ftgmac100.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <linux/crc32.h>
36
#include <linux/if_vlan.h>
37
#include <linux/of_net.h>
38
#include <net/ip.h>
G
Gavin Shan 已提交
39
#include <net/ncsi.h>
40 41 42 43 44 45

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

46 47 48 49 50 51 52
/* Arbitrary values, I am not sure the HW has limits */
#define MAX_RX_QUEUE_ENTRIES	1024
#define MAX_TX_QUEUE_ENTRIES	1024
#define MIN_RX_QUEUE_ENTRIES	32
#define MIN_TX_QUEUE_ENTRIES	32

/* Defaults */
53 54
#define DEF_RX_QUEUE_ENTRIES	128
#define DEF_TX_QUEUE_ENTRIES	128
55

56 57
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
58

59
/* Min number of tx ring entries before stopping queue */
60
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
61

62
struct ftgmac100 {
63
	/* Registers */
64 65 66
	struct resource *res;
	void __iomem *base;

67
	/* Rx ring */
68 69 70 71
	unsigned int rx_q_entries;
	struct ftgmac100_rxdes *rxdes;
	dma_addr_t rxdes_dma;
	struct sk_buff **rx_skbs;
72
	unsigned int rx_pointer;
73 74 75
	u32 rxdes0_edorr_mask;

	/* Tx ring */
76 77 78 79
	unsigned int tx_q_entries;
	struct ftgmac100_txdes *txdes;
	dma_addr_t txdes_dma;
	struct sk_buff **tx_skbs;
80 81
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
82
	u32 txdes0_edotr_mask;
83

84 85 86 87
	/* Used to signal the reset task of ring change request */
	unsigned int new_rx_q_entries;
	unsigned int new_tx_q_entries;

88 89 90 91
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

92
	/* Component structures */
93 94
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
95
	struct ncsi_dev *ndev;
96
	struct napi_struct napi;
97
	struct work_struct reset_task;
98
	struct mii_bus *mii_bus;
99 100

	/* Link management */
101 102
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
103
	bool use_ncsi;
104

105 106 107 108
	/* Multicast filter settings */
	u32 maht0;
	u32 maht1;

109 110 111 112 113
	/* Flow control settings */
	bool tx_pause;
	bool rx_pause;
	bool aneg_pause;

114
	/* Misc */
115
	bool need_mac_restart;
116
	bool is_aspeed;
117 118
};

119
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
120 121 122 123 124
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
125 126 127 128
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
129 130 131 132 133 134
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

135
		udelay(1);
136 137
	}

138
	netdev_err(netdev, "Hardware reset failed\n");
139 140 141
	return -EIO;
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

176
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
177 178 179 180 181 182 183 184
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

185
static void ftgmac100_initial_mac(struct ftgmac100 *priv)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
229
	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
230 231 232 233

	return 0;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void ftgmac100_config_pause(struct ftgmac100 *priv)
{
	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);

	/* Throttle tx queue when receiving pause frames */
	if (priv->rx_pause)
		fcr |= FTGMAC100_FCR_FC_EN;

	/* Enables sending pause frames when the RX queue is past a
	 * certain threshold.
	 */
	if (priv->tx_pause)
		fcr |= FTGMAC100_FCR_FCTHR_EN;

	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
}

251 252
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
253
	u32 reg, rfifo_sz, tfifo_sz;
254

255 256 257
	/* Clear stale interrupts */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
258

259
	/* Setup RX ring buffer base */
260
	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
261

262
	/* Setup TX ring buffer base */
263
	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
264 265 266 267 268 269 270 271 272 273

	/* Configure RX buffer size */
	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
		  priv->base + FTGMAC100_OFFSET_RBSR);

	/* Set RX descriptor autopoll */
	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
		  priv->base + FTGMAC100_OFFSET_APTC);

	/* Write MAC address */
274
	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
275

276 277 278 279
	/* Write multicast filter */
	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	/* Configure descriptor sizes and increase burst sizes according
	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
	 * the thresholds set based on the recommended values in the
	 * AST2400 specification.
	 */
	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
		  priv->base + FTGMAC100_OFFSET_DBLAC);

