blk-merge.c 30.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Functions related to segment and merge handling
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>

11 12
#include <trace/events/block.h>

13
#include "blk.h"
14
#include "blk-rq-qos.h"
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
static inline bool bio_will_gap(struct request_queue *q,
		struct request *prev_rq, struct bio *prev, struct bio *next)
{
	struct bio_vec pb, nb;

	if (!bio_has_data(prev) || !queue_virt_boundary(q))
		return false;

	/*
	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
	 * is quite difficult to respect the sg gap limit.  We work hard to
	 * merge a huge number of small single bios in case of mkfs.
	 */
	if (prev_rq)
		bio_get_first_bvec(prev_rq->bio, &pb);
	else
		bio_get_first_bvec(prev, &pb);
33
	if (pb.bv_offset & queue_virt_boundary(q))
34 35 36 37 38 39 40 41 42 43 44 45 46
		return true;

	/*
	 * We don't need to worry about the situation that the merged segment
	 * ends in unaligned virt boundary:
	 *
	 * - if 'pb' ends aligned, the merged segment ends aligned
	 * - if 'pb' ends unaligned, the next bio must include
	 *   one single bvec of 'nb', otherwise the 'nb' can't
	 *   merge with 'pb'
	 */
	bio_get_last_bvec(prev, &pb);
	bio_get_first_bvec(next, &nb);
47
	if (biovec_phys_mergeable(q, &pb, &nb))
48 49 50 51 52 53 54 55 56 57 58 59 60 61
		return false;
	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
}

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, req, req->biotail, bio);
}

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, NULL, bio, req->bio);
}

62 63
static struct bio *blk_bio_discard_split(struct request_queue *q,
					 struct bio *bio,
64 65
					 struct bio_set *bs,
					 unsigned *nsegs)
66 67 68 69 70 71
{
	unsigned int max_discard_sectors, granularity;
	int alignment;
	sector_t tmp;
	unsigned split_sectors;

72 73
	*nsegs = 1;

74 75 76
	/* Zero-sector (unknown) and one-sector granularities are the same.  */
	granularity = max(q->limits.discard_granularity >> 9, 1U);

77 78
	max_discard_sectors = min(q->limits.max_discard_sectors,
			bio_allowed_max_sectors(q));
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
	max_discard_sectors -= max_discard_sectors % granularity;

	if (unlikely(!max_discard_sectors)) {
		/* XXX: warn */
		return NULL;
	}

	if (bio_sectors(bio) <= max_discard_sectors)
		return NULL;

	split_sectors = max_discard_sectors;

	/*
	 * If the next starting sector would be misaligned, stop the discard at
	 * the previous aligned sector.
	 */
	alignment = (q->limits.discard_alignment >> 9) % granularity;

	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
	tmp = sector_div(tmp, granularity);

	if (split_sectors > tmp)
		split_sectors -= tmp;

	return bio_split(bio, split_sectors, GFP_NOIO, bs);
}

106 107 108
static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
{
109
	*nsegs = 0;
110 111 112 113 114 115 116 117 118 119

	if (!q->limits.max_write_zeroes_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
}

120 121
static struct bio *blk_bio_write_same_split(struct request_queue *q,
					    struct bio *bio,
122 123
					    struct bio_set *bs,
					    unsigned *nsegs)
124
{
125 126
	*nsegs = 1;

127 128 129 130 131 132 133 134 135
	if (!q->limits.max_write_same_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
}

136 137 138 139 140 141 142 143
/*
 * Return the maximum number of sectors from the start of a bio that may be
 * submitted as a single request to a block device. If enough sectors remain,
 * align the end to the physical block size. Otherwise align the end to the
 * logical block size. This approach minimizes the number of non-aligned
 * requests that are submitted to a block device if the start of a bio is not
 * aligned to a physical block boundary.
 */
144 145 146 147
static inline unsigned get_max_io_size(struct request_queue *q,
				       struct bio *bio)
{
	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
148 149 150 151
	unsigned max_sectors = sectors;
	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152

153 154 155 156
	max_sectors += start_offset;
	max_sectors &= ~(pbs - 1);
	if (max_sectors > start_offset)
		return max_sectors - start_offset;
157

K
Keith Busch 已提交
158
	return sectors & ~(lbs - 1);
159 160
}

161 162 163
static inline unsigned get_max_segment_size(const struct request_queue *q,
					    struct page *start_page,
					    unsigned long offset)
164 165 166
{
	unsigned long mask = queue_segment_boundary(q);

167
	offset = mask & (page_to_phys(start_page) + offset);
168 169 170 171 172 173 174

