core-book3s.c 53.0 KB
Newer Older
1
/*
2
 * Performance event support - powerpc architecture code
3 4 5 6 7 8 9 10 11 12
 *
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/sched.h>
13
#include <linux/perf_event.h>
14 15
#include <linux/percpu.h>
#include <linux/hardirq.h>
16
#include <linux/uaccess.h>
17 18
#include <asm/reg.h>
#include <asm/pmc.h>
19
#include <asm/machdep.h>
20
#include <asm/firmware.h>
21
#include <asm/ptrace.h>
22
#include <asm/code-patching.h>
23

24 25 26
#define BHRB_MAX_ENTRIES	32
#define BHRB_TARGET		0x0000000000000002
#define BHRB_PREDICTION		0x0000000000000001
27
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
28

29 30
struct cpu_hw_events {
	int n_events;
31 32 33
	int n_percpu;
	int disabled;
	int n_added;
34 35
	int n_limited;
	u8  pmcs_enabled;
36 37 38
	struct perf_event *event[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int flags[MAX_HWEVENTS];
39
	unsigned long mmcr[3];
40 41
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
42 43 44
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
45 46 47

	unsigned int group_flag;
	int n_txn_start;
48 49 50 51 52 53 54

	/* BHRB bits */
	u64				bhrb_filter;	/* BHRB HW branch filter */
	int				bhrb_users;
	void				*bhrb_context;
	struct	perf_branch_stack	bhrb_stack;
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
55
};
56

57
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
58 59 60

struct power_pmu *ppmu;

61
/*
I
Ingo Molnar 已提交
62
 * Normally, to ignore kernel events we set the FCS (freeze counters
63 64 65 66 67
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 * hypervisor bit set in the MSR, or if we are running on a processor
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 * then we need to use the FCHV bit to ignore kernel events.
 */
68
static unsigned int freeze_events_kernel = MMCR0_FCS;
69

70 71 72 73 74 75 76 77
/*
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 * and a few other names are different.
 */
#ifdef CONFIG_PPC32

#define MMCR0_FCHV		0
#define MMCR0_PMCjCE		MMCR0_PMCnCE
78
#define MMCR0_FC56		0
79
#define MMCR0_PMAO		0
80
#define MMCR0_EBE		0
81
#define MMCR0_BHRBA		0
82 83
#define MMCR0_PMCC		0
#define MMCR0_PMCC_U6		0
84 85 86 87 88 89 90 91 92 93 94 95 96

#define SPRN_MMCRA		SPRN_MMCR2
#define MMCRA_SAMPLE_ENABLE	0

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	return 0;
}
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
	return 0;
}
97 98 99 100
static inline void perf_read_regs(struct pt_regs *regs)
{
	regs->result = 0;
}
101 102 103 104 105
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return 0;
}

106 107 108 109 110
static inline int siar_valid(struct pt_regs *regs)
{
	return 1;
}

111 112 113 114 115 116 117 118 119
static bool is_ebb_event(struct perf_event *event) { return false; }
static int ebb_event_check(struct perf_event *event) { return 0; }
static void ebb_event_add(struct perf_event *event) { }
static void ebb_switch_out(unsigned long mmcr0) { }
static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	return mmcr0;
}

120 121 122 123
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
void power_pmu_flush_branch_stack(void) {}
static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
124
static void pmao_restore_workaround(bool ebb) { }
125 126
#endif /* CONFIG_PPC32 */

127 128
static bool regs_use_siar(struct pt_regs *regs)
{
129
	return !!regs->result;
130 131
}

132 133 134 135 136 137 138 139 140
/*
 * Things that are specific to 64-bit implementations.
 */
#ifdef CONFIG_PPC64

static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;

141
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
142 143 144 145
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
		if (slot > 1)
			return 4 * (slot - 1);
	}
146

147 148 149 150 151 152 153 154
	return 0;
}

/*
 * The user wants a data address recorded.
 * If we're not doing instruction sampling, give them the SDAR
 * (sampled data address).  If we are doing instruction sampling, then
 * only give them the SDAR if it corresponds to the instruction
155 156
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
157 158 159 160
 */
static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
{
	unsigned long mmcra = regs->dsisr;
161
	bool sdar_valid;
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176
	if (ppmu->flags & PPMU_HAS_SIER)
		sdar_valid = regs->dar & SIER_SDAR_VALID;
	else {
		unsigned long sdsync;

		if (ppmu->flags & PPMU_SIAR_VALID)
			sdsync = POWER7P_MMCRA_SDAR_VALID;
		else if (ppmu->flags & PPMU_ALT_SIPR)
			sdsync = POWER6_MMCRA_SDSYNC;
		else
			sdsync = MMCRA_SDSYNC;

		sdar_valid = mmcra & sdsync;
	}
177

178
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
179 180 181
		*addrp = mfspr(SPRN_SDAR);
}

182
static bool regs_sihv(struct pt_regs *regs)
183 184 185
{
	unsigned long sihv = MMCRA_SIHV;

186 187 188
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIHV);

189 190 191
	if (ppmu->flags & PPMU_ALT_SIPR)
		sihv = POWER6_MMCRA_SIHV;

192
	return !!(regs->dsisr & sihv);
193 194
}

195
static bool regs_sipr(struct pt_regs *regs)
196 197 198
{
	unsigned long sipr = MMCRA_SIPR;

199 200 201
	if (ppmu->flags & PPMU_HAS_SIER)
		return !!(regs->dar & SIER_SIPR);

202 203 204
	if (ppmu->flags & PPMU_ALT_SIPR)
		sipr = POWER6_MMCRA_SIPR;

205
	return !!(regs->dsisr & sipr);
206 207
}

208 209 210 211 212 213 214 215 216
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
{
	if (regs->msr & MSR_PR)
		return PERF_RECORD_MISC_USER;
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
		return PERF_RECORD_MISC_HYPERVISOR;
	return PERF_RECORD_MISC_KERNEL;
}

217 218
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
{
219
	bool use_siar = regs_use_siar(regs);
220

221
	if (!use_siar)
222 223 224 225 226 227 228 229
		return perf_flags_from_msr(regs);

	/*
	 * If we don't have flags in MMCRA, rather than using
	 * the MSR, we intuit the flags from the address in
	 * SIAR which should give slightly more reliable
	 * results
	 */
230
	if (ppmu->flags & PPMU_NO_SIPR) {
231 232 233 234 235
		unsigned long siar = mfspr(SPRN_SIAR);
		if (siar >= PAGE_OFFSET)
			return PERF_RECORD_MISC_KERNEL;
		return PERF_RECORD_MISC_USER;
	}
236

237
	/* PR has priority over HV, so order below is important */
238
	if (regs_sipr(regs))
239
		return PERF_RECORD_MISC_USER;
240 241

	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
242
		return PERF_RECORD_MISC_HYPERVISOR;
243

244
	return PERF_RECORD_MISC_KERNEL;
245 246 247 248 249
}

/*
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 * on each interrupt.
250
 * Overload regs->dar to store SIER if we have it.
251 252
 * Overload regs->result to specify whether we should use the MSR (result
 * is zero) or the SIAR (result is non zero).
253 254 255
 */
static inline void perf_read_regs(struct pt_regs *regs)
{
256 257 258 259
	unsigned long mmcra = mfspr(SPRN_MMCRA);
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
	int use_siar;

260
	regs->dsisr = mmcra;
261

262 263
	if (ppmu->flags & PPMU_HAS_SIER)
		regs->dar = mfspr(SPRN_SIER);
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	/*
	 * If this isn't a PMU exception (eg a software event) the SIAR is
	 * not valid. Use pt_regs.
	 *
	 * If it is a marked event use the SIAR.
	 *
	 * If the PMU doesn't update the SIAR for non marked events use
	 * pt_regs.
	 *
	 * If the PMU has HV/PR flags then check to see if they
	 * place the exception in userspace. If so, use pt_regs. In
	 * continuous sampling mode the SIAR and the PMU exception are
	 * not synchronised, so they may be many instructions apart.
	 * This can result in confusing backtraces. We still want
	 * hypervisor samples as well as samples in the kernel with
	 * interrupts off hence the userspace check.
	 */
282 283
	if (TRAP(regs) != 0xf00)
		use_siar = 0;
284 285 286 287
	else if (marked)
		use_siar = 1;
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
		use_siar = 0;
288
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
289 290 291 292
		use_siar = 0;
	else
		use_siar = 1;

