ftgmac100.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Faraday FTGMAC100 Gigabit Ethernet
 *
 * (C) Copyright 2009-2011 Faraday Technology
 * Po-Yu Chuang <ratbert@faraday-tech.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
27
#include <linux/interrupt.h>
28 29 30
#include <linux/io.h>
#include <linux/module.h>
#include <linux/netdevice.h>
31
#include <linux/of.h>
32 33
#include <linux/phy.h>
#include <linux/platform_device.h>
34
#include <linux/property.h>
35
#include <net/ip.h>
G
Gavin Shan 已提交
36
#include <net/ncsi.h>
37 38 39 40 41 42

#include "ftgmac100.h"

#define DRV_NAME	"ftgmac100"
#define DRV_VERSION	"0.7"

43 44 45 46 47 48 49
/* Arbitrary values, I am not sure the HW has limits */
#define MAX_RX_QUEUE_ENTRIES	1024
#define MAX_TX_QUEUE_ENTRIES	1024
#define MIN_RX_QUEUE_ENTRIES	32
#define MIN_TX_QUEUE_ENTRIES	32

/* Defaults */
50 51
#define DEF_RX_QUEUE_ENTRIES	128
#define DEF_TX_QUEUE_ENTRIES	128
52

53 54
#define MAX_PKT_SIZE		1536
#define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
55

56
/* Min number of tx ring entries before stopping queue */
57
#define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
58

59
struct ftgmac100 {
60
	/* Registers */
61 62 63
	struct resource *res;
	void __iomem *base;

64
	/* Rx ring */
65 66 67 68
	unsigned int rx_q_entries;
	struct ftgmac100_rxdes *rxdes;
	dma_addr_t rxdes_dma;
	struct sk_buff **rx_skbs;
69
	unsigned int rx_pointer;
70 71 72
	u32 rxdes0_edorr_mask;

	/* Tx ring */
73 74 75 76
	unsigned int tx_q_entries;
	struct ftgmac100_txdes *txdes;
	dma_addr_t txdes_dma;
	struct sk_buff **tx_skbs;
77 78
	unsigned int tx_clean_pointer;
	unsigned int tx_pointer;
79
	u32 txdes0_edotr_mask;
80

81 82 83 84
	/* Used to signal the reset task of ring change request */
	unsigned int new_rx_q_entries;
	unsigned int new_tx_q_entries;

85 86 87 88
	/* Scratch page to use when rx skb alloc fails */
	void *rx_scratch;
	dma_addr_t rx_scratch_dma;

89
	/* Component structures */
90 91
	struct net_device *netdev;
	struct device *dev;
G
Gavin Shan 已提交
92
	struct ncsi_dev *ndev;
93
	struct napi_struct napi;
94
	struct work_struct reset_task;
95
	struct mii_bus *mii_bus;
96 97

	/* Link management */
98 99
	int cur_speed;
	int cur_duplex;
G
Gavin Shan 已提交
100
	bool use_ncsi;
101

102
	/* Misc */
103
	bool need_mac_restart;
104
	bool is_aspeed;
105 106
};

107
static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
108 109 110 111 112
{
	struct net_device *netdev = priv->netdev;
	int i;

	/* NOTE: reset clears all registers */
113 114 115 116
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
		  priv->base + FTGMAC100_OFFSET_MACCR);
	for (i = 0; i < 50; i++) {
117 118 119 120 121 122
		unsigned int maccr;

		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
		if (!(maccr & FTGMAC100_MACCR_SW_RST))
			return 0;

123
		udelay(1);
124 125
	}

126
	netdev_err(netdev, "Hardware reset failed\n");
127 128 129
	return -EIO;
}

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
{
	u32 maccr = 0;

	switch (priv->cur_speed) {
	case SPEED_10:
	case 0: /* no link */
		break;

	case SPEED_100:
		maccr |= FTGMAC100_MACCR_FAST_MODE;
		break;

	case SPEED_1000:
		maccr |= FTGMAC100_MACCR_GIGA_MODE;
		break;
	default:
		netdev_err(priv->netdev, "Unknown speed %d !\n",
			   priv->cur_speed);
		break;
	}

	/* (Re)initialize the queue pointers */
	priv->rx_pointer = 0;
	priv->tx_clean_pointer = 0;
	priv->tx_pointer = 0;

	/* The doc says reset twice with 10us interval */
	if (ftgmac100_reset_mac(priv, maccr))
		return -EIO;
	usleep_range(10, 1000);
	return ftgmac100_reset_mac(priv, maccr);
}

164
static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
165 166 167 168 169 170 171 172
{
	unsigned int maddr = mac[0] << 8 | mac[1];
	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];

	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
}

173
static void ftgmac100_initial_mac(struct ftgmac100 *priv)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
{
	u8 mac[ETH_ALEN];
	unsigned int m;
	unsigned int l;
	void *addr;

	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
	if (addr) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
			 mac);
		return;
	}

	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);

	mac[0] = (m >> 8) & 0xff;
	mac[1] = m & 0xff;
	mac[2] = (l >> 24) & 0xff;
	mac[3] = (l >> 16) & 0xff;
	mac[4] = (l >> 8) & 0xff;
	mac[5] = l & 0xff;

	if (is_valid_ether_addr(mac)) {
		ether_addr_copy(priv->netdev->dev_addr, mac);
		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
	} else {
		eth_hw_addr_random(priv->netdev);
		dev_info(priv->dev, "Generated random MAC address %pM\n",
			 priv->netdev->dev_addr);
	}
}

static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;

	ret = eth_prepare_mac_addr_change(dev, p);
	if (ret < 0)
		return ret;

	eth_commit_mac_addr_change(dev, p);
217
	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
218 219 220 221

	return 0;
}

222 223
static void ftgmac100_init_hw(struct ftgmac100 *priv)
{
224
	u32 reg, rfifo_sz, tfifo_sz;
225