	/*
	 * overflow may be triggered in case of zero page physical address
	 * on 32bit arch, use queue's max segment size when that happens.
	 */
	return min_not_zero(mask - offset + 1,
			(unsigned long)queue_max_segment_size(q));
175 176
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/**
 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 * @q:        [in] request queue associated with the bio associated with @bv
 * @bv:       [in] bvec to examine
 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 *            by the number of segments from @bv that may be appended to that
 *            bio without exceeding @max_segs
 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
 *            by the number of sectors from @bv that may be appended to that
 *            bio without exceeding @max_sectors
 * @max_segs: [in] upper bound for *@nsegs
 * @max_sectors: [in] upper bound for *@sectors
 *
 * When splitting a bio, it can happen that a bvec is encountered that is too
 * big to fit in a single segment and hence that it has to be split in the
 * middle. This function verifies whether or not that should happen. The value
 * %true is returned if and only if appending the entire @bv to a bio with
 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 * the block driver.
196
 */
197 198
static bool bvec_split_segs(const struct request_queue *q,
			    const struct bio_vec *bv, unsigned *nsegs,
199 200
			    unsigned *sectors, unsigned max_segs,
			    unsigned max_sectors)
201
{
202 203
	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
	unsigned len = min(bv->bv_len, max_len);
204
	unsigned total_len = 0;
205
	unsigned seg_size = 0;
206

207
	while (len && *nsegs < max_segs) {
208 209
		seg_size = get_max_segment_size(q, bv->bv_page,
						bv->bv_offset + total_len);
210 211
		seg_size = min(seg_size, len);

212
		(*nsegs)++;
213 214 215 216 217 218 219
		total_len += seg_size;
		len -= seg_size;

		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
			break;
	}

220
	*sectors += total_len >> 9;
221

222 223
	/* tell the caller to split the bvec if it is too big to fit */
	return len > 0 || bv->bv_len > max_len;
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/**
 * blk_bio_segment_split - split a bio in two bios
 * @q:    [in] request queue pointer
 * @bio:  [in] bio to be split
 * @bs:	  [in] bio set to allocate the clone from
 * @segs: [out] number of segments in the bio with the first half of the sectors
 *
 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 * following is guaranteed for the cloned bio:
 * - That it has at most get_max_io_size(@q, @bio) sectors.
 * - That it has at most queue_max_segments(@q) segments.
 *
 * Except for discard requests the cloned bio will point at the bi_io_vec of
 * the original bio. It is the responsibility of the caller to ensure that the
 * original bio is not freed before the cloned bio. The caller is also
 * responsible for ensuring that @bs is only destroyed after processing of the
 * split bio has finished.
 */
245 246
static struct bio *blk_bio_segment_split(struct request_queue *q,
					 struct bio *bio,
247 248
					 struct bio_set *bs,
					 unsigned *segs)
249
{
250
	struct bio_vec bv, bvprv, *bvprvp = NULL;
251
	struct bvec_iter iter;
252
	unsigned nsegs = 0, sectors = 0;
253
	const unsigned max_sectors = get_max_io_size(q, bio);
254
	const unsigned max_segs = queue_max_segments(q);
255

256
	bio_for_each_bvec(bv, bio, iter) {
257 258 259 260
		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
261
		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 263
			goto split;

264 265 266 267 268 269 270
		if (nsegs < max_segs &&
		    sectors + (bv.bv_len >> 9) <= max_sectors &&
		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
			nsegs++;
			sectors += bv.bv_len >> 9;
		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
					 max_sectors)) {
271
			goto split;
272 273
		}

274
		bvprv = bv;
M
Ming Lei 已提交
275
		bvprvp = &bvprv;
276 277
	}

278 279
	*segs = nsegs;
	return NULL;
280
split:
281
	*segs = nsegs;
J
Jeffle Xu 已提交
282 283 284 285 286 287 288 289

	/*
	 * Bio splitting may cause subtle trouble such as hang when doing sync
	 * iopoll in direct IO routine. Given performance gain of iopoll for
	 * big IO can be trival, disable iopoll when split needed.
	 */
	bio->bi_opf &= ~REQ_HIPRI;