	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
	 * mitigation doesn't seem to provide any benefit with NAPI so leave
	 * it at that.
	 */
	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
		  FTGMAC100_ITC_TXINT_THR(1),
		  priv->base + FTGMAC100_OFFSET_ITC);

	/* Configure FIFO sizes in the TPAFCR register */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
	rfifo_sz = reg & 0x00000007;
	tfifo_sz = (reg >> 3) & 0x00000007;
	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
	reg &= ~0x3f000000;
	reg |= (tfifo_sz << 27);
	reg |= (rfifo_sz << 24);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
311 312
}

313
static void ftgmac100_start_hw(struct ftgmac100 *priv)
314
{
315
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
316

317 318
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
319

320 321 322 323 324 325 326 327 328
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
329

330
	/* Add other bits as needed */
331 332
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;
333 334 335 336 337 338
	if (priv->netdev->flags & IFF_PROMISC)
		maccr |= FTGMAC100_MACCR_RX_ALL;
	if (priv->netdev->flags & IFF_ALLMULTI)
		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
	else if (netdev_mc_count(priv->netdev))
		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
339

340 341 342 343
	/* Vlan filtering enabled */
	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
		maccr |= FTGMAC100_MACCR_RM_VLAN;

344
	/* Hit the HW */
345 346 347 348 349 350 351 352
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
{
	struct netdev_hw_addr *ha;

	priv->maht1 = 0;
	priv->maht0 = 0;
	netdev_for_each_mc_addr(ha, priv->netdev) {
		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);

		crc_val = (~(crc_val >> 2)) & 0x3f;
		if (crc_val >= 32)
			priv->maht1 |= 1ul << (crc_val - 32);
		else
			priv->maht0 |= 1ul << (crc_val);
	}
}

static void ftgmac100_set_rx_mode(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Setup the hash filter */
	ftgmac100_calc_mc_hash(priv);

	/* Interface down ? that's all there is to do */
	if (!netif_running(netdev))
		return;

	/* Update the HW */
	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);

	/* Reconfigure MACCR */
	ftgmac100_start_hw(priv);
}

389 390
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
391 392
{
	struct net_device *netdev = priv->netdev;
393
	struct sk_buff *skb;
394
	dma_addr_t map;
395
	int err;
396

397 398
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
399
		if (net_ratelimit())
400
			netdev_warn(netdev, "failed to allocate rx skb\n");
401 402
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
403 404 405 406 407 408 409 410 411 412 413
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
414 415
	}

416 417
	/* Store skb */
	priv->rx_skbs[entry] = skb;
418

419
	/* Store DMA address into RX desc */
420
	rxdes->rxdes3 = cpu_to_le32(map);
421 422 423 424

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

425
	/* Clean status (which resets own bit) */
426
	if (entry == (priv->rx_q_entries - 1))
427 428 429
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
430

431 432 433
	return 0;
}

434 435
static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
436
{
437
	return (pointer + 1) & (priv->rx_q_entries - 1);
438 439
}

440
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
441 442 443
{
	struct net_device *netdev = priv->netdev;

444
	if (status & FTGMAC100_RXDES0_RX_ERR)
445 446
		netdev->stats.rx_errors++;

447
	if (status & FTGMAC100_RXDES0_CRC_ERR)
448 449
		netdev->stats.rx_crc_errors++;

450 451 452
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
453 454 455 456 457 458 459 460
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
461
	unsigned int pointer, size;
462
	u32 status, csum_vlan;
463
	dma_addr_t map;
464

465 466
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
467
	rxdes = &priv->rxdes[pointer];
468

469 470 471
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

472
	/* Do we have a packet ? */
473
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
474 475
		return false;

476 477 478
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

479
	/* We don't cope with fragmented RX packets */
480 481
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
482 483
		goto drop;

484 485 486 487
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

488
	/* Any error (other than csum offload) flagged ? */
489
	if (unlikely(status & RXDES0_ANY_ERROR)) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
505 506
	}