226 227 228
	/* Clear stale interrupts */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
229

230
	/* Setup RX ring buffer base */
231
	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
232

233
	/* Setup TX ring buffer base */
234
	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
235 236 237 238 239 240 241 242 243 244

	/* Configure RX buffer size */
	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
		  priv->base + FTGMAC100_OFFSET_RBSR);

	/* Set RX descriptor autopoll */
	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
		  priv->base + FTGMAC100_OFFSET_APTC);

	/* Write MAC address */
245
	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	/* Configure descriptor sizes and increase burst sizes according
	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
	 * the thresholds set based on the recommended values in the
	 * AST2400 specification.
	 */
	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
		  priv->base + FTGMAC100_OFFSET_DBLAC);

	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
	 * mitigation doesn't seem to provide any benefit with NAPI so leave
	 * it at that.
	 */
	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
		  FTGMAC100_ITC_TXINT_THR(1),
		  priv->base + FTGMAC100_OFFSET_ITC);

	/* Configure FIFO sizes in the TPAFCR register */
	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
	rfifo_sz = reg & 0x00000007;
	tfifo_sz = (reg >> 3) & 0x00000007;
	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
	reg &= ~0x3f000000;
	reg |= (tfifo_sz << 27);
	reg |= (rfifo_sz << 24);
	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
278 279
}

280
static void ftgmac100_start_hw(struct ftgmac100 *priv)
281
{
282
	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
283

284 285
	/* Keep the original GMAC and FAST bits */
	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
286

287 288 289 290 291 292 293 294 295
	/* Add all the main enable bits */
	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
		 FTGMAC100_MACCR_RXDMA_EN	|
		 FTGMAC100_MACCR_TXMAC_EN	|
		 FTGMAC100_MACCR_RXMAC_EN	|
		 FTGMAC100_MACCR_CRC_APD	|
		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
		 FTGMAC100_MACCR_RX_RUNT	|
		 FTGMAC100_MACCR_RX_BROADPKT;
296

297
	/* Add other bits as needed */
298 299 300
	if (priv->cur_duplex == DUPLEX_FULL)
		maccr |= FTGMAC100_MACCR_FULLDUP;

301
	/* Hit the HW */
302 303 304 305 306 307 308 309
	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
}

static void ftgmac100_stop_hw(struct ftgmac100 *priv)
{
	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
}

310 311
static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
312 313
{
	struct net_device *netdev = priv->netdev;
314
	struct sk_buff *skb;
315
	dma_addr_t map;
316
	int err;
317

318 319
	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
	if (unlikely(!skb)) {
320
		if (net_ratelimit())
321
			netdev_warn(netdev, "failed to allocate rx skb\n");
322 323
		err = -ENOMEM;
		map = priv->rx_scratch_dma;
324 325 326 327 328 329 330 331 332 333 334
	} else {
		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
				     DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(priv->dev, map))) {
			if (net_ratelimit())
				netdev_err(netdev, "failed to map rx page\n");
			dev_kfree_skb_any(skb);
			map = priv->rx_scratch_dma;
			skb = NULL;
			err = -ENOMEM;
		}
335 336
	}

337 338
	/* Store skb */
	priv->rx_skbs[entry] = skb;
339

340
	/* Store DMA address into RX desc */
341
	rxdes->rxdes3 = cpu_to_le32(map);
342 343 344 345

	/* Ensure the above is ordered vs clearing the OWN bit */
	dma_wmb();

346
	/* Clean status (which resets own bit) */
347
	if (entry == (priv->rx_q_entries - 1))
348 349 350
		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
	else
		rxdes->rxdes0 = 0;
351

352 353 354
	return 0;
}

355 356
static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
357
{
358
	return (pointer + 1) & (priv->rx_q_entries - 1);
359 360
}

361
static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
362 363 364
{
	struct net_device *netdev = priv->netdev;

365
	if (status & FTGMAC100_RXDES0_RX_ERR)
366 367
		netdev->stats.rx_errors++;

368
	if (status & FTGMAC100_RXDES0_CRC_ERR)
369 370
		netdev->stats.rx_crc_errors++;

371 372 373
	if (status & (FTGMAC100_RXDES0_FTL |
		      FTGMAC100_RXDES0_RUNT |
		      FTGMAC100_RXDES0_RX_ODD_NB))
374 375 376 377 378 379 380 381
		netdev->stats.rx_length_errors++;
}

static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_rxdes *rxdes;
	struct sk_buff *skb;
382
	unsigned int pointer, size;
383
	u32 status, csum_vlan;
384
	dma_addr_t map;
385

386 387
	/* Grab next RX descriptor */
	pointer = priv->rx_pointer;
388
	rxdes = &priv->rxdes[pointer];
389

390 391 392
	/* Grab descriptor status */
	status = le32_to_cpu(rxdes->rxdes0);

393
	/* Do we have a packet ? */
394
	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
395 396
		return false;

397 398 399
	/* Order subsequent reads with the test for the ready bit */
	dma_rmb();

400
	/* We don't cope with fragmented RX packets */
401 402
	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
		     !(status & FTGMAC100_RXDES0_LRS)))
403 404
		goto drop;

405 406 407 408
	/* Grab received size and csum vlan field in the descriptor */
	size = status & FTGMAC100_RXDES0_VDBC;
	csum_vlan = le32_to_cpu(rxdes->rxdes1);

409
	/* Any error (other than csum offload) flagged ? */
410
	if (unlikely(status & RXDES0_ANY_ERROR)) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		/* Correct for incorrect flagging of runt packets
		 * with vlan tags... Just accept a runt packet that
		 * has been flagged as vlan and whose size is at
		 * least 60 bytes.
		 */
		if ((status & FTGMAC100_RXDES0_RUNT) &&
		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
		    (size >= 60))
			status &= ~FTGMAC100_RXDES0_RUNT;