293
	regs->result = use_siar;
294 295 296 297 298 299 300 301 302 303 304
}

/*
 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 * it as an NMI.
 */
static inline int perf_intr_is_nmi(struct pt_regs *regs)
{
	return !regs->softe;
}

305 306 307 308 309 310 311 312 313 314 315 316
/*
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 * must be sampled only if the SIAR-valid bit is set.
 *
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 * bit, assume that SIAR is valid.
 */
static inline int siar_valid(struct pt_regs *regs)
{
	unsigned long mmcra = regs->dsisr;
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;

317 318 319 320 321 322 323
	if (marked) {
		if (ppmu->flags & PPMU_HAS_SIER)
			return regs->dar & SIER_SIAR_VALID;

		if (ppmu->flags & PPMU_SIAR_VALID)
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
	}
324 325 326 327

	return 1;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

/* Reset all possible BHRB entries */
static void power_pmu_bhrb_reset(void)
{
	asm volatile(PPC_CLRBHRB);
}

static void power_pmu_bhrb_enable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	/* Clear BHRB if we changed task context to avoid data leaks */
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
		power_pmu_bhrb_reset();
		cpuhw->bhrb_context = event->ctx;
	}
	cpuhw->bhrb_users++;
}

static void power_pmu_bhrb_disable(struct perf_event *event)
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

	if (!ppmu->bhrb_nr)
		return;

	cpuhw->bhrb_users--;
	WARN_ON_ONCE(cpuhw->bhrb_users < 0);

	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
		/* BHRB cannot be turned off when other
		 * events are active on the PMU.
		 */

		/* avoid stale pointer */
		cpuhw->bhrb_context = NULL;
	}
}

/* Called from ctxsw to prevent one process's branch entries to
 * mingle with the other process's entries during context switch.
 */
void power_pmu_flush_branch_stack(void)
{
	if (ppmu->bhrb_nr)
		power_pmu_bhrb_reset();
}
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
/* Calculate the to address for a branch */
static __u64 power_pmu_bhrb_to(u64 addr)
{
	unsigned int instr;
	int ret;
	__u64 target;

	if (is_kernel_addr(addr))
		return branch_target((unsigned int *)addr);

	/* Userspace: need copy instruction here then translate it */
	pagefault_disable();
	ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
	if (ret) {
		pagefault_enable();
		return 0;
	}
	pagefault_enable();

	target = branch_target(&instr);
	if ((!target) || (instr & BRANCH_ABSOLUTE))
		return target;

	/* Translate relative branch target from kernel to user address */
	return target - (unsigned long)&instr + addr;
}
404 405

/* Processing BHRB entries */
406
void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
407 408 409
{
	u64 val;
	u64 addr;
410
	int r_index, u_index, pred;
411 412 413 414 415

	r_index = 0;
	u_index = 0;
	while (r_index < ppmu->bhrb_nr) {
		/* Assembly read function */
416 417 418
		val = read_bhrb(r_index++);
		if (!val)
			/* Terminal marker: End of valid BHRB entries */
419
			break;
420
		else {
421 422 423
			addr = val & BHRB_EA;
			pred = val & BHRB_PREDICTION;

424 425
			if (!addr)
				/* invalid entry */
426 427
				continue;

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
			/* Branches are read most recent first (ie. mfbhrb 0 is
			 * the most recent branch).
			 * There are two types of valid entries:
			 * 1) a target entry which is the to address of a
			 *    computed goto like a blr,bctr,btar.  The next
			 *    entry read from the bhrb will be branch
			 *    corresponding to this target (ie. the actual
			 *    blr/bctr/btar instruction).
			 * 2) a from address which is an actual branch.  If a
			 *    target entry proceeds this, then this is the
			 *    matching branch for that target.  If this is not
			 *    following a target entry, then this is a branch
			 *    where the target is given as an immediate field
			 *    in the instruction (ie. an i or b form branch).
			 *    In this case we need to read the instruction from
			 *    memory to determine the target/to address.
			 */
445 446

			if (val & BHRB_TARGET) {
447 448 449 450 451 452
				/* Target branches use two entries
				 * (ie. computed gotos/XL form)
				 */
				cpuhw->bhrb_entries[u_index].to = addr;
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
453

454 455 456 457 458 459 460 461 462 463
				/* Get from address in next entry */
				val = read_bhrb(r_index++);
				addr = val & BHRB_EA;
				if (val & BHRB_TARGET) {
					/* Shouldn't have two targets in a
					   row.. Reset index and try again */
					r_index--;
					addr = 0;
				}
				cpuhw->bhrb_entries[u_index].from = addr;
464
			} else {
465 466
				/* Branches to immediate field 
				   (ie I or B form) */
467
				cpuhw->bhrb_entries[u_index].from = addr;
468 469
				cpuhw->bhrb_entries[u_index].to =
					power_pmu_bhrb_to(addr);
470 471 472
				cpuhw->bhrb_entries[u_index].mispred = pred;
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
			}
473 474
			u_index++;

475 476 477 478 479 480
		}
	}
	cpuhw->bhrb_stack.nr = u_index;
	return;
}

481 482 483 484 485 486 487
static bool is_ebb_event(struct perf_event *event)
{
	/*
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
	 * check that the PMU supports EBB, meaning those that don't can still
	 * use bit 63 of the event code for something else if they wish.
	 */
488
	return (ppmu->flags & PPMU_ARCH_207S) &&
489
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
}

static int ebb_event_check(struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;

	/* Event and group leader must agree on EBB */
	if (is_ebb_event(leader) != is_ebb_event(event))
		return -EINVAL;

	if (is_ebb_event(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			return -EINVAL;

		if (!leader->attr.pinned || !leader->attr.exclusive)
			return -EINVAL;

507 508 509 510 511
		if (event->attr.freq ||
		    event->attr.inherit ||
		    event->attr.sample_type ||
		    event->attr.sample_period ||
		    event->attr.enable_on_exec)
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
			return -EINVAL;
	}

	return 0;
}

static void ebb_event_add(struct perf_event *event)
{
	if (!is_ebb_event(event) || current->thread.used_ebb)
		return;

	/*
	 * IFF this is the first time we've added an EBB event, set
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
	 * userspace. We need this so that we can context switch while
	 * userspace is in the EBB handler (where PMXE is 0).
	 */
	current->thread.used_ebb = 1;
	current->thread.mmcr0 |= MMCR0_PMXE;
}

static void ebb_switch_out(unsigned long mmcr0)
{
	if (!(mmcr0 & MMCR0_EBE))
		return;

	current->thread.siar  = mfspr(SPRN_SIAR);
	current->thread.sier  = mfspr(SPRN_SIER);
	current->thread.sdar  = mfspr(SPRN_SDAR);
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
}

static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
{
	if (!ebb)
		goto out;

550 551
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
552

553 554 555 556 557
	/*
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
	 * with pmao_restore_workaround() because we may add PMAO but we never
	 * clear it here.
	 */
558 559
	mmcr0 |= current->thread.mmcr0;

560 561 562 563 564
	/*
	 * Be careful not to set PMXE if userspace had it cleared. This is also
	 * compatible with pmao_restore_workaround() because it has already
	 * cleared PMXE and we leave PMAO alone.
	 */
565 566 567 568 569 570 571 572 573 574
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
		mmcr0 &= ~MMCR0_PMXE;

	mtspr(SPRN_SIAR, current->thread.siar);
	mtspr(SPRN_SIER, current->thread.sier);
	mtspr(SPRN_SDAR, current->thread.sdar);
	mtspr(SPRN_MMCR2, current->thread.mmcr2);
out:
	return mmcr0;
}
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

static void pmao_restore_workaround(bool ebb)
{
	unsigned pmcs[6];

	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
		return;