507
	/* If the packet had no skb (failed to allocate earlier)
508 509
	 * then try to allocate one and skip
	 */
510 511 512
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
513
		goto drop;
514 515
	}

516
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
517 518
		netdev->stats.multicast++;

519 520 521 522 523
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
524
	 */
525
	if (netdev->features & NETIF_F_RXCSUM) {
526 527 528
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
529
		if ((csum_vlan & err_bits) ||
530
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
531 532 533 534
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
535

536
	/* Transfer received size to skb */
537
	skb_put(skb, size);
538

539 540 541 542 543 544
	/* Extract vlan tag */
	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       csum_vlan & 0xffff);

545
	/* Tear down DMA mapping, do necessary cache management */
546 547
	map = le32_to_cpu(rxdes->rxdes3);

548 549 550 551 552 553 554 555 556
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
557 558


559 560
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
561
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
562 563 564 565

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
566
	netdev->stats.rx_bytes += size;
567 568

	/* push packet to protocol stack */
569 570 571 572
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
573 574 575

	(*processed)++;
	return true;
576 577 578

 drop:
	/* Clean rxdes0 (which resets own bit) */
579
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
580
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
581 582
	netdev->stats.rx_dropped++;
	return true;
583 584
}

585 586
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
587
{
588
	if (index == (priv->tx_q_entries - 1))
589 590 591
		return priv->txdes0_edotr_mask;
	else
		return 0;
592 593
}

594 595
static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
596
{
597
	return (pointer + 1) & (priv->tx_q_entries - 1);
598 599
}

600 601 602 603 604 605 606 607 608
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
609
		(priv->tx_q_entries - 1);
610 611 612 613 614 615 616
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

617 618 619
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
620 621
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
622
{
623 624
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
625

626 627 628
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
629
	} else {
630 631
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
632
	}
633

634 635
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
636
		dev_kfree_skb(skb);
637 638 639
	priv->tx_skbs[pointer] = NULL;
}

640 641 642 643 644
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
645
	unsigned int pointer;
646
	u32 ctl_stat;
647

648
	pointer = priv->tx_clean_pointer;
649
	txdes = &priv->txdes[pointer];
650

651 652
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
653 654
		return false;

655
	skb = priv->tx_skbs[pointer];
656 657
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
658 659
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
660

661
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
662 663 664 665 666 667

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
668 669 670 671 672
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
673
		;
674 675 676 677 678 679 680 681 682 683 684 685 686 687

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
688 689
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		u8 ip_proto = ip_hdr(skb)->protocol;

		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
		switch(ip_proto) {
		case IPPROTO_TCP:
			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
			return true;
		case IPPROTO_UDP:
			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
			return true;
		case IPPROTO_IP:
			return true;
		}
	}
	return skb_checksum_help(skb) == 0;
}

710 711
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
712
{
713
	struct ftgmac100 *priv = netdev_priv(netdev);
714 715
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
716
	u32 f_ctl_stat, ctl_stat, csum_vlan;
717 718
	dma_addr_t map;

719 720 721 722 723 724 725
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
726 727 728
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
729
		goto drop;
730 731
	}

732 733 734 735 736 737 738 739 740 741 742
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
743
		if (net_ratelimit())
744
			netdev_err(netdev, "map tx packet head failed\n");
745
		goto drop;
746
	}
747

748 749
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
750
	txdes = first = &priv->txdes[pointer];
751

752 753 754
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
755
	priv->tx_skbs[pointer] = skb;
756 757 758 759 760 761 762
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
763 764

	/* Setup HW checksumming */
765
	csum_vlan = 0;
766 767 768
	if (skb->ip_summed == CHECKSUM_PARTIAL &&
	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
		goto drop;
769 770 771 772 773 774 775

	/* Add VLAN tag */
	if (skb_vlan_tag_present(skb)) {
		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
	}

