If we didn't change anything, or only removed events,
1292 1293
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1294
	 * (possibly updated for removal of events).
1295 1296
	 */
	if (!cpuhw->n_added) {
1297
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1298
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1299
		goto out_enable;
1300 1301 1302
	}

	/*
1303
	 * Clear all MMCR settings and recompute them for the new set of events.
1304
	 */
1305 1306
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1307
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1308
			       cpuhw->mmcr, cpuhw->event)) {
1309 1310 1311 1312 1313
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
		/*
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
		 * bits for the first event. We have already checked that all
		 * events have the same value for these bits as the first event.
		 */
		event = cpuhw->event[0];
		if (event->attr.exclude_user)
			cpuhw->mmcr[0] |= MMCR0_FCP;
		if (event->attr.exclude_kernel)
			cpuhw->mmcr[0] |= freeze_events_kernel;
		if (event->attr.exclude_hv)
			cpuhw->mmcr[0] |= MMCR0_FCHV;
	}
1328

1329 1330
	/*
	 * Write the new configuration to MMCR* with the freeze
1331 1332
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1333
	 */
1334
	ppc_set_pmu_inuse(1);
1335
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1336 1337 1338
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);
1339 1340
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1341 1342

	/*
1343
	 * Read off any pre-existing events that need to move
1344 1345
	 * to another PMC.
	 */
1346 1347 1348 1349 1350 1351
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1352 1353 1354 1355
		}
	}

	/*
1356
	 * Initialize the PMCs for all the new and moved events.
1357
	 */
1358
	cpuhw->n_limited = n_lim = 0;
1359 1360 1361
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1362
			continue;
1363 1364
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1365
			cpuhw->limited_counter[n_lim] = event;
1366 1367 1368 1369
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1381
		}
1382

1383
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1384 1385
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1386
		write_pmc(idx, val);
1387

1388
		perf_event_update_userpage(event);
1389
	}
1390
	cpuhw->n_limited = n_lim;
1391
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1392 1393

 out_enable:
1394 1395
	pmao_restore_workaround(ebb);

1396
	mmcr0 = ebb_switch_in(ebb, cpuhw);
1397

1398
	mb();
1399 1400 1401
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1402
	write_mmcr0(cpuhw, mmcr0);
1403

1404 1405 1406 1407 1408 1409 1410 1411
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1412
 out:
1413

1414 1415 1416
	local_irq_restore(flags);
}

1417 1418
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1419
			  unsigned int *flags)
1420 1421
{
	int n = 0;
1422
	struct perf_event *event;
1423

1424
	if (group->pmu->task_ctx_nr == perf_hw_context) {
1425 1426 1427
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1428
		flags[n] = group->hw.event_base;
1429 1430
		events[n++] = group->hw.config;
	}
P
Peter Zijlstra 已提交
1431
	for_each_sibling_event(event, group) {
1432
		if (event->pmu->task_ctx_nr == perf_hw_context &&
1433
		    event->state != PERF_EVENT_STATE_OFF) {
1434 1435
			if (n >= max_count)
				return -1;
1436 1437 1438
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1439 1440 1441 1442 1443 1444
		}
	}
	return n;
}

/*
1445 1446
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1447
 * re-enable the PMU in order to get hw_perf_enable to do the
1448 1449
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1450
static int power_pmu_add(struct perf_event *event, int ef_flags)
1451
{
1452
	struct cpu_hw_events *cpuhw;
1453 1454 1455 1456 1457
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1458
	perf_pmu_disable(event->pmu);
1459 1460

	/*
1461
	 * Add the event to the list (if there is room)
1462 1463
	 * and check whether the total set is still feasible.
	 */
1464
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1465
	n0 = cpuhw->n_events;
1466
	if (n0 >= ppmu->n_counter)
1467
		goto out;
1468 1469 1470
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1471

1472 1473 1474 1475 1476 1477
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1478 1479
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1480 1481
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1482

1483 1484
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1485
	 * skip the schedulability test here, it will be performed
1486 1487
	 * at commit time(->commit_txn) as a whole
	 */
1488
	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1489 1490
		goto nocheck;

1491
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1492
		goto out;
1493
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1494
		goto out;
1495
	event->hw.config = cpuhw->events[n0];
1496 1497

nocheck:
1498 1499
	ebb_event_add(event);

1500
	++cpuhw->n_events;
1501 1502 1503 1504
	++cpuhw->n_added;

	ret = 0;
 out:
1505
	if (has_branch_stack(event)) {
1506
		power_pmu_bhrb_enable(event);
1507 1508 1509
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1510