	/*
	 * On POWER8E there is a hardware defect which affects the PMU context
	 * switch logic, ie. power_pmu_disable/enable().
	 *
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
	 * by the hardware. Sometime later the actual PMU exception is
	 * delivered.
	 *
	 * If we context switch, or simply disable/enable, the PMU prior to the
	 * exception arriving, the exception will be lost when we clear PMAO.
	 *
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
	 * set, and this _should_ generate an exception. However because of the
	 * defect no exception is generated when we write PMAO, and we get
	 * stuck with no counters counting but no exception delivered.
	 *
	 * The workaround is to detect this case and tweak the hardware to
	 * create another pending PMU exception.
	 *
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
	 * enabling the PMU. That causes a new exception to be generated in the
	 * chip, but we don't take it yet because we have interrupts hard
	 * disabled. We then write back the PMU state as we want it to be seen
	 * by the exception handler. When we reenable interrupts the exception
	 * handler will be called and see the correct state.
	 *
	 * The logic is the same for EBB, except that the exception is gated by
	 * us having interrupts hard disabled as well as the fact that we are
	 * not in userspace. The exception is finally delivered when we return
	 * to userspace.
	 */

	/* Only if PMAO is set and PMAO_SYNC is clear */
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
		return;

	/* If we're doing EBB, only if BESCR[GE] is set */
	if (ebb && !(current->thread.bescr & BESCR_GE))
		return;

	/*
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
	 * enable to actually prevent the PMU exception from firing.
	 */
	hard_irq_disable();

	/*
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
	 * Using read/write_pmc() in a for loop adds 12 function calls and
	 * almost doubles our code size.
	 */
	pmcs[0] = mfspr(SPRN_PMC1);
	pmcs[1] = mfspr(SPRN_PMC2);
	pmcs[2] = mfspr(SPRN_PMC3);
	pmcs[3] = mfspr(SPRN_PMC4);
	pmcs[4] = mfspr(SPRN_PMC5);
	pmcs[5] = mfspr(SPRN_PMC6);

	/* Ensure all freeze bits are unset */
	mtspr(SPRN_MMCR2, 0);

	/* Set up PMC6 to overflow in one cycle */
	mtspr(SPRN_PMC6, 0x7FFFFFFE);

	/* Enable exceptions and unfreeze PMC6 */
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);

	/* Now we need to refreeze and restore the PMCs */
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);

	mtspr(SPRN_PMC1, pmcs[0]);
	mtspr(SPRN_PMC2, pmcs[1]);
	mtspr(SPRN_PMC3, pmcs[2]);
	mtspr(SPRN_PMC4, pmcs[3]);
	mtspr(SPRN_PMC5, pmcs[4]);
	mtspr(SPRN_PMC6, pmcs[5]);
}
660 661
#endif /* CONFIG_PPC64 */

662
static void perf_event_interrupt(struct pt_regs *regs);
663

664
/*
I
Ingo Molnar 已提交
665
 * Read one performance monitor counter (PMC).
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
 */
static unsigned long read_pmc(int idx)
{
	unsigned long val;

	switch (idx) {
	case 1:
		val = mfspr(SPRN_PMC1);
		break;
	case 2:
		val = mfspr(SPRN_PMC2);
		break;
	case 3:
		val = mfspr(SPRN_PMC3);
		break;
	case 4:
		val = mfspr(SPRN_PMC4);
		break;
	case 5:
		val = mfspr(SPRN_PMC5);
		break;
	case 6:
		val = mfspr(SPRN_PMC6);
		break;
690
#ifdef CONFIG_PPC64
691 692 693 694 695 696
	case 7:
		val = mfspr(SPRN_PMC7);
		break;
	case 8:
		val = mfspr(SPRN_PMC8);
		break;
697
#endif /* CONFIG_PPC64 */
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
	default:
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
		val = 0;
	}
	return val;
}

/*
 * Write one PMC.
 */
static void write_pmc(int idx, unsigned long val)
{
	switch (idx) {
	case 1:
		mtspr(SPRN_PMC1, val);
		break;
	case 2:
		mtspr(SPRN_PMC2, val);
		break;
	case 3:
		mtspr(SPRN_PMC3, val);
		break;
	case 4:
		mtspr(SPRN_PMC4, val);
		break;
	case 5:
		mtspr(SPRN_PMC5, val);
		break;
	case 6:
		mtspr(SPRN_PMC6, val);
		break;
729
#ifdef CONFIG_PPC64
730 731 732 733 734 735
	case 7:
		mtspr(SPRN_PMC7, val);
		break;
	case 8:
		mtspr(SPRN_PMC8, val);
		break;
736
#endif /* CONFIG_PPC64 */
737 738 739 740 741
	default:
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
	}
}

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/* Called from sysrq_handle_showregs() */
void perf_event_print_debug(void)
{
	unsigned long sdar, sier, flags;
	u32 pmcs[MAX_HWEVENTS];
	int i;

	if (!ppmu->n_counter)
		return;

	local_irq_save(flags);

	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
		 smp_processor_id(), ppmu->name, ppmu->n_counter);

	for (i = 0; i < ppmu->n_counter; i++)
		pmcs[i] = read_pmc(i + 1);

	for (; i < MAX_HWEVENTS; i++)
		pmcs[i] = 0xdeadbeef;

	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);

	if (ppmu->n_counter > 4)
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);

	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));

	sdar = sier = 0;
#ifdef CONFIG_PPC64
	sdar = mfspr(SPRN_SDAR);

	if (ppmu->flags & PPMU_HAS_SIER)
		sier = mfspr(SPRN_SIER);

780
	if (ppmu->flags & PPMU_ARCH_207S) {
781 782 783 784 785 786 787 788 789 790 791 792
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
	}
#endif
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
		mfspr(SPRN_SIAR), sdar, sier);

	local_irq_restore(flags);
}

793 794 795 796
/*
 * Check if a set of events can all go on the PMU at once.
 * If they can't, this will look at alternative codes for the events
 * and see if any combination of alternative codes is feasible.
797
 * The feasible set is returned in event_id[].
798
 */
799 800
static int power_check_constraints(struct cpu_hw_events *cpuhw,
				   u64 event_id[], unsigned int cflags[],
801
				   int n_ev)
802
{
803
	unsigned long mask, value, nv;
804 805
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
806
	int i, j;
807 808
	unsigned long addf = ppmu->add_fields;
	unsigned long tadd = ppmu->test_adder;
809

810
	if (n_ev > ppmu->n_counter)
811 812 813 814
		return -1;

	/* First see if the events will go on as-is */
	for (i = 0; i < n_ev; ++i) {
815
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
816 817
		    && !ppmu->limited_pmc_event(event_id[i])) {
			ppmu->get_alternatives(event_id[i], cflags[i],
818
					       cpuhw->alternatives[i]);
819
			event_id[i] = cpuhw->alternatives[i][0];
820
		}
821
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
822
					 &cpuhw->avalues[i][0]))
823 824 825 826
			return -1;
	}
	value = mask = 0;
	for (i = 0; i < n_ev; ++i) {
827 828
		nv = (value | cpuhw->avalues[i][0]) +
			(value & cpuhw->avalues[i][0] & addf);
829
		if ((((nv + tadd) ^ value) & mask) != 0 ||
830 831
		    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
		     cpuhw->amasks[i][0]) != 0)
832 833
			break;
		value = nv;
834
		mask |= cpuhw->amasks[i][0];
835 836 837 838 839 840 841 842
	}
	if (i == n_ev)
		return 0;	/* all OK */

	/* doesn't work, gather alternatives... */
	if (!ppmu->get_alternatives)
		return -1;
	for (i = 0; i < n_ev; ++i) {
843
		choice[i] = 0;
844
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
845
						  cpuhw->alternatives[i]);
846
		for (j = 1; j < n_alt[i]; ++j)
847 848 849
			ppmu->get_constraint(cpuhw->alternatives[i][j],
					     &cpuhw->amasks[i][j],
					     &cpuhw->avalues[i][j]);
850 851 852 853 854 855 856 857 858 859 860 861 862 863
	}