290
	return bio_split(bio, sectors, GFP_NOIO, bs);
291 292
}

293 294 295 296 297 298 299 300
/**
 * __blk_queue_split - split a bio and submit the second half
 * @bio:     [in, out] bio to be split
 * @nr_segs: [out] number of segments in the first bio
 *
 * Split a bio into two bios, chain the two bios, submit the second half and
 * store a pointer to the first half in *@bio. If the second bio is still too
 * big it will be split by a recursive call to this function. Since this
301 302 303
 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
 * the responsibility of the caller to ensure that
 * @bio->bi_disk->queue->bio_split is only released after processing of the
304 305
 * split bio has finished.
 */
306
void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
307
{
308
	struct request_queue *q = (*bio)->bi_disk->queue;
309
	struct bio *split = NULL;
310

A
Adrian Hunter 已提交
311 312 313
	switch (bio_op(*bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
314
		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
A
Adrian Hunter 已提交
315
		break;
316
	case REQ_OP_WRITE_ZEROES:
317 318
		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
				nr_segs);
319
		break;
A
Adrian Hunter 已提交
320
	case REQ_OP_WRITE_SAME:
321 322
		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
				nr_segs);
A
Adrian Hunter 已提交
323 324
		break;
	default:
325 326 327 328 329 330 331 332 333 334
		/*
		 * All drivers must accept single-segments bios that are <=
		 * PAGE_SIZE.  This is a quick and dirty check that relies on
		 * the fact that bi_io_vec[0] is always valid if a bio has data.
		 * The check might lead to occasional false negatives when bios
		 * are cloned, but compared to the performance impact of cloned
		 * bios themselves the loop below doesn't matter anyway.
		 */
		if (!q->limits.chunk_sectors &&
		    (*bio)->bi_vcnt == 1 &&
335
		    ((*bio)->bi_io_vec[0].bv_len +
336
		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
337 338 339
			*nr_segs = 1;
			break;
		}
340
		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
A
Adrian Hunter 已提交
341 342
		break;
	}
343

344
	if (split) {
M
Ming Lei 已提交
345
		/* there isn't chance to merge the splitted bio */
J
Jens Axboe 已提交
346
		split->bi_opf |= REQ_NOMERGE;
M
Ming Lei 已提交
347

348
		bio_chain(split, *bio);
349
		trace_block_split(split, (*bio)->bi_iter.bi_sector);
350
		submit_bio_noacct(*bio);
351 352 353
		*bio = split;
	}
}
354

355 356 357 358 359 360
/**
 * blk_queue_split - split a bio and submit the second half
 * @bio: [in, out] bio to be split
 *
 * Split a bio into two bios, chains the two bios, submit the second half and
 * store a pointer to the first half in *@bio. Since this function may allocate
361 362 363
 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
 * after processing of the split bio has finished.
364
 */
365
void blk_queue_split(struct bio **bio)
366 367 368
{
	unsigned int nr_segs;

369
	__blk_queue_split(bio, &nr_segs);
370
}
371 372
EXPORT_SYMBOL(blk_queue_split);

373
unsigned int blk_recalc_rq_segments(struct request *rq)
374
{
375
	unsigned int nr_phys_segs = 0;
376
	unsigned int nr_sectors = 0;
377
	struct req_iterator iter;
378
	struct bio_vec bv;
379

380
	if (!rq->bio)
381
		return 0;
382

383
	switch (bio_op(rq->bio)) {
384 385 386
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
387 388
		return 0;
	case REQ_OP_WRITE_SAME:
389
		return 1;
390
	}
391

392
	rq_for_each_bvec(bv, rq, iter)
393
		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
394
				UINT_MAX, UINT_MAX);
395 396 397
	return nr_phys_segs;
}

398
static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		struct scatterlist *sglist)
{
	if (!*sg)
		return sglist;

	/*
	 * If the driver previously mapped a shorter list, we could see a
	 * termination bit prematurely unless it fully inits the sg table
	 * on each mapping. We KNOW that there must be more entries here
	 * or the driver would be buggy, so force clear the termination bit
	 * to avoid doing a full sg_init_table() in drivers for each command.
	 */
	sg_unmark_end(*sg);
	return sg_next(*sg);
}

static unsigned blk_bvec_map_sg(struct request_queue *q,
		struct bio_vec *bvec, struct scatterlist *sglist,
		struct scatterlist **sg)
{
	unsigned nbytes = bvec->bv_len;
420
	unsigned nsegs = 0, total = 0;
421 422

	while (nbytes > 0) {
423
		unsigned offset = bvec->bv_offset + total;
424 425
		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
					offset), nbytes);
426 427 428 429 430 431 432 433 434 435 436 437
		struct page *page = bvec->bv_page;