		/* Any error still in there ? */
		if (status & RXDES0_ANY_ERROR) {
			ftgmac100_rx_packet_error(priv, status);
			goto drop;
		}
426 427
	}

428
	/* If the packet had no skb (failed to allocate earlier)
429 430
	 * then try to allocate one and skip
	 */
431 432 433
	skb = priv->rx_skbs[pointer];
	if (!unlikely(skb)) {
		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
434
		goto drop;
435 436
	}

437
	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
438 439
		netdev->stats.multicast++;

440 441 442 443 444
	/* If the HW found checksum errors, bounce it to software.
	 *
	 * If we didn't, we need to see if the packet was recognized
	 * by HW as one of the supported checksummed protocols before
	 * we accept the HW test results.
445
	 */
446
	if (netdev->features & NETIF_F_RXCSUM) {
447 448 449
		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
450
		if ((csum_vlan & err_bits) ||
451
		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
452 453 454 455
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->ip_summed = CHECKSUM_UNNECESSARY;
	}
456

457
	/* Transfer received size to skb */
458
	skb_put(skb, size);
459

460
	/* Tear down DMA mapping, do necessary cache management */
461 462
	map = le32_to_cpu(rxdes->rxdes3);

463 464 465 466 467 468 469 470 471
#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
	/* When we don't have an iommu, we can save cycles by not
	 * invalidating the cache for the part of the packet that
	 * wasn't received.
	 */
	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
#else
	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
#endif
472 473


474 475
	/* Resplenish rx ring */
	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
476
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
477 478 479 480

	skb->protocol = eth_type_trans(skb, netdev);

	netdev->stats.rx_packets++;
481
	netdev->stats.rx_bytes += size;
482 483

	/* push packet to protocol stack */
484 485 486 487
	if (skb->ip_summed == CHECKSUM_NONE)
		netif_receive_skb(skb);
	else
		napi_gro_receive(&priv->napi, skb);
488 489 490

	(*processed)++;
	return true;
491 492 493

 drop:
	/* Clean rxdes0 (which resets own bit) */
494
	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
495
	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
496 497
	netdev->stats.rx_dropped++;
	return true;
498 499
}

500 501
static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
				     unsigned int index)
502
{
503
	if (index == (priv->tx_q_entries - 1))
504 505 506
		return priv->txdes0_edotr_mask;
	else
		return 0;
507 508
}

509 510
static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
					      unsigned int pointer)
511
{
512
	return (pointer + 1) & (priv->tx_q_entries - 1);
513 514
}

515 516 517 518 519 520 521 522 523
static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
{
	/* Returns the number of available slots in the TX queue
	 *
	 * This always leaves one free slot so we don't have to
	 * worry about empty vs. full, and this simplifies the
	 * test for ftgmac100_tx_buf_cleanable() below
	 */
	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
524
		(priv->tx_q_entries - 1);
525 526 527 528 529 530 531
}

static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
{
	return priv->tx_pointer != priv->tx_clean_pointer;
}

532 533 534
static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
				     unsigned int pointer,
				     struct sk_buff *skb,
535 536
				     struct ftgmac100_txdes *txdes,
				     u32 ctl_stat)
537
{
538 539
	dma_addr_t map = le32_to_cpu(txdes->txdes3);
	size_t len;
540

541 542 543
	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
		len = skb_headlen(skb);
		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
544
	} else {
545 546
		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
547
	}
548

549 550
	/* Free SKB on last segment */
	if (ctl_stat & FTGMAC100_TXDES0_LTS)
551
		dev_kfree_skb(skb);
552 553 554
	priv->tx_skbs[pointer] = NULL;
}

555 556 557 558 559
static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
	struct ftgmac100_txdes *txdes;
	struct sk_buff *skb;
560
	unsigned int pointer;
561
	u32 ctl_stat;
562

563
	pointer = priv->tx_clean_pointer;
564
	txdes = &priv->txdes[pointer];
565

566 567
	ctl_stat = le32_to_cpu(txdes->txdes0);
	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
568 569
		return false;

570
	skb = priv->tx_skbs[pointer];
571 572
	netdev->stats.tx_packets++;
	netdev->stats.tx_bytes += skb->len;
573 574
	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
575

576
	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
577 578 579 580 581 582

	return true;
}

static void ftgmac100_tx_complete(struct ftgmac100 *priv)
{
583 584 585 586 587
	struct net_device *netdev = priv->netdev;

	/* Process all completed packets */
	while (ftgmac100_tx_buf_cleanable(priv) &&
	       ftgmac100_tx_complete_packet(priv))
588
		;
589 590 591 592 593 594 595 596 597 598 599 600 601 602

	/* Restart queue if needed */
	smp_mb();
	if (unlikely(netif_queue_stopped(netdev) &&
		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
		struct netdev_queue *txq;

		txq = netdev_get_tx_queue(netdev, 0);
		__netif_tx_lock(txq, smp_processor_id());
		if (netif_queue_stopped(netdev) &&
		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
		__netif_tx_unlock(txq);
	}
603 604
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
{
	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
		u8 ip_proto = ip_hdr(skb)->protocol;

		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
		switch(ip_proto) {
		case IPPROTO_TCP:
			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
			return true;
		case IPPROTO_UDP:
			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
			return true;
		case IPPROTO_IP:
			return true;
		}
	}
	return skb_checksum_help(skb) == 0;
}

625 626
static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
				     struct net_device *netdev)
627
{
628
	struct ftgmac100 *priv = netdev_priv(netdev);
629 630
	struct ftgmac100_txdes *txdes, *first;
	unsigned int pointer, nfrags, len, i, j;
631
	u32 f_ctl_stat, ctl_stat, csum_vlan;
632 633
	dma_addr_t map;

634 635 636 637 638 639 640
	/* The HW doesn't pad small frames */
	if (eth_skb_pad(skb)) {
		netdev->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}