776
	txdes->txdes1 = cpu_to_le32(csum_vlan);
777

778
	/* Next descriptor */
779
	pointer = ftgmac100_next_tx_pointer(priv, pointer);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
795
		txdes = &priv->txdes[pointer];
796 797 798 799 800 801 802 803 804 805
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
806
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
807 808
	}

809
	/* Order the previous packet and descriptor udpates
810
	 * before setting the OWN bit on the first descriptor.
811 812
	 */
	dma_wmb();
813
	first->txdes0 = cpu_to_le32(f_ctl_stat);
814

815
	/* Update next TX pointer */
816
	priv->tx_pointer = pointer;
817

818 819 820 821 822
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
823
		netif_stop_queue(netdev);
824 825 826 827 828
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
829

830 831
	/* Poke transmitter to read the updated TX descriptors */
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
832

833 834
	return NETDEV_TX_OK;

835 836 837 838 839 840
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
841 842
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
843 844 845

	/* Then all fragments */
	for (j = 0; j < i; j++) {
846 847
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
		txdes = &priv->txdes[pointer];
848 849 850
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
851 852 853 854 855 856
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
857 858 859 860 861
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

862 863 864 865 866 867 868
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

869
	/* Free all RX buffers */
870 871
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
872
		struct sk_buff *skb = priv->rx_skbs[i];
873
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
874

875
		if (!skb)
876 877
			continue;

878 879 880
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
881 882
	}

883
	/* Free all TX buffers */
884 885
	for (i = 0; i < priv->tx_q_entries; i++) {
		struct ftgmac100_txdes *txdes = &priv->txdes[i];
886
		struct sk_buff *skb = priv->tx_skbs[i];
887

888 889 890 891
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
892 893 894
	}
}

895
static void ftgmac100_free_rings(struct ftgmac100 *priv)
896
{
897 898 899 900
	/* Free skb arrays */
	kfree(priv->rx_skbs);
	kfree(priv->tx_skbs);

901
	/* Free descriptors */
902 903 904 905 906 907 908 909 910 911 912
	if (priv->rxdes)
		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_rxdes),
				  priv->rxdes, priv->rxdes_dma);
	priv->rxdes = NULL;

	if (priv->txdes)
		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_txdes),
				  priv->txdes, priv->txdes_dma);
	priv->txdes = NULL;
913 914 915 916 917

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
918
}
919

920 921
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
922 923 924 925 926 927 928 929 930 931
	/* Allocate skb arrays */
	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->rx_skbs)
		return -ENOMEM;
	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->tx_skbs)
		return -ENOMEM;

932
	/* Allocate descriptors */
933 934 935 936 937 938 939 940 941 942 943
	priv->rxdes = dma_zalloc_coherent(priv->dev,
					  MAX_RX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_rxdes),
					  &priv->rxdes_dma, GFP_KERNEL);
	if (!priv->rxdes)
		return -ENOMEM;
	priv->txdes = dma_zalloc_coherent(priv->dev,
					  MAX_TX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_txdes),
					  &priv->txdes_dma, GFP_KERNEL);
	if (!priv->txdes)
944 945
		return -ENOMEM;

946 947 948 949 950 951 952 953
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

954 955 956 957 958
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
959 960
	struct ftgmac100_rxdes *rxdes = NULL;
	struct ftgmac100_txdes *txdes = NULL;
961 962
	int i;

963 964 965 966 967 968 969
	/* Update entries counts */
	priv->rx_q_entries = priv->new_rx_q_entries;
	priv->tx_q_entries = priv->new_tx_q_entries;

	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

970
	/* Initialize RX ring */
971 972
	for (i = 0; i < priv->rx_q_entries; i++) {
		rxdes = &priv->rxdes[i];
973
		rxdes->rxdes0 = 0;
974
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
975
	}
976 977
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
978

979 980 981
	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

982
	/* Initialize TX ring */
983 984
	for (i = 0; i < priv->tx_q_entries; i++) {
		txdes = &priv->txdes[i];
985 986 987
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
988 989 990 991 992
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
993