P
Peter Zijlstra 已提交
1511
	perf_pmu_enable(event->pmu);
1512 1513 1514 1515 1516
	local_irq_restore(flags);
	return ret;
}

/*
1517
 * Remove a event from the PMU.
1518
 */
P
Peter Zijlstra 已提交
1519
static void power_pmu_del(struct perf_event *event, int ef_flags)
1520
{
1521
	struct cpu_hw_events *cpuhw;
1522 1523 1524 1525
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1526
	perf_pmu_disable(event->pmu);
1527

1528 1529
	power_pmu_read(event);

1530
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1531 1532
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1533
			while (++i < cpuhw->n_events) {
1534
				cpuhw->event[i-1] = cpuhw->event[i];
1535 1536 1537
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1538 1539 1540 1541 1542
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1543
			}
1544
			perf_event_update_userpage(event);
1545 1546 1547
			break;
		}
	}
1548
	for (i = 0; i < cpuhw->n_limited; ++i)
1549
		if (event == cpuhw->limited_counter[i])
1550 1551 1552
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1553
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1554 1555 1556 1557
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1558 1559
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1560 1561 1562
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1563 1564 1565
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1566
	perf_pmu_enable(event->pmu);
1567 1568 1569
	local_irq_restore(flags);
}

1570
/*
P
Peter Zijlstra 已提交
1571 1572
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1573
 */
P
Peter Zijlstra 已提交
1574 1575

static void power_pmu_start(struct perf_event *event, int ef_flags)
1576 1577
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1578
	s64 left;
1579
	unsigned long val;
1580

1581
	if (!event->hw.idx || !event->hw.sample_period)
1582
		return;
P
Peter Zijlstra 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1595 1596 1597 1598 1599 1600

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1617
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1618
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1619

1620
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1621 1622 1623
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1624
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1625
	perf_pmu_enable(event->pmu);
1626 1627 1628
	local_irq_restore(flags);
}

1629 1630 1631 1632
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
1633 1634 1635 1636
 *
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 * transactions.
1637
 */
1638
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1639
{
1640
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1641

1642 1643 1644 1645 1646 1647
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */

	cpuhw->txn_flags = txn_flags;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
1648
	perf_pmu_disable(pmu);
1649 1650 1651 1652 1653 1654 1655 1656
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
1657
static void power_pmu_cancel_txn(struct pmu *pmu)
1658
{
1659
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660 1661 1662 1663 1664 1665 1666 1667
	unsigned int txn_flags;

	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	txn_flags = cpuhw->txn_flags;
	cpuhw->txn_flags = 0;
	if (txn_flags & ~PERF_PMU_TXN_ADD)
		return;
1668

P
Peter Zijlstra 已提交
1669
	perf_pmu_enable(pmu);
1670 1671 1672 1673 1674 1675 1676
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
1677
static int power_pmu_commit_txn(struct pmu *pmu)
1678 1679 1680 1681 1682 1683
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
1684

1685
	cpuhw = this_cpu_ptr(&cpu_hw_events);
1686 1687 1688 1689 1690 1691 1692
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */

	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
		cpuhw->txn_flags = 0;
		return 0;
	}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1703
	cpuhw->txn_flags = 0;
P
Peter Zijlstra 已提交
1704
	perf_pmu_enable(pmu);
1705 1706 1707
	return 0;
}

1708
/*
1709
 * Return 1 if we might be able to put event on a limited PMC,
1710
 * or 0 if not.
1711
 * A event can only go on a limited PMC if it counts something
1712 1713 1714
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1715
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1716 1717 1718
				 unsigned int flags)
{
	int n;
1719
	u64 alt[MAX_EVENT_ALTERNATIVES];
1720

1721 1722 1723 1724
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1725 1726 1727 1728 1729 1730
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1731
	 * The requested event_id isn't on a limited PMC already;
1732 1733 1734 1735 1736 1737 1738 1739
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1740
	return n > 0;
1741 1742 1743
}

/*
1744 1745 1746
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1747
 */
1748
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1749
{
1750
	u64 alt[MAX_EVENT_ALTERNATIVES];
1751 1752 1753 1754 1755 1756 1757 1758 1759
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1760 1761
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1762 1763 1764 1765
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1766
 * Release the PMU if this is the last perf_event.
1767
 */
1768
static void hw_perf_event_destroy(struct perf_event *event)
1769
{
1770
	if (!atomic_add_unless(&num_events, -1, 1)) {
1771
		mutex_lock(&pmc_reserve_mutex);
1772
		if (atomic_dec_return(&num_events) == 0)
1773 1774 1775 1776 1777
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1778
/*
1779
 * Translate a generic cache event_id config to a raw event_id code.
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
static bool is_event_blacklisted(u64 ev)
{
	int i;

	for (i=0; i < ppmu->n_blacklist_ev; i++) {
		if (ppmu->blacklist_ev[i] == ev)
			return true;
	}

	return false;
}

1820
static int power_pmu_event_init(struct perf_event *event)
1821
{
1822 1823
	u64 ev;
	unsigned long flags;
1824 1825 1826
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1827
	int n;
1828
	int err;
1829
	struct cpu_hw_events *cpuhw;
1830 1831

	if (!ppmu)
1832 1833
		return -ENOENT;