	/* Reject oversize packets */
641 642 643
	if (unlikely(skb->len > MAX_PKT_SIZE)) {
		if (net_ratelimit())
			netdev_dbg(netdev, "tx packet too big\n");
644
		goto drop;
645 646
	}

647 648 649 650 651 652 653 654 655 656 657
	/* Do we have a limit on #fragments ? I yet have to get a reply
	 * from Aspeed. If there's one I haven't hit it.
	 */
	nfrags = skb_shinfo(skb)->nr_frags;

	/* Get header len */
	len = skb_headlen(skb);

	/* Map the packet head */
	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(priv->dev, map)) {
658
		if (net_ratelimit())
659
			netdev_err(netdev, "map tx packet head failed\n");
660
		goto drop;
661
	}
662

663 664
	/* Grab the next free tx descriptor */
	pointer = priv->tx_pointer;
665
	txdes = first = &priv->txdes[pointer];
666

667 668 669
	/* Setup it up with the packet head. Don't write the head to the
	 * ring just yet
	 */
670
	priv->tx_skbs[pointer] = skb;
671 672 673 674 675 676 677
	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
	if (nfrags == 0)
		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
	txdes->txdes3 = cpu_to_le32(map);
678 679

	/* Setup HW checksumming */
680
	csum_vlan = 0;
681 682 683
	if (skb->ip_summed == CHECKSUM_PARTIAL &&
	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
		goto drop;
684
	txdes->txdes1 = cpu_to_le32(csum_vlan);
685

686
	/* Next descriptor */
687
	pointer = ftgmac100_next_tx_pointer(priv, pointer);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	/* Add the fragments */
	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

		len = frag->size;

		/* Map it */
		map = skb_frag_dma_map(priv->dev, frag, 0, len,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(priv->dev, map))
			goto dma_err;

		/* Setup descriptor */
		priv->tx_skbs[pointer] = skb;
703
		txdes = &priv->txdes[pointer];
704 705 706 707 708 709 710 711 712 713
		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
		if (i == (nfrags - 1))
			ctl_stat |= FTGMAC100_TXDES0_LTS;
		txdes->txdes0 = cpu_to_le32(ctl_stat);
		txdes->txdes1 = 0;
		txdes->txdes3 = cpu_to_le32(map);

		/* Next one */
714
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
715 716
	}

717
	/* Order the previous packet and descriptor udpates
718
	 * before setting the OWN bit on the first descriptor.
719 720
	 */
	dma_wmb();
721
	first->txdes0 = cpu_to_le32(f_ctl_stat);
722

723
	/* Update next TX pointer */
724
	priv->tx_pointer = pointer;
725

726 727 728 729 730
	/* If there isn't enough room for all the fragments of a new packet
	 * in the TX ring, stop the queue. The sequence below is race free
	 * vs. a concurrent restart in ftgmac100_poll()
	 */
	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
731
		netif_stop_queue(netdev);
732 733 734 735 736
		/* Order the queue stop with the test below */
		smp_mb();
		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
			netif_wake_queue(netdev);
	}
737

738 739
	/* Poke transmitter to read the updated TX descriptors */
	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
740

741 742
	return NETDEV_TX_OK;

743 744 745 746 747 748
 dma_err:
	if (net_ratelimit())
		netdev_err(netdev, "map tx fragment failed\n");

	/* Free head */
	pointer = priv->tx_pointer;
749 750
	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
751 752 753

	/* Then all fragments */
	for (j = 0; j < i; j++) {
754 755
		pointer = ftgmac100_next_tx_pointer(priv, pointer);
		txdes = &priv->txdes[pointer];
756 757 758
		ctl_stat = le32_to_cpu(txdes->txdes0);
		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
759 760 761 762 763 764
	}

	/* This cannot be reached if we successfully mapped the
	 * last fragment, so we know ftgmac100_free_tx_packet()
	 * hasn't freed the skb yet.
	 */
765 766 767 768 769
 drop:
	/* Drop the packet */
	dev_kfree_skb_any(skb);
	netdev->stats.tx_dropped++;

770 771 772 773 774 775 776
	return NETDEV_TX_OK;
}

static void ftgmac100_free_buffers(struct ftgmac100 *priv)
{
	int i;

777
	/* Free all RX buffers */
778 779
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
780
		struct sk_buff *skb = priv->rx_skbs[i];
781
		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
782

783
		if (!skb)
784 785
			continue;

786 787 788
		priv->rx_skbs[i] = NULL;
		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
		dev_kfree_skb_any(skb);
789 790
	}

791
	/* Free all TX buffers */
792 793
	for (i = 0; i < priv->tx_q_entries; i++) {
		struct ftgmac100_txdes *txdes = &priv->txdes[i];
794
		struct sk_buff *skb = priv->tx_skbs[i];
795

796 797 798 799
		if (!skb)
			continue;
		ftgmac100_free_tx_packet(priv, i, skb, txdes,
					 le32_to_cpu(txdes->txdes0));
800 801 802
	}
}

803
static void ftgmac100_free_rings(struct ftgmac100 *priv)
804
{
805 806 807 808
	/* Free skb arrays */
	kfree(priv->rx_skbs);
	kfree(priv->tx_skbs);

809
	/* Free descriptors */
810 811 812 813 814 815 816 817 818 819 820
	if (priv->rxdes)
		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_rxdes),
				  priv->rxdes, priv->rxdes_dma);
	priv->rxdes = NULL;

	if (priv->txdes)
		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
				  sizeof(struct ftgmac100_txdes),
				  priv->txdes, priv->txdes_dma);
	priv->txdes = NULL;
821 822 823 824 825

	/* Free scratch packet buffer */
	if (priv->rx_scratch)
		dma_free_coherent(priv->dev, RX_BUF_SIZE,
				  priv->rx_scratch, priv->rx_scratch_dma);
826
}
827