994 995
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
996

997
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
998
			return -ENOMEM;
999 1000 1001 1002 1003 1004 1005
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
1006
	struct phy_device *phydev = netdev->phydev;
1007
	bool tx_pause, rx_pause;
1008
	int new_speed;
1009

1010 1011 1012 1013 1014 1015
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	/* Grab pause settings from PHY if configured to do so */
	if (priv->aneg_pause) {
		rx_pause = tx_pause = phydev->pause;
		if (phydev->asym_pause)
			tx_pause = !rx_pause;
	} else {
		rx_pause = priv->rx_pause;
		tx_pause = priv->tx_pause;
	}

	/* Link hasn't changed, do nothing */
1027
	if (phydev->speed == priv->cur_speed &&
1028 1029 1030
	    phydev->duplex == priv->cur_duplex &&
	    rx_pause == priv->rx_pause &&
	    tx_pause == priv->tx_pause)
1031 1032
		return;

1033 1034 1035 1036 1037 1038 1039 1040
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;
1041 1042
	priv->rx_pause = rx_pause;
	priv->tx_pause = tx_pause;
1043 1044 1045 1046

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
1047

1048
	/* Disable all interrupts */
1049 1050
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

1051 1052
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
1053 1054
}

1055
static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1056 1057
{
	struct net_device *netdev = priv->netdev;
1058
	struct phy_device *phydev;
1059

1060
	phydev = phy_find_first(priv->mii_bus);
1061 1062 1063 1064 1065
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
1066
	phydev = phy_connect(netdev, phydev_name(phydev),
1067
			     &ftgmac100_adjust_link, intf);
1068 1069 1070 1071 1072 1073

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

1074 1075 1076 1077 1078 1079
	/* Indicate that we support PAUSE frames (see comment in
	 * Documentation/networking/phy.txt)
	 */
	phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
	phydev->advertising = phydev->supported;

1080 1081 1082
	/* Display what we found */
	phy_attached_info(phydev);

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
1160 1161 1162
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void ftgmac100_get_ringparam(struct net_device *netdev,
				    struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	memset(ering, 0, sizeof(*ering));
	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
	ering->rx_pending = priv->rx_q_entries;
	ering->tx_pending = priv->tx_q_entries;
}

static int ftgmac100_set_ringparam(struct net_device *netdev,
				   struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
	    !is_power_of_2(ering->rx_pending) ||
	    !is_power_of_2(ering->tx_pending))
		return -EINVAL;

	priv->new_rx_q_entries = ering->rx_pending;
	priv->new_tx_q_entries = ering->tx_pending;
	if (netif_running(netdev))
		schedule_work(&priv->reset_task);

	return 0;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
static void ftgmac100_get_pauseparam(struct net_device *netdev,
				     struct ethtool_pauseparam *pause)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	pause->autoneg = priv->aneg_pause;
	pause->tx_pause = priv->tx_pause;
	pause->rx_pause = priv->rx_pause;
}

static int ftgmac100_set_pauseparam(struct net_device *netdev,
				    struct ethtool_pauseparam *pause)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct phy_device *phydev = netdev->phydev;

	priv->aneg_pause = pause->autoneg;
	priv->tx_pause = pause->tx_pause;
	priv->rx_pause = pause->rx_pause;

	if (phydev) {
		phydev->advertising &= ~ADVERTISED_Pause;
		phydev->advertising &= ~ADVERTISED_Asym_Pause;

		if (pause->rx_pause) {
			phydev->advertising |= ADVERTISED_Pause;
			phydev->advertising |= ADVERTISED_Asym_Pause;
		}

		if (pause->tx_pause)
			phydev->advertising ^= ADVERTISED_Asym_Pause;
	}
	if (netif_running(netdev)) {
		if (phydev && priv->aneg_pause)
			phy_start_aneg(phydev);
		else
			ftgmac100_config_pause(priv);
	}

	return 0;
}

1240 1241 1242
static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
1243 1244
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1245
	.nway_reset		= phy_ethtool_nway_reset,
1246 1247
	.get_ringparam		= ftgmac100_get_ringparam,
	.set_ringparam		= ftgmac100_set_ringparam,
1248 1249
	.get_pauseparam		= ftgmac100_get_pauseparam,
	.set_pauseparam		= ftgmac100_set_pauseparam,
1250 1251 1252 1253 1254 1255
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
1256
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1299 1300 1301 1302

	return IRQ_HANDLED;
}

1303 1304
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
1305
	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1306 1307 1308 1309 1310