	/* enumerate all possibilities and see if any will work */
	i = 0;
	j = -1;
	value = mask = nv = 0;
	while (i < n_ev) {
		if (j >= 0) {
			/* we're backtracking, restore context */
			value = svalues[i];
			mask = smasks[i];
			j = choice[i];
		}
		/*
864
		 * See if any alternative k for event_id i,
865 866 867
		 * where k > j, will satisfy the constraints.
		 */
		while (++j < n_alt[i]) {
868 869
			nv = (value | cpuhw->avalues[i][j]) +
				(value & cpuhw->avalues[i][j] & addf);
870
			if ((((nv + tadd) ^ value) & mask) == 0 &&
871 872
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
			     & cpuhw->amasks[i][j]) == 0)
873 874 875 876 877
				break;
		}
		if (j >= n_alt[i]) {
			/*
			 * No feasible alternative, backtrack
878
			 * to event_id i-1 and continue enumerating its
879 880 881 882 883 884
			 * alternatives from where we got up to.
			 */
			if (--i < 0)
				return -1;
		} else {
			/*
885 886 887
			 * Found a feasible alternative for event_id i,
			 * remember where we got up to with this event_id,
			 * go on to the next event_id, and start with
888 889 890 891 892 893
			 * the first alternative for it.
			 */
			choice[i] = j;
			svalues[i] = value;
			smasks[i] = mask;
			value = nv;
894
			mask |= cpuhw->amasks[i][j];
895 896 897 898 899 900 901
			++i;
			j = -1;
		}
	}

	/* OK, we have a feasible combination, tell the caller the solution */
	for (i = 0; i < n_ev; ++i)
902
		event_id[i] = cpuhw->alternatives[i][choice[i]];
903 904 905
	return 0;
}

906
/*
907
 * Check if newly-added events have consistent settings for
908
 * exclude_{user,kernel,hv} with each other and any previously
909
 * added events.
910
 */
911
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
912
			  int n_prev, int n_new)
913
{
914 915
	int eu = 0, ek = 0, eh = 0;
	int i, n, first;
916
	struct perf_event *event;
917 918 919 920 921

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

922 923 924 925 926 927
	first = 1;
	for (i = 0; i < n; ++i) {
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
			continue;
		}
928
		event = ctrs[i];
929
		if (first) {
930 931 932
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
933
			first = 0;
934 935 936
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
937
			return -EAGAIN;
938
		}
939
	}
940 941 942 943 944 945

	if (eu || ek || eh)
		for (i = 0; i < n; ++i)
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
				cflags[i] |= PPMU_LIMITED_PMC_REQD;

946 947 948
	return 0;
}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static u64 check_and_compute_delta(u64 prev, u64 val)
{
	u64 delta = (val - prev) & 0xfffffffful;

	/*
	 * POWER7 can roll back counter values, if the new value is smaller
	 * than the previous value it will cause the delta and the counter to
	 * have bogus values unless we rolled a counter over.  If a coutner is
	 * rolled back, it will be smaller, but within 256, which is the maximum
	 * number of events to rollback at once.  If we dectect a rollback
	 * return 0.  This can lead to a small lack of precision in the
	 * counters.
	 */
	if (prev > val && (prev - val) < 256)
		delta = 0;

	return delta;
}

968
static void power_pmu_read(struct perf_event *event)
969
{
970
	s64 val, delta, prev;
971

P
Peter Zijlstra 已提交
972 973 974
	if (event->hw.state & PERF_HES_STOPPED)
		return;

975
	if (!event->hw.idx)
976
		return;
977 978 979 980 981 982 983

	if (is_ebb_event(event)) {
		val = read_pmc(event->hw.idx);
		local64_set(&event->hw.prev_count, val);
		return;
	}

984 985 986 987 988 989
	/*
	 * Performance monitor interrupts come even when interrupts
	 * are soft-disabled, as long as interrupts are hard-enabled.
	 * Therefore we treat them like NMIs.
	 */
	do {
990
		prev = local64_read(&event->hw.prev_count);
991
		barrier();
992
		val = read_pmc(event->hw.idx);
993 994 995
		delta = check_and_compute_delta(prev, val);
		if (!delta)
			return;
996
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
997

998
	local64_add(delta, &event->count);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	/*
	 * A number of places program the PMC with (0x80000000 - period_left).
	 * We never want period_left to be less than 1 because we will program
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
	 * roll around to 0 before taking an exception. We have seen this
	 * on POWER8.
	 *
	 * To fix this, clamp the minimum value of period_left to 1.
	 */
	do {
		prev = local64_read(&event->hw.period_left);
		val = prev - delta;
		if (val < 1)
			val = 1;
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1015 1016
}

1017 1018 1019
/*
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 * the freeze conditions, and don't generate interrupts.  This tells
1020
 * us if `event' is using such a PMC.
1021 1022 1023
 */
static int is_limited_pmc(int pmcnum)
{
1024 1025
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
		&& (pmcnum == 5 || pmcnum == 6);
1026 1027
}

1028
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1029 1030
				    unsigned long pmc5, unsigned long pmc6)
{
1031
	struct perf_event *event;
1032 1033 1034 1035
	u64 val, prev, delta;
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1036
		event = cpuhw->limited_counter[i];
1037
		if (!event->hw.idx)
1038
			continue;
1039
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1040
		prev = local64_read(&event->hw.prev_count);
1041
		event->hw.idx = 0;
1042 1043 1044
		delta = check_and_compute_delta(prev, val);
		if (delta)
			local64_add(delta, &event->count);
1045 1046 1047
	}
}

1048
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1049 1050
				  unsigned long pmc5, unsigned long pmc6)
{
1051
	struct perf_event *event;
1052
	u64 val, prev;
1053 1054 1055
	int i;

	for (i = 0; i < cpuhw->n_limited; ++i) {
1056
		event = cpuhw->limited_counter[i];
1057 1058
		event->hw.idx = cpuhw->limited_hwidx[i];
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
1059 1060 1061
		prev = local64_read(&event->hw.prev_count);
		if (check_and_compute_delta(prev, val))
			local64_set(&event->hw.prev_count, val);
1062
		perf_event_update_userpage(event);
1063 1064 1065 1066
	}
}

/*
1067
 * Since limited events don't respect the freeze conditions, we
1068
 * have to read them immediately after freezing or unfreezing the
1069 1070
 * other events.  We try to keep the values from the limited
 * events as consistent as possible by keeping the delay (in
1071
 * cycles and instructions) between freezing/unfreezing and reading
1072 1073
 * the limited events as small and consistent as possible.
 * Therefore, if any limited events are in use, we read them
1074 1075 1076
 * both, and always in the same order, to minimize variability,
 * and do it inside the same asm that writes MMCR0.
 */
1077
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
{
	unsigned long pmc5, pmc6;

	if (!cpuhw->n_limited) {
		mtspr(SPRN_MMCR0, mmcr0);
		return;
	}

	/*
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
1088 1089
	 * To ensure we don't get a performance monitor interrupt
	 * between writing MMCR0 and freezing/thawing the limited
1090
	 * events, we first write MMCR0 with the event overflow
1091
	 * interrupt enable bits turned off.
1092 1093 1094
	 */
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
		     : "=&r" (pmc5), "=&r" (pmc6)
1095 1096
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
		       "i" (SPRN_MMCR0),
1097 1098 1099
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));

	if (mmcr0 & MMCR0_FC)
1100
		freeze_limited_counters(cpuhw, pmc5, pmc6);
1101
	else
1102
		thaw_limited_counters(cpuhw, pmc5, pmc6);
1103 1104

	/*
1105
	 * Write the full MMCR0 including the event overflow interrupt
1106 1107 1108 1109
	 * enable bits, if necessary.
	 */
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
		mtspr(SPRN_MMCR0, mmcr0);
1110 1111
}

1112
/*
1113 1114
 * Disable all events to prevent PMU interrupts and to allow
 * events to be added or removed.
1115
 */
P
Peter Zijlstra 已提交
1116
static void power_pmu_disable(struct pmu *pmu)
1117
{
1118
	struct cpu_hw_events *cpuhw;
1119
	unsigned long flags, mmcr0, val;
1120

1121 1122
	if (!ppmu)
		return;
1123
	local_irq_save(flags);
1124
	cpuhw = &__get_cpu_var(cpu_hw_events);
1125