828 829
static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
{
830 831 832 833 834 835 836 837 838 839
	/* Allocate skb arrays */
	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->rx_skbs)
		return -ENOMEM;
	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
				GFP_KERNEL);
	if (!priv->tx_skbs)
		return -ENOMEM;

840
	/* Allocate descriptors */
841 842 843 844 845 846 847 848 849 850 851
	priv->rxdes = dma_zalloc_coherent(priv->dev,
					  MAX_RX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_rxdes),
					  &priv->rxdes_dma, GFP_KERNEL);
	if (!priv->rxdes)
		return -ENOMEM;
	priv->txdes = dma_zalloc_coherent(priv->dev,
					  MAX_TX_QUEUE_ENTRIES *
					  sizeof(struct ftgmac100_txdes),
					  &priv->txdes_dma, GFP_KERNEL);
	if (!priv->txdes)
852 853
		return -ENOMEM;

854 855 856 857 858 859 860 861
	/* Allocate scratch packet buffer */
	priv->rx_scratch = dma_alloc_coherent(priv->dev,
					      RX_BUF_SIZE,
					      &priv->rx_scratch_dma,
					      GFP_KERNEL);
	if (!priv->rx_scratch)
		return -ENOMEM;

862 863 864 865 866
	return 0;
}

static void ftgmac100_init_rings(struct ftgmac100 *priv)
{
867 868
	struct ftgmac100_rxdes *rxdes = NULL;
	struct ftgmac100_txdes *txdes = NULL;
869 870
	int i;

871 872 873 874 875 876 877
	/* Update entries counts */
	priv->rx_q_entries = priv->new_rx_q_entries;
	priv->tx_q_entries = priv->new_tx_q_entries;

	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

878
	/* Initialize RX ring */
879 880
	for (i = 0; i < priv->rx_q_entries; i++) {
		rxdes = &priv->rxdes[i];
881
		rxdes->rxdes0 = 0;
882
		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
883
	}
884 885
	/* Mark the end of the ring */
	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
886

887 888 889
	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
		return;

890
	/* Initialize TX ring */
891 892
	for (i = 0; i < priv->tx_q_entries; i++) {
		txdes = &priv->txdes[i];
893 894 895
		txdes->txdes0 = 0;
	}
	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
896 897 898 899 900
}

static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
{
	int i;
901

902 903
	for (i = 0; i < priv->rx_q_entries; i++) {
		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
904

905
		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
906
			return -ENOMEM;
907 908 909 910 911 912 913
	}
	return 0;
}

static void ftgmac100_adjust_link(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
914
	struct phy_device *phydev = netdev->phydev;
915
	int new_speed;
916

917 918 919 920 921 922 923 924
	/* We store "no link" as speed 0 */
	if (!phydev->link)
		new_speed = 0;
	else
		new_speed = phydev->speed;

	if (phydev->speed == priv->cur_speed &&
	    phydev->duplex == priv->cur_duplex)
925 926
		return;

927 928 929 930 931 932 933 934 935 936 937 938
	/* Print status if we have a link or we had one and just lost it,
	 * don't print otherwise.
	 */
	if (new_speed || priv->cur_speed)
		phy_print_status(phydev);

	priv->cur_speed = new_speed;
	priv->cur_duplex = phydev->duplex;

	/* Link is down, do nothing else */
	if (!new_speed)
		return;
939

940
	/* Disable all interrupts */
941 942
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

943 944
	/* Reset the adapter asynchronously */
	schedule_work(&priv->reset_task);
945 946 947 948 949
}

static int ftgmac100_mii_probe(struct ftgmac100 *priv)
{
	struct net_device *netdev = priv->netdev;
950
	struct phy_device *phydev;
951

952
	phydev = phy_find_first(priv->mii_bus);
953 954 955 956 957
	if (!phydev) {
		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
		return -ENODEV;
	}

A
Andrew Lunn 已提交
958
	phydev = phy_connect(netdev, phydev_name(phydev),
959
			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (IS_ERR(phydev)) {
		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
		return PTR_ERR(phydev);
	}

	return 0;
}

static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIRD;

	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
			int data;

			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
			return FTGMAC100_PHYDATA_MIIRDATA(data);
		}

		udelay(100);
	}

	netdev_err(netdev, "mdio read timed out\n");
	return -EIO;
}

static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
				   int regnum, u16 value)
{
	struct net_device *netdev = bus->priv;
	struct ftgmac100 *priv = netdev_priv(netdev);
	unsigned int phycr;
	int data;
	int i;

	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

	/* preserve MDC cycle threshold */
	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;

	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
		 FTGMAC100_PHYCR_REGAD(regnum) |
		 FTGMAC100_PHYCR_MIIWR;

	data = FTGMAC100_PHYDATA_MIIWDATA(value);

	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);

	for (i = 0; i < 10; i++) {
		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);

		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
			return 0;

		udelay(100);
	}

	netdev_err(netdev, "mdio write timed out\n");
	return -EIO;
}

static void ftgmac100_get_drvinfo(struct net_device *netdev,
				  struct ethtool_drvinfo *info)
{
1043 1044 1045
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1046 1047
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
static int ftgmac100_nway_reset(struct net_device *ndev)
{
	if (!ndev->phydev)
		return -ENXIO;
	return phy_start_aneg(ndev->phydev);
}

static void ftgmac100_get_ringparam(struct net_device *netdev,
				    struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	memset(ering, 0, sizeof(*ering));
	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
	ering->rx_pending = priv->rx_q_entries;
	ering->tx_pending = priv->tx_q_entries;
}

static int ftgmac100_set_ringparam(struct net_device *netdev,
				   struct ethtool_ringparam *ering)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
	    !is_power_of_2(ering->rx_pending) ||
	    !is_power_of_2(ering->tx_pending))
		return -EINVAL;

	priv->new_rx_q_entries = ering->rx_pending;
	priv->new_tx_q_entries = ering->tx_pending;
	if (netif_running(netdev))
		schedule_work(&priv->reset_task);

	return 0;
}

1088 1089 1090
static const struct ethtool_ops ftgmac100_ethtool_ops = {
	.get_drvinfo		= ftgmac100_get_drvinfo,
	.get_link		= ethtool_op_get_link,
1091 1092
	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1093 1094
	.get_ringparam		= ftgmac100_get_ringparam,
	.set_ringparam		= ftgmac100_set_ringparam,
1095 1096 1097 1098 1099 1100
};

static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct ftgmac100 *priv = netdev_priv(netdev);
1101
	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/* Fetch and clear interrupt bits, process abnormal ones */
	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
	if (unlikely(status & FTGMAC100_INT_BAD)) {