1834 1835
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1836
		if (!(ppmu->flags & PPMU_ARCH_207S))
1837 1838
			return -EOPNOTSUPP;
	}
1839

1840
	switch (event->attr.type) {
1841
	case PERF_TYPE_HARDWARE:
1842
		ev = event->attr.config;
1843
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1844
			return -EOPNOTSUPP;
1845 1846 1847

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
1848
		ev = ppmu->generic_events[ev];
1849 1850
		break;
	case PERF_TYPE_HW_CACHE:
1851
		err = hw_perf_cache_event(event->attr.config, &ev);
1852
		if (err)
1853
			return err;
1854 1855 1856

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
1857 1858
		break;
	case PERF_TYPE_RAW:
1859
		ev = event->attr.config;
1860 1861 1862

		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
			return -EINVAL;
1863
		break;
1864
	default:
1865
		return -ENOENT;
1866
	}
1867

1868 1869
	event->hw.config_base = ev;
	event->hw.idx = 0;
1870

1871 1872 1873
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1874
	 * the user set it to.
1875 1876
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1877
		event->attr.exclude_hv = 0;
1878 1879

	/*
1880
	 * If this is a per-task event, then we can use
1881 1882 1883 1884 1885
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1886
	if (event->attach_state & PERF_ATTACH_TASK)
1887 1888 1889
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1890 1891
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1892
	 */
1893
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1894
		if (can_go_on_limited_pmc(event, ev, flags)) {
1895 1896 1897
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1898
			 * The requested event_id is on a limited PMC,
1899 1900 1901 1902 1903
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1904
				return -EINVAL;
1905 1906 1907
		}
	}

1908 1909 1910 1911 1912
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1913 1914
	/*
	 * If this is in a group, check if it can go on with all the
1915
	 * other hardware events in the group.  We assume the event
1916 1917 1918
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1919
	if (event->group_leader != event) {
1920
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1921
				   ctrs, events, cflags);
1922
		if (n < 0)
1923
			return -EINVAL;
1924
	}
1925
	events[n] = ev;
1926
	ctrs[n] = event;
1927 1928
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1929
		return -EINVAL;
1930

1931
	cpuhw = &get_cpu_var(cpu_hw_events);
1932
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1933 1934 1935 1936 1937

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

1938 1939
		if (cpuhw->bhrb_filter == -1) {
			put_cpu_var(cpu_hw_events);
1940
			return -EOPNOTSUPP;
1941
		}
1942 1943
	}

1944
	put_cpu_var(cpu_hw_events);
1945
	if (err)
1946
		return -EINVAL;
1947

1948 1949 1950
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1951
	local64_set(&event->hw.period_left, event->hw.last_period);
1952

1953 1954 1955 1956 1957 1958 1959
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1960 1961
	/*
	 * See if we need to reserve the PMU.
1962
	 * If no events are currently in use, then we have to take a
1963 1964 1965 1966
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1967
	if (!atomic_inc_not_zero(&num_events)) {
1968
		mutex_lock(&pmc_reserve_mutex);
1969 1970
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1971 1972
			err = -EBUSY;
		else
1973
			atomic_inc(&num_events);
1974 1975
		mutex_unlock(&pmc_reserve_mutex);
	}
1976
	event->destroy = hw_perf_event_destroy;
1977

1978
	return err;
1979 1980
}

1981 1982 1983 1984 1985
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1996
static struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1997 1998
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1999
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
2000 2001 2002 2003
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
2004 2005 2006 2007
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
2008
	.event_idx	= power_pmu_event_idx,
2009
	.sched_task	= power_pmu_sched_task,
2010 2011
};

2012
/*
I
Ingo Molnar 已提交
2013
 * A counter has overflowed; update its count and record
2014 2015 2016
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
2017
static void record_and_restart(struct perf_event *event, unsigned long val,
2018
			       struct pt_regs *regs)
2019
{
2020
	u64 period = event->hw.sample_period;
2021 2022 2023
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
2024 2025 2026 2027 2028
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