		/*
		 * Unfortunately a fair number of drivers barf on scatterlists
		 * that have an offset larger than PAGE_SIZE, despite other
		 * subsystems dealing with that invariant just fine.  For now
		 * stick to the legacy format where we never present those from
		 * the block layer, but the code below should be removed once
		 * these offenders (mostly MMC/SD drivers) are fixed.
		 */
		page += (offset >> PAGE_SHIFT);
		offset &= ~PAGE_MASK;
438 439

		*sg = blk_next_sg(sg, sglist);
440
		sg_set_page(*sg, page, len, offset);
441

442 443
		total += len;
		nbytes -= len;
444 445 446 447 448 449
		nsegs++;
	}

	return nsegs;
}

450 451 452 453 454 455 456 457
static inline int __blk_bvec_map_sg(struct bio_vec bv,
		struct scatterlist *sglist, struct scatterlist **sg)
{
	*sg = blk_next_sg(sg, sglist);
	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
	return 1;
}

458 459 460 461
/* only try to merge bvecs into one sg if they are from two bios */
static inline bool
__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
			   struct bio_vec *bvprv, struct scatterlist **sg)
462 463 464 465
{

	int nbytes = bvec->bv_len;

466 467
	if (!*sg)
		return false;
468

469 470 471 472 473 474 475 476 477
	if ((*sg)->length + nbytes > queue_max_segment_size(q))
		return false;

	if (!biovec_phys_mergeable(q, bvprv, bvec))
		return false;

	(*sg)->length += nbytes;

	return true;
478 479
}

480 481 482
static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
			     struct scatterlist *sglist,
			     struct scatterlist **sg)
483
{
484
	struct bio_vec bvec, bvprv = { NULL };
485
	struct bvec_iter iter;
486
	int nsegs = 0;
487
	bool new_bio = false;
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	for_each_bio(bio) {
		bio_for_each_bvec(bvec, bio, iter) {
			/*
			 * Only try to merge bvecs from two bios given we
			 * have done bio internal merge when adding pages
			 * to bio
			 */
			if (new_bio &&
			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
				goto next_bvec;

			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
			else
				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 next_bvec:
			new_bio = false;
		}
507 508 509 510
		if (likely(bio->bi_iter.bi_size)) {
			bvprv = bvec;
			new_bio = true;
		}
511
	}
512

513 514 515 516 517 518 519
	return nsegs;
}

/*
 * map a request to scatterlist, return number of sg entries setup. Caller
 * must make sure sg can hold rq->nr_phys_segments entries
 */
520 521
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist, struct scatterlist **last_sg)
522 523 524
{
	int nsegs = 0;

525
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
526
		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
527
	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
528
		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
529
	else if (rq->bio)
530
		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
531

532 533
	if (*last_sg)
		sg_mark_end(*last_sg);
534

535 536 537 538
	/*
	 * Something must have been wrong if the figured number of
	 * segment is bigger than number of req's physical segments
	 */
539
	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
540

541 542
	return nsegs;
}
543
EXPORT_SYMBOL(__blk_rq_map_sg);
544

545 546 547 548 549 550 551
static inline unsigned int blk_rq_get_max_segments(struct request *rq)
{
	if (req_op(rq) == REQ_OP_DISCARD)
		return queue_max_discard_segments(rq->q);
	return queue_max_segments(rq->q);
}

552 553
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
		unsigned int nr_phys_segs)
554
{
555
	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
556 557
		goto no_merge;

558
	if (blk_integrity_merge_bio(req->q, req, bio) == false)
559
		goto no_merge;
560 561 562 563 564 565 566

	/*
	 * This will form the start of a new hw segment.  Bump both
	 * counters.
	 */
	req->nr_phys_segments += nr_phys_segs;
	return 1;
567 568

no_merge:
569
	req_set_nomerge(req->q, req);
570
	return 0;
571 572
}

573
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
574
{
575 576
	if (req_gap_back_merge(req, bio))
		return 0;
577 578 579
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_back_merge(req, bio))
		return 0;
580 581
	if (!bio_crypt_ctx_back_mergeable(req, bio))
		return 0;
582
	if (blk_rq_sectors(req) + bio_sectors(bio) >
D
Damien Le Moal 已提交
583
	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
584
		req_set_nomerge(req->q, req);
585 586 587
		return 0;
	}

588
	return ll_new_hw_segment(req, bio, nr_segs);
589 590
}

591 592
static int ll_front_merge_fn(struct request *req, struct bio *bio,
		unsigned int nr_segs)
593
{
594 595
	if (req_gap_front_merge(req, bio))
		return 0;
596 597 598
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_front_merge(req, bio))
		return 0;
599 600
	if (!bio_crypt_ctx_front_mergeable(req, bio))
		return 0;
601
	if (blk_rq_sectors(req) + bio_sectors(bio) >
D
Damien Le Moal 已提交
602
	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
603
		req_set_nomerge(req->q, req);
604 605 606
		return 0;
	}