		/* RX buffer unavailable */
		if (status & FTGMAC100_INT_NO_RXBUF)
			netdev->stats.rx_over_errors++;

		/* received packet lost due to RX FIFO full */
		if (status & FTGMAC100_INT_RPKT_LOST)
			netdev->stats.rx_fifo_errors++;

		/* sent packet lost due to excessive TX collision */
		if (status & FTGMAC100_INT_XPKT_LOST)
			netdev->stats.tx_fifo_errors++;

		/* AHB error -> Reset the chip */
		if (status & FTGMAC100_INT_AHB_ERR) {
			if (net_ratelimit())
				netdev_warn(netdev,
					   "AHB bus error ! Resetting chip.\n");
			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
			schedule_work(&priv->reset_task);
			return IRQ_HANDLED;
		}

		/* We may need to restart the MAC after such errors, delay
		 * this until after we have freed some Rx buffers though
		 */
		priv->need_mac_restart = true;

		/* Disable those errors until we restart */
		new_mask &= ~status;
	}

	/* Only enable "bad" interrupts while NAPI is on */
	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);

	/* Schedule NAPI bh */
	napi_schedule_irqoff(&priv->napi);
1144 1145 1146 1147

	return IRQ_HANDLED;
}

1148 1149
static bool ftgmac100_check_rx(struct ftgmac100 *priv)
{
1150
	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1151 1152 1153 1154 1155

	/* Do we have a packet ? */
	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
}

1156 1157 1158
static int ftgmac100_poll(struct napi_struct *napi, int budget)
{
	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1159 1160
	int work_done = 0;
	bool more;
1161

1162 1163 1164
	/* Handle TX completions */
	if (ftgmac100_tx_buf_cleanable(priv))
		ftgmac100_tx_complete(priv);
1165

1166
	/* Handle RX packets */
1167
	do {
1168 1169
		more = ftgmac100_rx_packet(priv, &work_done);
	} while (more && work_done < budget);
1170 1171


1172 1173 1174 1175 1176
	/* The interrupt is telling us to kick the MAC back to life
	 * after an RX overflow
	 */
	if (unlikely(priv->need_mac_restart)) {
		ftgmac100_start_hw(priv);
1177

1178 1179 1180
		/* Re-enable "bad" interrupts */
		iowrite32(FTGMAC100_INT_BAD,
			  priv->base + FTGMAC100_OFFSET_IER);
1181 1182
	}

1183 1184 1185 1186 1187
	/* As long as we are waiting for transmit packets to be
	 * completed we keep NAPI going
	 */
	if (ftgmac100_tx_buf_cleanable(priv))
		work_done = budget;
1188

1189
	if (work_done < budget) {
1190 1191 1192 1193 1194 1195 1196
		/* We are about to re-enable all interrupts. However
		 * the HW has been latching RX/TX packet interrupts while
		 * they were masked. So we clear them first, then we need
		 * to re-check if there's something to process
		 */
		iowrite32(FTGMAC100_INT_RXTX,
			  priv->base + FTGMAC100_OFFSET_ISR);
1197 1198
		if (ftgmac100_check_rx(priv) ||
		    ftgmac100_tx_buf_cleanable(priv))
1199 1200 1201
			return budget;

		/* deschedule NAPI */
1202 1203 1204
		napi_complete(napi);

		/* enable all interrupts */
1205
		iowrite32(FTGMAC100_INT_ALL,
1206
			  priv->base + FTGMAC100_OFFSET_IER);
1207 1208
	}

1209
	return work_done;
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
{
	int err = 0;

	/* Re-init descriptors (adjust queue sizes) */
	ftgmac100_init_rings(priv);

	/* Realloc rx descriptors */
	err = ftgmac100_alloc_rx_buffers(priv);
	if (err && !ignore_alloc_err)
		return err;

	/* Reinit and restart HW */
	ftgmac100_init_hw(priv);
	ftgmac100_start_hw(priv);

	/* Re-enable the device */
	napi_enable(&priv->napi);
	netif_start_queue(priv->netdev);

	/* Enable all interrupts */
1233
	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1234 1235 1236 1237

	return err;
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static void ftgmac100_reset_task(struct work_struct *work)
{
	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
					      reset_task);
	struct net_device *netdev = priv->netdev;
	int err;

	netdev_dbg(netdev, "Resetting NIC...\n");

	/* Lock the world */
	rtnl_lock();
	if (netdev->phydev)
		mutex_lock(&netdev->phydev->lock);
	if (priv->mii_bus)
		mutex_lock(&priv->mii_bus->mdio_lock);


	/* Check if the interface is still up */
	if (!netif_running(netdev))
		goto bail;

	/* Stop the network stack */
	netif_trans_update(netdev);
	napi_disable(&priv->napi);
	netif_tx_disable(netdev);

	/* Stop and reset the MAC */
	ftgmac100_stop_hw(priv);
1266
	err = ftgmac100_reset_and_config_mac(priv);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	if (err) {
		/* Not much we can do ... it might come back... */
		netdev_err(netdev, "attempting to continue...\n");
	}

	/* Free all rx and tx buffers */
	ftgmac100_free_buffers(priv);