1126
	if (!cpuhw->disabled) {
1127 1128 1129 1130
		/*
		 * Check if we ever enabled the PMU on this cpu.
		 */
		if (!cpuhw->pmcs_enabled) {
1131
			ppc_enable_pmcs();
1132 1133 1134
			cpuhw->pmcs_enabled = 1;
		}

1135
		/*
1136
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1137
		 */
1138
		val  = mmcr0 = mfspr(SPRN_MMCR0);
1139
		val |= MMCR0_FC;
1140 1141
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
			 MMCR0_FC56);
1142 1143 1144 1145 1146 1147 1148 1149 1150

		/*
		 * The barrier is to make sure the mtspr has been
		 * executed and the PMU has frozen the events etc.
		 * before we return.
		 */
		write_mmcr0(cpuhw, val);
		mb();

1151 1152 1153 1154 1155 1156 1157 1158 1159
		/*
		 * Disable instruction sampling if it was enabled
		 */
		if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
			mtspr(SPRN_MMCRA,
			      cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
			mb();
		}

1160 1161
		cpuhw->disabled = 1;
		cpuhw->n_added = 0;
1162 1163

		ebb_switch_out(mmcr0);
1164
	}
1165

1166 1167 1168 1169
	local_irq_restore(flags);
}

/*
1170 1171
 * Re-enable all events if disable == 0.
 * If we were previously disabled and events were added, then
1172 1173
 * put the new config on the PMU.
 */
P
Peter Zijlstra 已提交
1174
static void power_pmu_enable(struct pmu *pmu)
1175
{
1176 1177
	struct perf_event *event;
	struct cpu_hw_events *cpuhw;
1178 1179
	unsigned long flags;
	long i;
1180
	unsigned long val, mmcr0;
1181
	s64 left;
1182
	unsigned int hwc_index[MAX_HWEVENTS];
1183 1184
	int n_lim;
	int idx;
1185
	bool ebb;
1186

1187 1188
	if (!ppmu)
		return;
1189
	local_irq_save(flags);
1190

1191
	cpuhw = &__get_cpu_var(cpu_hw_events);
1192 1193 1194
	if (!cpuhw->disabled)
		goto out;

1195 1196 1197 1198 1199
	if (cpuhw->n_events == 0) {
		ppc_set_pmu_inuse(0);
		goto out;
	}

1200 1201
	cpuhw->disabled = 0;

1202 1203 1204 1205 1206 1207 1208
	/*
	 * EBB requires an exclusive group and all events must have the EBB
	 * flag set, or not set, so we can just check a single event. Also we
	 * know we have at least one event.
	 */
	ebb = is_ebb_event(cpuhw->event[0]);

1209
	/*
1210
	 * If we didn't change anything, or only removed events,
1211 1212
	 * no need to recalculate MMCR* settings and reset the PMCs.
	 * Just reenable the PMU with the current MMCR* settings
1213
	 * (possibly updated for removal of events).
1214 1215
	 */
	if (!cpuhw->n_added) {
1216
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1217
		mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1218
		goto out_enable;
1219 1220 1221
	}

	/*
1222
	 * Clear all MMCR settings and recompute them for the new set of events.
1223
	 */
1224 1225
	memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));

1226
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1227 1228 1229 1230 1231 1232
			       cpuhw->mmcr)) {
		/* shouldn't ever get here */
		printk(KERN_ERR "oops compute_mmcr failed\n");
		goto out;
	}

1233 1234
	/*
	 * Add in MMCR0 freeze bits corresponding to the
1235 1236 1237
	 * attr.exclude_* bits for the first event.
	 * We have already checked that all events have the
	 * same values for these bits as the first event.
1238
	 */
1239 1240
	event = cpuhw->event[0];
	if (event->attr.exclude_user)
1241
		cpuhw->mmcr[0] |= MMCR0_FCP;
1242 1243 1244
	if (event->attr.exclude_kernel)
		cpuhw->mmcr[0] |= freeze_events_kernel;
	if (event->attr.exclude_hv)
1245 1246
		cpuhw->mmcr[0] |= MMCR0_FCHV;

1247 1248
	/*
	 * Write the new configuration to MMCR* with the freeze
1249 1250
	 * bit set and set the hardware events to their initial values.
	 * Then unfreeze the events.
1251
	 */
1252
	ppc_set_pmu_inuse(1);
1253
	mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1254 1255 1256 1257 1258
	mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
	mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
				| MMCR0_FC);

	/*
1259
	 * Read off any pre-existing events that need to move
1260 1261
	 * to another PMC.
	 */
1262 1263 1264 1265 1266 1267
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
			power_pmu_read(event);
			write_pmc(event->hw.idx, 0);
			event->hw.idx = 0;
1268 1269 1270 1271
		}
	}

	/*
1272
	 * Initialize the PMCs for all the new and moved events.
1273
	 */
1274
	cpuhw->n_limited = n_lim = 0;
1275 1276 1277
	for (i = 0; i < cpuhw->n_events; ++i) {
		event = cpuhw->event[i];
		if (event->hw.idx)
1278
			continue;
1279 1280
		idx = hwc_index[i] + 1;
		if (is_limited_pmc(idx)) {
1281
			cpuhw->limited_counter[n_lim] = event;
1282 1283 1284 1285
			cpuhw->limited_hwidx[n_lim] = idx;
			++n_lim;
			continue;
		}
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

		if (ebb)
			val = local64_read(&event->hw.prev_count);
		else {
			val = 0;
			if (event->hw.sample_period) {
				left = local64_read(&event->hw.period_left);
				if (left < 0x80000000L)
					val = 0x80000000L - left;
			}
			local64_set(&event->hw.prev_count, val);
1297
		}
1298

1299
		event->hw.idx = idx;
P
Peter Zijlstra 已提交
1300 1301
		if (event->hw.state & PERF_HES_STOPPED)
			val = 0;
1302
		write_pmc(idx, val);
1303

1304
		perf_event_update_userpage(event);
1305
	}
1306
	cpuhw->n_limited = n_lim;
1307
	cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1308 1309

 out_enable:
1310 1311
	pmao_restore_workaround(ebb);

1312 1313 1314
	if (ppmu->flags & PPMU_ARCH_207S)
		mtspr(SPRN_MMCR2, 0);

1315 1316
	mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);

1317
	mb();
1318 1319 1320
	if (cpuhw->bhrb_users)
		ppmu->config_bhrb(cpuhw->bhrb_filter);

1321
	write_mmcr0(cpuhw, mmcr0);
1322

1323 1324 1325 1326 1327 1328 1329 1330
	/*
	 * Enable instruction sampling if necessary
	 */
	if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
		mb();
		mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
	}

1331
 out:
1332

1333 1334 1335
	local_irq_restore(flags);
}

1336 1337
static int collect_events(struct perf_event *group, int max_count,
			  struct perf_event *ctrs[], u64 *events,
1338
			  unsigned int *flags)
1339 1340
{
	int n = 0;
1341
	struct perf_event *event;
1342

1343
	if (!is_software_event(group)) {
1344 1345 1346
		if (n >= max_count)
			return -1;
		ctrs[n] = group;
1347
		flags[n] = group->hw.event_base;
1348 1349
		events[n++] = group->hw.config;
	}
1350
	list_for_each_entry(event, &group->sibling_list, group_entry) {
1351 1352
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
1353 1354
			if (n >= max_count)
				return -1;
1355 1356 1357
			ctrs[n] = event;
			flags[n] = event->hw.event_base;
			events[n++] = event->hw.config;
1358 1359 1360 1361 1362 1363
		}
	}
	return n;
}

/*
1364 1365
 * Add a event to the PMU.
 * If all events are not already frozen, then we disable and
1366
 * re-enable the PMU in order to get hw_perf_enable to do the
1367 1368
 * actual work of reconfiguring the PMU.
 */
P
Peter Zijlstra 已提交
1369
static int power_pmu_add(struct perf_event *event, int ef_flags)
1370
{
1371
	struct cpu_hw_events *cpuhw;
1372 1373 1374 1375 1376
	unsigned long flags;
	int n0;
	int ret = -EAGAIN;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1377
	perf_pmu_disable(event->pmu);
1378 1379