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1311 1312 1313
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1314 1315
	int work_done = 0;
	bool more;
1316

1317 1318 1319
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1320

1321
	/* Handle RX packets */
1322
	do {
1323 1324
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1325 1326


1327 1328 1329 1330 1331
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1332

1333 1334 1335
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1336 1337
	}

1338 1339 1340 1341 1342
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1343

1344
	if (work_done < budget) {
1345 1346 1347 1348 1349 1350 1351
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1352 1353 1354 1355 1356 1357 1358

		/* Push the above (and provides a barrier vs. subsequent
		 * reads of the descriptor).
		 */
		ioread32(priv->base + FTGMAC100_OFFSET_ISR);

		/* Check RX and TX descriptors for more work to do */
1359 1360
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1361 1362 1363
			return budget;

		/* deschedule NAPI */
1364 1365 1366
		napi_complete(napi);

		/* enable all interrupts */
1367
		iowrite32(FTGMAC100_INT_ALL,
1368
			  priv->base + FTGMAC100_OFFSET_IER);
1369 1370
	}

1371
	return work_done;
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
1388
	ftgmac100_config_pause(priv);
1389 1390 1391 1392 1393 1394 1395
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1396
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1397 1398 1399 1400

	return err;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1429
	err = ftgmac100_reset_and_config_mac(priv);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1450 1451 1452 1453 1454
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1455 1456
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1457
	if (err) {
1458 1459
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1460 1461
	}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1476 1477
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1478 1479 1480
	if (err)
		goto err_hw;

1481 1482 1483
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1484 1485 1486 1487 1488 1489 1490
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1491 1492 1493 1494 1495 1496
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1497

1498 1499
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1500
		phy_start(netdev->phydev);
1501 1502
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1503
		netif_carrier_on(netdev);
1504

1505
		/* Start the NCSI device */
G
Gavin Shan 已提交
1506 1507 1508 1509 1510
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1511 1512
	return 0;

1513
 err_ncsi:
G
Gavin Shan 已提交
1514 1515
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1516 1517
 err_alloc:
	ftgmac100_free_buffers(priv);
1518
	free_irq(netdev->irq, netdev);
1519
 err_irq:
1520
	netif_napi_del(&priv->napi);
1521
 err_hw:
1522
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1523
	ftgmac100_free_rings(priv);
1524 1525 1526 1527 1528 1529 1530
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1531 1532 1533 1534 1535 1536 1537 1538
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1539 1540 1541 1542 1543
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1544
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1545 1546
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1547 1548
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1549 1550

	ftgmac100_stop_hw(priv);
1551
	free_irq(netdev->irq, netdev);
1552
	ftgmac100_free_buffers(priv);
1553
	ftgmac100_free_rings(priv);
1554 1555 1556 1557 1558 1559 1560

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1561 1562 1563
	if (!netdev->phydev)
		return -ENXIO;

1564
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static int ftgmac100_set_features(struct net_device *netdev,
				  netdev_features_t features)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	netdev_features_t changed = netdev->features ^ features;

	if (!netif_running(netdev))
		return 0;

	/* Update the vlan filtering bit */
	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
		u32 maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
			maccr |= FTGMAC100_MACCR_RM_VLAN;
		else
			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	}

	return 0;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
#ifdef CONFIG_NET_POLL_CONTROLLER
static void ftgmac100_poll_controller(struct net_device *netdev)
{
	unsigned long flags;

	local_irq_save(flags);
	ftgmac100_interrupt(netdev->irq, netdev);
	local_irq_restore(flags);
}
#endif