	/* Setup everything again and restart chip */
	ftgmac100_init_all(priv, true);

	netdev_dbg(netdev, "Reset done !\n");
 bail:
	if (priv->mii_bus)
		mutex_unlock(&priv->mii_bus->mdio_lock);
	if (netdev->phydev)
		mutex_unlock(&netdev->phydev->lock);
	rtnl_unlock();
}

1287 1288 1289 1290 1291
static int ftgmac100_open(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	int err;

1292 1293
	/* Allocate ring buffers  */
	err = ftgmac100_alloc_rings(priv);
1294
	if (err) {
1295 1296
		netdev_err(netdev, "Failed to allocate descriptors\n");
		return err;
1297 1298
	}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
	 *
	 * Otherwise we leave it set to 0 (no link), the link
	 * message from the PHY layer will handle setting it up to
	 * something else if needed.
	 */
	if (priv->use_ncsi) {
		priv->cur_duplex = DUPLEX_FULL;
		priv->cur_speed = SPEED_100;
	} else {
		priv->cur_duplex = 0;
		priv->cur_speed = 0;
	}

1313 1314
	/* Reset the hardware */
	err = ftgmac100_reset_and_config_mac(priv);
1315 1316 1317
	if (err)
		goto err_hw;

1318 1319 1320
	/* Initialize NAPI */
	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);

1321 1322 1323 1324 1325 1326 1327
	/* Grab our interrupt */
	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
	if (err) {
		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
		goto err_irq;
	}

1328 1329 1330 1331 1332 1333
	/* Start things up */
	err = ftgmac100_init_all(priv, false);
	if (err) {
		netdev_err(netdev, "Failed to allocate packet buffers\n");
		goto err_alloc;
	}
G
Gavin Shan 已提交
1334

1335 1336
	if (netdev->phydev) {
		/* If we have a PHY, start polling */
G
Gavin Shan 已提交
1337
		phy_start(netdev->phydev);
1338 1339
	} else if (priv->use_ncsi) {
		/* If using NC-SI, set our carrier on and start the stack */
G
Gavin Shan 已提交
1340
		netif_carrier_on(netdev);
1341

1342
		/* Start the NCSI device */
G
Gavin Shan 已提交
1343 1344 1345 1346 1347
		err = ncsi_start_dev(priv->ndev);
		if (err)
			goto err_ncsi;
	}

1348 1349
	return 0;

1350
 err_ncsi:
G
Gavin Shan 已提交
1351 1352
	napi_disable(&priv->napi);
	netif_stop_queue(netdev);
1353 1354
 err_alloc:
	ftgmac100_free_buffers(priv);
1355
	free_irq(netdev->irq, netdev);
1356
 err_irq:
1357
	netif_napi_del(&priv->napi);
1358
 err_hw:
1359
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1360
	ftgmac100_free_rings(priv);
1361 1362 1363 1364 1365 1366 1367
	return err;
}

static int ftgmac100_stop(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

1368 1369 1370 1371 1372 1373 1374 1375
	/* Note about the reset task: We are called with the rtnl lock
	 * held, so we are synchronized against the core of the reset
	 * task. We must not try to synchronously cancel it otherwise
	 * we can deadlock. But since it will test for netif_running()
	 * which has already been cleared by the net core, we don't
	 * anything special to do.
	 */

1376 1377 1378 1379 1380
	/* disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	netif_stop_queue(netdev);
	napi_disable(&priv->napi);
1381
	netif_napi_del(&priv->napi);
G
Gavin Shan 已提交
1382 1383
	if (netdev->phydev)
		phy_stop(netdev->phydev);
1384 1385
	else if (priv->use_ncsi)
		ncsi_stop_dev(priv->ndev);
1386 1387

	ftgmac100_stop_hw(priv);
1388
	free_irq(netdev->irq, netdev);
1389
	ftgmac100_free_buffers(priv);
1390
	ftgmac100_free_rings(priv);
1391 1392 1393 1394 1395 1396 1397

	return 0;
}

/* optional */
static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
G
Gavin Shan 已提交
1398 1399 1400
	if (!netdev->phydev)
		return -ENXIO;

1401
	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
static void ftgmac100_tx_timeout(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	/* Disable all interrupts */
	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);

	/* Do the reset outside of interrupt context */
	schedule_work(&priv->reset_task);
}

1415 1416 1417 1418
static const struct net_device_ops ftgmac100_netdev_ops = {
	.ndo_open		= ftgmac100_open,
	.ndo_stop		= ftgmac100_stop,
	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1419
	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1420 1421
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1422
	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1423 1424
};

1425 1426 1427 1428 1429
static int ftgmac100_setup_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);
	struct platform_device *pdev = to_platform_device(priv->dev);
	int i, err = 0;
1430
	u32 reg;
1431 1432 1433 1434 1435 1436

	/* initialize mdio bus */
	priv->mii_bus = mdiobus_alloc();
	if (!priv->mii_bus)
		return -EIO;

1437
	if (priv->is_aspeed) {
1438 1439 1440 1441 1442 1443
		/* This driver supports the old MDIO interface */
		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
	};

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	priv->mii_bus->name = "ftgmac100_mdio";
	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
		 pdev->name, pdev->id);
	priv->mii_bus->priv = priv->netdev;
	priv->mii_bus->read = ftgmac100_mdiobus_read;
	priv->mii_bus->write = ftgmac100_mdiobus_write;

	for (i = 0; i < PHY_MAX_ADDR; i++)
		priv->mii_bus->irq[i] = PHY_POLL;

	err = mdiobus_register(priv->mii_bus);
	if (err) {
		dev_err(priv->dev, "Cannot register MDIO bus!\n");
		goto err_register_mdiobus;
	}

	err = ftgmac100_mii_probe(priv);
	if (err) {
		dev_err(priv->dev, "MII Probe failed!\n");
		goto err_mii_probe;
	}

	return 0;

err_mii_probe:
	mdiobus_unregister(priv->mii_bus);
err_register_mdiobus:
	mdiobus_free(priv->mii_bus);
	return err;
}

static void ftgmac100_destroy_mdio(struct net_device *netdev)
{
	struct ftgmac100 *priv = netdev_priv(netdev);

	if (!netdev->phydev)
		return;

	phy_disconnect(netdev->phydev);
	mdiobus_unregister(priv->mii_bus);
	mdiobus_free(priv->mii_bus);
}