	/*
1380
	 * Add the event to the list (if there is room)
1381 1382
	 * and check whether the total set is still feasible.
	 */
1383 1384
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n0 = cpuhw->n_events;
1385
	if (n0 >= ppmu->n_counter)
1386
		goto out;
1387 1388 1389
	cpuhw->event[n0] = event;
	cpuhw->events[n0] = event->hw.config;
	cpuhw->flags[n0] = event->hw.event_base;
1390

1391 1392 1393 1394 1395 1396
	/*
	 * This event may have been disabled/stopped in record_and_restart()
	 * because we exceeded the ->event_limit. If re-starting the event,
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
	 * notification is re-enabled.
	 */
P
Peter Zijlstra 已提交
1397 1398
	if (!(ef_flags & PERF_EF_START))
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1399 1400
	else
		event->hw.state = 0;
P
Peter Zijlstra 已提交
1401

1402 1403
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1404
	 * skip the schedulability test here, it will be performed
1405 1406
	 * at commit time(->commit_txn) as a whole
	 */
1407
	if (cpuhw->group_flag & PERF_EVENT_TXN)
1408 1409
		goto nocheck;

1410
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1411
		goto out;
1412
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1413
		goto out;
1414
	event->hw.config = cpuhw->events[n0];
1415 1416

nocheck:
1417 1418
	ebb_event_add(event);

1419
	++cpuhw->n_events;
1420 1421 1422 1423
	++cpuhw->n_added;

	ret = 0;
 out:
1424
	if (has_branch_stack(event)) {
1425
		power_pmu_bhrb_enable(event);
1426 1427 1428
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);
	}
1429

P
Peter Zijlstra 已提交
1430
	perf_pmu_enable(event->pmu);
1431 1432 1433 1434 1435
	local_irq_restore(flags);
	return ret;
}

/*
1436
 * Remove a event from the PMU.
1437
 */
P
Peter Zijlstra 已提交
1438
static void power_pmu_del(struct perf_event *event, int ef_flags)
1439
{
1440
	struct cpu_hw_events *cpuhw;
1441 1442 1443 1444
	long i;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1445
	perf_pmu_disable(event->pmu);
1446

1447 1448 1449 1450 1451
	power_pmu_read(event);

	cpuhw = &__get_cpu_var(cpu_hw_events);
	for (i = 0; i < cpuhw->n_events; ++i) {
		if (event == cpuhw->event[i]) {
1452
			while (++i < cpuhw->n_events) {
1453
				cpuhw->event[i-1] = cpuhw->event[i];
1454 1455 1456
				cpuhw->events[i-1] = cpuhw->events[i];
				cpuhw->flags[i-1] = cpuhw->flags[i];
			}
1457 1458 1459 1460 1461
			--cpuhw->n_events;
			ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
			if (event->hw.idx) {
				write_pmc(event->hw.idx, 0);
				event->hw.idx = 0;
1462
			}
1463
			perf_event_update_userpage(event);
1464 1465 1466
			break;
		}
	}
1467
	for (i = 0; i < cpuhw->n_limited; ++i)
1468
		if (event == cpuhw->limited_counter[i])
1469 1470 1471
			break;
	if (i < cpuhw->n_limited) {
		while (++i < cpuhw->n_limited) {
1472
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1473 1474 1475 1476
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
		}
		--cpuhw->n_limited;
	}
1477 1478
	if (cpuhw->n_events == 0) {
		/* disable exceptions if no events are running */
1479 1480 1481
		cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
	}

1482 1483 1484
	if (has_branch_stack(event))
		power_pmu_bhrb_disable(event);

P
Peter Zijlstra 已提交
1485
	perf_pmu_enable(event->pmu);
1486 1487 1488
	local_irq_restore(flags);
}

1489
/*
P
Peter Zijlstra 已提交
1490 1491
 * POWER-PMU does not support disabling individual counters, hence
 * program their cycle counter to their max value and ignore the interrupts.
1492
 */
P
Peter Zijlstra 已提交
1493 1494

static void power_pmu_start(struct perf_event *event, int ef_flags)
1495 1496
{
	unsigned long flags;
P
Peter Zijlstra 已提交
1497
	s64 left;
1498
	unsigned long val;
1499

1500
	if (!event->hw.idx || !event->hw.sample_period)
1501
		return;
P
Peter Zijlstra 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (!(event->hw.state & PERF_HES_STOPPED))
		return;

	if (ef_flags & PERF_EF_RELOAD)
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));

	local_irq_save(flags);
	perf_pmu_disable(event->pmu);

	event->hw.state = 0;
	left = local64_read(&event->hw.period_left);
1514 1515 1516 1517 1518 1519

	val = 0;
	if (left < 0x80000000L)
		val = 0x80000000L - left;

	write_pmc(event->hw.idx, val);
P
Peter Zijlstra 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	perf_event_update_userpage(event);
	perf_pmu_enable(event->pmu);
	local_irq_restore(flags);
}

static void power_pmu_stop(struct perf_event *event, int ef_flags)
{
	unsigned long flags;

	if (!event->hw.idx || !event->hw.sample_period)
		return;

	if (event->hw.state & PERF_HES_STOPPED)
		return;

1536
	local_irq_save(flags);
P
Peter Zijlstra 已提交
1537
	perf_pmu_disable(event->pmu);
P
Peter Zijlstra 已提交
1538

1539
	power_pmu_read(event);
P
Peter Zijlstra 已提交
1540 1541 1542
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
	write_pmc(event->hw.idx, 0);

1543
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1544
	perf_pmu_enable(event->pmu);
1545 1546 1547
	local_irq_restore(flags);
}

1548 1549 1550 1551 1552
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1553
void power_pmu_start_txn(struct pmu *pmu)
1554 1555 1556
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1557
	perf_pmu_disable(pmu);
1558
	cpuhw->group_flag |= PERF_EVENT_TXN;
1559 1560 1561 1562 1563 1564 1565 1566
	cpuhw->n_txn_start = cpuhw->n_events;
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1567
void power_pmu_cancel_txn(struct pmu *pmu)
1568 1569 1570
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1571
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1572
	perf_pmu_enable(pmu);
1573 1574 1575 1576 1577 1578 1579
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1580
int power_pmu_commit_txn(struct pmu *pmu)
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
{
	struct cpu_hw_events *cpuhw;
	long i, n;

	if (!ppmu)
		return -EAGAIN;
	cpuhw = &__get_cpu_var(cpu_hw_events);
	n = cpuhw->n_events;
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
		return -EAGAIN;
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
	if (i < 0)
		return -EAGAIN;

	for (i = cpuhw->n_txn_start; i < n; ++i)
		cpuhw->event[i]->hw.config = cpuhw->events[i];

1598
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1599
	perf_pmu_enable(pmu);
1600 1601 1602
	return 0;
}

1603
/*
1604
 * Return 1 if we might be able to put event on a limited PMC,
1605
 * or 0 if not.
1606
 * A event can only go on a limited PMC if it counts something
1607 1608 1609
 * that a limited PMC can count, doesn't require interrupts, and
 * doesn't exclude any processor mode.
 */
1610
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1611 1612 1613
				 unsigned int flags)
{
	int n;
1614
	u64 alt[MAX_EVENT_ALTERNATIVES];
1615

1616 1617 1618 1619
	if (event->attr.exclude_user
	    || event->attr.exclude_kernel
	    || event->attr.exclude_hv
	    || event->attr.sample_period)
1620 1621 1622 1623 1624 1625
		return 0;

	if (ppmu->limited_pmc_event(ev))
		return 1;

	/*
1626
	 * The requested event_id isn't on a limited PMC already;
1627 1628 1629 1630 1631 1632 1633 1634
	 * see if any alternative code goes on a limited PMC.
	 */
	if (!ppmu->get_alternatives)
		return 0;

	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
	n = ppmu->get_alternatives(ev, flags, alt);

1635
	return n > 0;
1636 1637 1638
}

/*
1639 1640 1641
 * Find an alternative event_id that goes on a normal PMC, if possible,
 * and return the event_id code, or 0 if there is no such alternative.
 * (Note: event_id code 0 is "don't count" on all machines.)
1642
 */
1643
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1644
{
1645
	u64 alt[MAX_EVENT_ALTERNATIVES];
1646 1647 1648 1649 1650 1651 1652 1653 1654
	int n;