1613 1614 1615 1616
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1617
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1618 1619
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1620
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1621
	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1622
	.ndo_set_features	= ftgmac100_set_features,
1623 1624 1625
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= ftgmac100_poll_controller,
#endif
1626 1627
};

1628 1629 1630 1631
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
1632 1633
	int phy_intf = PHY_INTERFACE_MODE_RGMII;
	struct device_node *np = pdev->dev.of_node;
1634
	int i, err = 0;
1635
	u32 reg;
1636 1637 1638 1639 1640 1641

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1642
	if (priv->is_aspeed) {
1643 1644 1645 1646 1647 1648
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/* Get PHY mode from device-tree */
	if (np) {
		/* Default to RGMII. It's a gigabit part after all */
		phy_intf = of_get_phy_mode(np);
		if (phy_intf < 0)
			phy_intf = PHY_INTERFACE_MODE_RGMII;

		/* Aspeed only supports these. I don't know about other IP
		 * block vendors so I'm going to just let them through for
		 * now. Note that this is only a warning if for some obscure
		 * reason the DT really means to lie about it or it's a newer
		 * part we don't know about.
		 *
		 * On the Aspeed SoC there are additionally straps and SCU
		 * control bits that could tell us what the interface is
		 * (or allow us to configure it while the IP block is held
		 * in reset). For now I chose to keep this driver away from
		 * those SoC specific bits and assume the device-tree is
		 * right and the SCU has been configured properly by pinmux
		 * or the firmware.
		 */
		if (priv->is_aspeed &&
		    phy_intf != PHY_INTERFACE_MODE_RMII &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
			netdev_warn(netdev,
				   "Unsupported PHY mode %s !\n",
				   phy_modes(phy_intf));
		}
	}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

1698
	err = ftgmac100_mii_probe(priv, phy_intf);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1734 1735 1736 1737 1738 1739
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
1740
	struct device_node *np;
G
Gavin Shan 已提交
1741
	int err = 0;
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1763
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1764
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1765
	netdev->watchdog_timeo = 5 * HZ;
1766 1767 1768 1769 1770 1771 1772

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1773
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1791
	netdev->irq = irq;
1792

1793 1794 1795 1796 1797
	/* Enable pause */
	priv->tx_pause = true;
	priv->rx_pause = true;
	priv->aneg_pause = true;

1798
	/* MAC address from chip or random one */
1799
	ftgmac100_initial_mac(priv);
1800

1801 1802 1803
	np = pdev->dev.of_node;
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1804 1805
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
1806
		priv->is_aspeed = true;
1807 1808 1809 1810 1811
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

1812
	if (np && of_get_property(np, "use-ncsi", NULL)) {
G
Gavin Shan 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

1830 1831 1832 1833
	/* Default ring sizes */
	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;

1834
	/* Base feature set */
1835
	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1836 1837
		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
		NETIF_F_HW_VLAN_CTAG_TX;
1838 1839 1840

	/* AST2400  doesn't have working HW checksum generation */
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1841
		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1842
	if (np && of_get_property(np, "no-hw-checksum", NULL))
1843 1844
		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
	netdev->features |= netdev->hw_features;
G
Gavin Shan 已提交
1845

1846 1847 1848 1849 1850 1851 1852
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1853
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1854 1855 1856

	return 0;

G
Gavin Shan 已提交
1857
err_ncsi_dev:
1858
err_register_netdev:
1859 1860
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1871
static int ftgmac100_remove(struct platform_device *pdev)
1872 1873 1874 1875 1876 1877 1878 1879
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1880 1881 1882 1883 1884 1885

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1886
	ftgmac100_destroy_mdio(netdev);
1887 1888 1889 1890 1891 1892 1893 1894 1895

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1896 1897 1898 1899 1900 1901
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1902
static struct platform_driver ftgmac100_driver = {
1903
	.probe	= ftgmac100_probe,
1904
	.remove	= ftgmac100_remove,
1905 1906 1907
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1908 1909
	},
};
1910
module_platform_driver(ftgmac100_driver);
1911 1912 1913 1914

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");