G
Gavin Shan 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495
static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
{
	if (unlikely(nd->state != ncsi_dev_state_functional))
		return;

	netdev_info(nd->dev, "NCSI interface %s\n",
		    nd->link_up ? "up" : "down");
}

1496 1497 1498 1499 1500 1501
static int ftgmac100_probe(struct platform_device *pdev)
{
	struct resource *res;
	int irq;
	struct net_device *netdev;
	struct ftgmac100 *priv;
1502
	struct device_node *np;
G
Gavin Shan 已提交
1503
	int err = 0;
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

	if (!pdev)
		return -ENODEV;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENXIO;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* setup net_device */
	netdev = alloc_etherdev(sizeof(*priv));
	if (!netdev) {
		err = -ENOMEM;
		goto err_alloc_etherdev;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

1525
	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1526
	netdev->netdev_ops = &ftgmac100_netdev_ops;
1527
	netdev->watchdog_timeo = 5 * HZ;
1528 1529 1530 1531 1532 1533 1534

	platform_set_drvdata(pdev, netdev);

	/* setup private data */
	priv = netdev_priv(netdev);
	priv->netdev = netdev;
	priv->dev = &pdev->dev;
1535
	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

	/* map io memory */
	priv->res = request_mem_region(res->start, resource_size(res),
				       dev_name(&pdev->dev));
	if (!priv->res) {
		dev_err(&pdev->dev, "Could not reserve memory region\n");
		err = -ENOMEM;
		goto err_req_mem;
	}

	priv->base = ioremap(res->start, resource_size(res));
	if (!priv->base) {
		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
		err = -EIO;
		goto err_ioremap;
	}

1553
	netdev->irq = irq;
1554

1555
	/* MAC address from chip or random one */
1556
	ftgmac100_initial_mac(priv);
1557

1558 1559 1560
	np = pdev->dev.of_node;
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1561 1562
		priv->rxdes0_edorr_mask = BIT(30);
		priv->txdes0_edotr_mask = BIT(30);
1563
		priv->is_aspeed = true;
1564 1565 1566 1567 1568
	} else {
		priv->rxdes0_edorr_mask = BIT(15);
		priv->txdes0_edotr_mask = BIT(15);
	}

1569
	if (np && of_get_property(np, "use-ncsi", NULL)) {
G
Gavin Shan 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
			dev_err(&pdev->dev, "NCSI stack not enabled\n");
			goto err_ncsi_dev;
		}

		dev_info(&pdev->dev, "Using NCSI interface\n");
		priv->use_ncsi = true;
		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
		if (!priv->ndev)
			goto err_ncsi_dev;
	} else {
		priv->use_ncsi = false;
		err = ftgmac100_setup_mdio(netdev);
		if (err)
			goto err_setup_mdio;
	}

1587 1588 1589 1590
	/* Default ring sizes */
	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;

1591
	/* Base feature set */
1592
	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1593
		NETIF_F_GRO | NETIF_F_SG;
1594 1595 1596

	/* AST2400  doesn't have working HW checksum generation */
	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1597
		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1598
	if (np && of_get_property(np, "no-hw-checksum", NULL))
1599 1600
		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
	netdev->features |= netdev->hw_features;
G
Gavin Shan 已提交
1601

1602 1603 1604 1605 1606 1607 1608
	/* register network device */
	err = register_netdev(netdev);
	if (err) {
		dev_err(&pdev->dev, "Failed to register netdev\n");
		goto err_register_netdev;
	}

1609
	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1610 1611 1612

	return 0;

G
Gavin Shan 已提交
1613
err_ncsi_dev:
1614
err_register_netdev:
1615 1616
	ftgmac100_destroy_mdio(netdev);
err_setup_mdio:
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	iounmap(priv->base);
err_ioremap:
	release_resource(priv->res);
err_req_mem:
	netif_napi_del(&priv->napi);
	free_netdev(netdev);
err_alloc_etherdev:
	return err;
}

1627
static int ftgmac100_remove(struct platform_device *pdev)
1628 1629 1630 1631 1632 1633 1634 1635
{
	struct net_device *netdev;
	struct ftgmac100 *priv;

	netdev = platform_get_drvdata(pdev);
	priv = netdev_priv(netdev);

	unregister_netdev(netdev);
1636 1637 1638 1639 1640 1641

	/* There's a small chance the reset task will have been re-queued,
	 * during stop, make sure it's gone before we free the structure.
	 */
	cancel_work_sync(&priv->reset_task);

1642
	ftgmac100_destroy_mdio(netdev);
1643 1644 1645 1646 1647 1648 1649 1650 1651

	iounmap(priv->base);
	release_resource(priv->res);

	netif_napi_del(&priv->napi);
	free_netdev(netdev);
	return 0;
}

1652 1653 1654 1655 1656 1657
static const struct of_device_id ftgmac100_of_match[] = {
	{ .compatible = "faraday,ftgmac100" },
	{ }
};
MODULE_DEVICE_TABLE(of, ftgmac100_of_match);

1658
static struct platform_driver ftgmac100_driver = {
1659
	.probe	= ftgmac100_probe,
1660
	.remove	= ftgmac100_remove,
1661 1662 1663
	.driver	= {
		.name		= DRV_NAME,
		.of_match_table	= ftgmac100_of_match,
1664 1665
	},
};
1666
module_platform_driver(ftgmac100_driver);
1667 1668 1669 1670

MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
MODULE_DESCRIPTION("FTGMAC100 driver");
MODULE_LICENSE("GPL");