	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
	n = ppmu->get_alternatives(ev, flags, alt);
	if (!n)
		return 0;
	return alt[0];
}

1655 1656
/* Number of perf_events counting hardware events */
static atomic_t num_events;
1657 1658 1659 1660
/* Used to avoid races in calling reserve/release_pmc_hardware */
static DEFINE_MUTEX(pmc_reserve_mutex);

/*
1661
 * Release the PMU if this is the last perf_event.
1662
 */
1663
static void hw_perf_event_destroy(struct perf_event *event)
1664
{
1665
	if (!atomic_add_unless(&num_events, -1, 1)) {
1666
		mutex_lock(&pmc_reserve_mutex);
1667
		if (atomic_dec_return(&num_events) == 0)
1668 1669 1670 1671 1672
			release_pmc_hardware();
		mutex_unlock(&pmc_reserve_mutex);
	}
}

1673
/*
1674
 * Translate a generic cache event_id config to a raw event_id code.
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
 */
static int hw_perf_cache_event(u64 config, u64 *eventp)
{
	unsigned long type, op, result;
	int ev;

	if (!ppmu->cache_events)
		return -EINVAL;

	/* unpack config */
	type = config & 0xff;
	op = (config >> 8) & 0xff;
	result = (config >> 16) & 0xff;

	if (type >= PERF_COUNT_HW_CACHE_MAX ||
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	ev = (*ppmu->cache_events)[type][op][result];
	if (ev == 0)
		return -EOPNOTSUPP;
	if (ev == -1)
		return -EINVAL;
	*eventp = ev;
	return 0;
}

1703
static int power_pmu_event_init(struct perf_event *event)
1704
{
1705 1706
	u64 ev;
	unsigned long flags;
1707 1708 1709
	struct perf_event *ctrs[MAX_HWEVENTS];
	u64 events[MAX_HWEVENTS];
	unsigned int cflags[MAX_HWEVENTS];
1710
	int n;
1711
	int err;
1712
	struct cpu_hw_events *cpuhw;
1713 1714

	if (!ppmu)
1715 1716
		return -ENOENT;

1717 1718
	if (has_branch_stack(event)) {
	        /* PMU has BHRB enabled */
1719
		if (!(ppmu->flags & PPMU_ARCH_207S))
1720 1721
			return -EOPNOTSUPP;
	}
1722

1723
	switch (event->attr.type) {
1724
	case PERF_TYPE_HARDWARE:
1725
		ev = event->attr.config;
1726
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1727
			return -EOPNOTSUPP;
1728
		ev = ppmu->generic_events[ev];
1729 1730
		break;
	case PERF_TYPE_HW_CACHE:
1731
		err = hw_perf_cache_event(event->attr.config, &ev);
1732
		if (err)
1733
			return err;
1734 1735
		break;
	case PERF_TYPE_RAW:
1736
		ev = event->attr.config;
1737
		break;
1738
	default:
1739
		return -ENOENT;
1740
	}
1741

1742 1743
	event->hw.config_base = ev;
	event->hw.idx = 0;
1744

1745 1746 1747
	/*
	 * If we are not running on a hypervisor, force the
	 * exclude_hv bit to 0 so that we don't care what
1748
	 * the user set it to.
1749 1750
	 */
	if (!firmware_has_feature(FW_FEATURE_LPAR))
1751
		event->attr.exclude_hv = 0;
1752 1753

	/*
1754
	 * If this is a per-task event, then we can use
1755 1756 1757 1758 1759
	 * PM_RUN_* events interchangeably with their non RUN_*
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
	 * XXX we should check if the task is an idle task.
	 */
	flags = 0;
1760
	if (event->attach_state & PERF_ATTACH_TASK)
1761 1762 1763
		flags |= PPMU_ONLY_COUNT_RUN;

	/*
1764 1765
	 * If this machine has limited events, check whether this
	 * event_id could go on a limited event.
1766
	 */
1767
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1768
		if (can_go_on_limited_pmc(event, ev, flags)) {
1769 1770 1771
			flags |= PPMU_LIMITED_PMC_OK;
		} else if (ppmu->limited_pmc_event(ev)) {
			/*
1772
			 * The requested event_id is on a limited PMC,
1773 1774 1775 1776 1777
			 * but we can't use a limited PMC; see if any
			 * alternative goes on a normal PMC.
			 */
			ev = normal_pmc_alternative(ev, flags);
			if (!ev)
1778
				return -EINVAL;
1779 1780 1781
		}
	}

1782 1783 1784 1785 1786
	/* Extra checks for EBB */
	err = ebb_event_check(event);
	if (err)
		return err;

1787 1788
	/*
	 * If this is in a group, check if it can go on with all the
1789
	 * other hardware events in the group.  We assume the event
1790 1791 1792
	 * hasn't been linked into its leader's sibling list at this point.
	 */
	n = 0;
1793
	if (event->group_leader != event) {
1794
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
1795
				   ctrs, events, cflags);
1796
		if (n < 0)
1797
			return -EINVAL;
1798
	}
1799
	events[n] = ev;
1800
	ctrs[n] = event;
1801 1802
	cflags[n] = flags;
	if (check_excludes(ctrs, cflags, n, 1))
1803
		return -EINVAL;
1804

1805
	cpuhw = &get_cpu_var(cpu_hw_events);
1806
	err = power_check_constraints(cpuhw, events, cflags, n + 1);
1807 1808 1809 1810 1811 1812 1813 1814 1815

	if (has_branch_stack(event)) {
		cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
					event->attr.branch_sample_type);

		if(cpuhw->bhrb_filter == -1)
			return -EOPNOTSUPP;
	}

1816
	put_cpu_var(cpu_hw_events);
1817
	if (err)
1818
		return -EINVAL;
1819

1820 1821 1822
	event->hw.config = events[n];
	event->hw.event_base = cflags[n];
	event->hw.last_period = event->hw.sample_period;
1823
	local64_set(&event->hw.period_left, event->hw.last_period);
1824

1825 1826 1827 1828 1829 1830 1831
	/*
	 * For EBB events we just context switch the PMC value, we don't do any
	 * of the sample_period logic. We use hw.prev_count for this.
	 */
	if (is_ebb_event(event))
		local64_set(&event->hw.prev_count, 0);

1832 1833
	/*
	 * See if we need to reserve the PMU.
1834
	 * If no events are currently in use, then we have to take a
1835 1836 1837 1838
	 * mutex to ensure that we don't race with another task doing
	 * reserve_pmc_hardware or release_pmc_hardware.
	 */
	err = 0;
1839
	if (!atomic_inc_not_zero(&num_events)) {
1840
		mutex_lock(&pmc_reserve_mutex);
1841 1842
		if (atomic_read(&num_events) == 0 &&
		    reserve_pmc_hardware(perf_event_interrupt))
1843 1844
			err = -EBUSY;
		else
1845
			atomic_inc(&num_events);
1846 1847
		mutex_unlock(&pmc_reserve_mutex);
	}
1848
	event->destroy = hw_perf_event_destroy;
1849

1850
	return err;
1851 1852
}

1853 1854 1855 1856 1857
static int power_pmu_event_idx(struct perf_event *event)
{
	return event->hw.idx;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
ssize_t power_events_sysfs_show(struct device *dev,
				struct device_attribute *attr, char *page)
{
	struct perf_pmu_events_attr *pmu_attr;

	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);

	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
}

1868
struct pmu power_pmu = {
P
Peter Zijlstra 已提交
1869 1870
	.pmu_enable	= power_pmu_enable,
	.pmu_disable	= power_pmu_disable,
1871
	.event_init	= power_pmu_event_init,
P
Peter Zijlstra 已提交
1872 1873 1874 1875
	.add		= power_pmu_add,
	.del		= power_pmu_del,
	.start		= power_pmu_start,
	.stop		= power_pmu_stop,
1876 1877 1878 1879
	.read		= power_pmu_read,
	.start_txn	= power_pmu_start_txn,
	.cancel_txn	= power_pmu_cancel_txn,
	.commit_txn	= power_pmu_commit_txn,
1880
	.event_idx	= power_pmu_event_idx,
1881
	.flush_branch_stack = power_pmu_flush_branch_stack,
1882 1883
};