2029
	/* we don't have to worry about interrupts here */
2030
	prev = local64_read(&event->hw.prev_count);
2031
	delta = check_and_compute_delta(prev, val);
2032
	local64_add(delta, &event->count);
2033 2034

	/*
2035
	 * See if the total period for this event has expired,
2036 2037 2038
	 * and update for the next period.
	 */
	val = 0;
2039
	left = local64_read(&event->hw.period_left) - delta;
2040 2041
	if (delta == 0)
		left++;
2042
	if (period) {
2043
		if (left <= 0) {
2044
			left += period;
2045
			if (left <= 0)
2046
				left = period;
2047
			record = siar_valid(regs);
2048
			event->hw.last_period = event->hw.sample_period;
2049
		}
2050 2051
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
2052 2053
	}

P
Peter Zijlstra 已提交
2054 2055 2056 2057 2058
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

2059 2060 2061
	/*
	 * Finally record data if requested.
	 */
2062
	if (record) {
2063 2064
		struct perf_sample_data data;

2065
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2066

2067 2068
		if (event->attr.sample_type &
		    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2069 2070
			perf_get_data_addr(regs, &data.addr);

2071 2072
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
2073
			cpuhw = this_cpu_ptr(&cpu_hw_events);
2074 2075 2076 2077
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

2078 2079 2080 2081
		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
						ppmu->get_mem_data_src)
			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);

2082 2083 2084 2085
		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
						ppmu->get_mem_weight)
			ppmu->get_mem_weight(&data.weight);

2086
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
2087
			power_pmu_stop(event, 0);
2088 2089 2090 2091 2092
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
2093
 * for an event_id.
2094 2095 2096
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
2097
	u32 flags = perf_get_misc_flags(regs);
2098

2099 2100
	if (flags)
		return flags;
2101 2102
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
2103 2104 2105 2106
}

/*
 * Called from generic code to get the instruction pointer
2107
 * for an event_id.
2108 2109 2110
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2111
	bool use_siar = regs_use_siar(regs);
2112

2113
	if (use_siar && siar_valid(regs))
2114
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2115 2116
	else if (use_siar)
		return 0;		// no valid instruction pointer
2117
	else
2118
		return regs->nip;
2119 2120
}

2121
static bool pmc_overflow_power7(unsigned long val)
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
2134 2135 2136 2137 2138 2139 2140 2141 2142
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2143 2144 2145 2146 2147
		return true;

	return false;
}

2148 2149 2150
/*
 * Performance monitor interrupt stuff
 */
2151
static void perf_event_interrupt(struct pt_regs *regs)
2152
{
2153
	int i, j;
2154
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2155
	struct perf_event *event;
2156 2157
	unsigned long val[8];
	int found, active;
2158 2159
	int nmi;

2160
	if (cpuhw->n_limited)
2161
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2162 2163
					mfspr(SPRN_PMC6));

2164
	perf_read_regs(regs);
2165

2166
	nmi = perf_intr_is_nmi(regs);
2167 2168 2169 2170
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2171

2172 2173 2174 2175 2176 2177 2178 2179
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2180
			continue;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2197
		}
2198 2199 2200
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2201
	}
2202 2203 2204 2205 2206
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2207
				continue;
2208 2209 2210 2211 2212 2213 2214
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2215 2216
		}
	}
2217
	if (!found && !nmi && printk_ratelimit())
2218
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2219 2220 2221

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2222
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2223
	 * and thus allow interrupts to occur again.
2224
	 * XXX might want to use MSR.PM to keep the events frozen until
2225 2226
	 * we get back out of this interrupt.
	 */
2227
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2228

2229 2230 2231
	if (nmi)
		nmi_exit();
	else
2232
		irq_exit();
2233 2234
}

2235
static int power_pmu_prepare_cpu(unsigned int cpu)
2236
{
2237
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2238

2239 2240 2241
	if (ppmu) {
		memset(cpuhw, 0, sizeof(*cpuhw));
		cpuhw->mmcr[0] = MMCR0_FC;
2242
	}
2243
	return 0;
2244 2245
}

2246
int register_power_pmu(struct power_pmu *pmu)
2247
{
2248 2249 2250 2251 2252 2253
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2254

2255 2256
	power_pmu.attr_groups = ppmu->attr_groups;

2257
#ifdef MSR_HV
2258 2259 2260 2261
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2262
		freeze_events_kernel = MMCR0_FCHV;
2263
#endif /* CONFIG_PPC64 */
2264

P
Peter Zijlstra 已提交
2265
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
T
Thomas Gleixner 已提交
2266
	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2267
			  power_pmu_prepare_cpu, NULL);
2268 2269
	return 0;
}