1884
/*
I
Ingo Molnar 已提交
1885
 * A counter has overflowed; update its count and record
1886 1887 1888
 * things if requested.  Note that interrupts are hard-disabled
 * here so there is no possibility of being interrupted.
 */
1889
static void record_and_restart(struct perf_event *event, unsigned long val,
1890
			       struct pt_regs *regs)
1891
{
1892
	u64 period = event->hw.sample_period;
1893 1894 1895
	s64 prev, delta, left;
	int record = 0;

P
Peter Zijlstra 已提交
1896 1897 1898 1899 1900
	if (event->hw.state & PERF_HES_STOPPED) {
		write_pmc(event->hw.idx, 0);
		return;
	}

1901
	/* we don't have to worry about interrupts here */
1902
	prev = local64_read(&event->hw.prev_count);
1903
	delta = check_and_compute_delta(prev, val);
1904
	local64_add(delta, &event->count);
1905 1906

	/*
1907
	 * See if the total period for this event has expired,
1908 1909 1910
	 * and update for the next period.
	 */
	val = 0;
1911
	left = local64_read(&event->hw.period_left) - delta;
1912 1913
	if (delta == 0)
		left++;
1914
	if (period) {
1915
		if (left <= 0) {
1916
			left += period;
1917
			if (left <= 0)
1918
				left = period;
1919
			record = siar_valid(regs);
1920
			event->hw.last_period = event->hw.sample_period;
1921
		}
1922 1923
		if (left < 0x80000000LL)
			val = 0x80000000LL - left;
1924 1925
	}

P
Peter Zijlstra 已提交
1926 1927 1928 1929 1930
	write_pmc(event->hw.idx, val);
	local64_set(&event->hw.prev_count, val);
	local64_set(&event->hw.period_left, left);
	perf_event_update_userpage(event);

1931 1932 1933
	/*
	 * Finally record data if requested.
	 */
1934
	if (record) {
1935 1936
		struct perf_sample_data data;

1937
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1938

1939
		if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1940 1941
			perf_get_data_addr(regs, &data.addr);

1942 1943 1944 1945 1946 1947 1948
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
			struct cpu_hw_events *cpuhw;
			cpuhw = &__get_cpu_var(cpu_hw_events);
			power_pmu_bhrb_read(cpuhw);
			data.br_stack = &cpuhw->bhrb_stack;
		}

1949
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1950
			power_pmu_stop(event, 0);
1951 1952 1953 1954 1955
	}
}

/*
 * Called from generic code to get the misc flags (i.e. processor mode)
1956
 * for an event_id.
1957 1958 1959
 */
unsigned long perf_misc_flags(struct pt_regs *regs)
{
1960
	u32 flags = perf_get_misc_flags(regs);
1961

1962 1963
	if (flags)
		return flags;
1964 1965
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
		PERF_RECORD_MISC_KERNEL;
1966 1967 1968 1969
}

/*
 * Called from generic code to get the instruction pointer
1970
 * for an event_id.
1971 1972 1973
 */
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
1974
	bool use_siar = regs_use_siar(regs);
1975

1976
	if (use_siar && siar_valid(regs))
1977
		return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1978 1979
	else if (use_siar)
		return 0;		// no valid instruction pointer
1980
	else
1981
		return regs->nip;
1982 1983
}

1984
static bool pmc_overflow_power7(unsigned long val)
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
{
	/*
	 * Events on POWER7 can roll back if a speculative event doesn't
	 * eventually complete. Unfortunately in some rare cases they will
	 * raise a performance monitor exception. We need to catch this to
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
	 * cycles from overflow.
	 *
	 * We only do this if the first pass fails to find any overflowing
	 * PMCs because a user might set a period of less than 256 and we
	 * don't want to mistakenly reset them.
	 */
1997 1998 1999 2000 2001 2002 2003 2004 2005
	if ((0x80000000 - val) <= 256)
		return true;

	return false;
}

static bool pmc_overflow(unsigned long val)
{
	if ((int)val < 0)
2006 2007 2008 2009 2010
		return true;

	return false;
}

2011 2012 2013
/*
 * Performance monitor interrupt stuff
 */
2014
static void perf_event_interrupt(struct pt_regs *regs)
2015
{
2016
	int i, j;
2017 2018
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
2019 2020
	unsigned long val[8];
	int found, active;
2021 2022
	int nmi;

2023
	if (cpuhw->n_limited)
2024
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2025 2026
					mfspr(SPRN_PMC6));

2027
	perf_read_regs(regs);
2028

2029
	nmi = perf_intr_is_nmi(regs);
2030 2031 2032 2033
	if (nmi)
		nmi_enter();
	else
		irq_enter();
2034

2035 2036 2037 2038 2039 2040 2041 2042
	/* Read all the PMCs since we'll need them a bunch of times */
	for (i = 0; i < ppmu->n_counter; ++i)
		val[i] = read_pmc(i + 1);

	/* Try to find what caused the IRQ */
	found = 0;
	for (i = 0; i < ppmu->n_counter; ++i) {
		if (!pmc_overflow(val[i]))
2043
			continue;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		if (is_limited_pmc(i + 1))
			continue; /* these won't generate IRQs */
		/*
		 * We've found one that's overflowed.  For active
		 * counters we need to log this.  For inactive
		 * counters, we need to reset it anyway
		 */
		found = 1;
		active = 0;
		for (j = 0; j < cpuhw->n_events; ++j) {
			event = cpuhw->event[j];
			if (event->hw.idx == (i + 1)) {
				active = 1;
				record_and_restart(event, val[i], regs);
				break;
			}
2060
		}
2061 2062 2063
		if (!active)
			/* reset non active counters that have overflowed */
			write_pmc(i + 1, 0);
2064
	}
2065 2066 2067 2068 2069
	if (!found && pvr_version_is(PVR_POWER7)) {
		/* check active counters for special buggy p7 overflow */
		for (i = 0; i < cpuhw->n_events; ++i) {
			event = cpuhw->event[i];
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2070
				continue;
2071 2072 2073 2074 2075 2076 2077
			if (pmc_overflow_power7(val[event->hw.idx - 1])) {
				/* event has overflowed in a buggy way*/
				found = 1;
				record_and_restart(event,
						   val[event->hw.idx - 1],
						   regs);
			}
2078 2079
		}
	}
2080
	if (!found && !nmi && printk_ratelimit())
2081
		printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2082 2083 2084

	/*
	 * Reset MMCR0 to its normal value.  This will set PMXE and
I
Ingo Molnar 已提交
2085
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2086
	 * and thus allow interrupts to occur again.
2087
	 * XXX might want to use MSR.PM to keep the events frozen until
2088 2089
	 * we get back out of this interrupt.
	 */
2090
	write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2091

2092 2093 2094
	if (nmi)
		nmi_exit();
	else
2095
		irq_exit();
2096 2097
}

2098
static void power_pmu_setup(int cpu)
2099
{
2100
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2101

2102 2103
	if (!ppmu)
		return;
2104 2105 2106 2107
	memset(cpuhw, 0, sizeof(*cpuhw));
	cpuhw->mmcr[0] = MMCR0_FC;
}

2108
static int
2109
power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
{
	unsigned int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
		power_pmu_setup(cpu);
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

2125
int register_power_pmu(struct power_pmu *pmu)
2126
{
2127 2128 2129 2130 2131 2132
	if (ppmu)
		return -EBUSY;		/* something's already registered */

	ppmu = pmu;
	pr_info("%s performance monitor hardware support registered\n",
		pmu->name);
2133

2134 2135
	power_pmu.attr_groups = ppmu->attr_groups;

2136
#ifdef MSR_HV
2137 2138 2139 2140
	/*
	 * Use FCHV to ignore kernel events if MSR.HV is set.
	 */
	if (mfmsr() & MSR_HV)
2141
		freeze_events_kernel = MMCR0_FCHV;
2142
#endif /* CONFIG_PPC64 */
2143

P
Peter Zijlstra 已提交
2144
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2145 2146
	perf_cpu_notifier(power_pmu_notifier);

2147 2148
	return 0;
}