607
	return ll_new_hw_segment(req, bio, nr_segs);
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
		struct request *next)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
	return true;
no_merge:
	req_set_nomerge(q, req);
	return false;
}

628 629 630 631 632
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
				struct request *next)
{
	int total_phys_segments;

633
	if (req_gap_back_merge(req, next->bio))
634 635
		return 0;

636 637 638
	/*
	 * Will it become too large?
	 */
639
	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
D
Damien Le Moal 已提交
640
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
641 642 643
		return 0;

	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
644
	if (total_phys_segments > blk_rq_get_max_segments(req))
645 646
		return 0;

647
	if (blk_integrity_merge_rq(q, req, next) == false)
648 649
		return 0;

650 651 652
	if (!bio_crypt_ctx_merge_rq(req, next))
		return 0;

653 654 655 656 657
	/* Merge is OK... */
	req->nr_phys_segments = total_phys_segments;
	return 1;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671
/**
 * blk_rq_set_mixed_merge - mark a request as mixed merge
 * @rq: request to mark as mixed merge
 *
 * Description:
 *     @rq is about to be mixed merged.  Make sure the attributes
 *     which can be mixed are set in each bio and mark @rq as mixed
 *     merged.
 */
void blk_rq_set_mixed_merge(struct request *rq)
{
	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	struct bio *bio;

672
	if (rq->rq_flags & RQF_MIXED_MERGE)
673 674 675 676 677 678 679 680
		return;

	/*
	 * @rq will no longer represent mixable attributes for all the
	 * contained bios.  It will just track those of the first one.
	 * Distributes the attributs to each bio.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
J
Jens Axboe 已提交
681 682 683
		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
		bio->bi_opf |= ff;
684
	}
685
	rq->rq_flags |= RQF_MIXED_MERGE;
686 687
}

688
static void blk_account_io_merge_request(struct request *req)
689 690
{
	if (blk_do_io_stat(req)) {
691
		part_stat_lock();
692
		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
693 694 695
		part_stat_unlock();
	}
}
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * Two cases of handling DISCARD merge:
 * If max_discard_segments > 1, the driver takes every bio
 * as a range and send them to controller together. The ranges
 * needn't to be contiguous.
 * Otherwise, the bios/requests will be handled as same as
 * others which should be contiguous.
 */
static inline bool blk_discard_mergable(struct request *req)
{
	if (req_op(req) == REQ_OP_DISCARD &&
	    queue_max_discard_segments(req->q) > 1)
		return true;
	return false;
}

713 714
static enum elv_merge blk_try_req_merge(struct request *req,
					struct request *next)
715 716 717 718 719 720 721 722
{
	if (blk_discard_mergable(req))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
		return ELEVATOR_BACK_MERGE;

	return ELEVATOR_NO_MERGE;
}
723

724
/*
725 726
 * For non-mq, this has to be called with the request spinlock acquired.
 * For mq with scheduling, the appropriate queue wide lock should be held.
727
 */
728 729
static struct request *attempt_merge(struct request_queue *q,
				     struct request *req, struct request *next)
730 731
{
	if (!rq_mergeable(req) || !rq_mergeable(next))
732
		return NULL;
733

734
	if (req_op(req) != req_op(next))
735
		return NULL;
736

737
	if (rq_data_dir(req) != rq_data_dir(next)
738
	    || req->rq_disk != next->rq_disk)
739
		return NULL;
740

741
	if (req_op(req) == REQ_OP_WRITE_SAME &&
742
	    !blk_write_same_mergeable(req->bio, next->bio))
743
		return NULL;
744

745 746 747 748 749 750 751
	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (req->write_hint != next->write_hint)
		return NULL;

752 753 754
	if (req->ioprio != next->ioprio)
		return NULL;

755 756 757 758
	/*
	 * If we are allowed to merge, then append bio list
	 * from next to rq and release next. merge_requests_fn
	 * will have updated segment counts, update sector
759 760
	 * counts here. Handle DISCARDs separately, as they
	 * have separate settings.
761
	 */
762 763 764

	switch (blk_try_req_merge(req, next)) {
	case ELEVATOR_DISCARD_MERGE:
765 766
		if (!req_attempt_discard_merge(q, req, next))
			return NULL;
767 768 769 770 771 772
		break;
	case ELEVATOR_BACK_MERGE:
		if (!ll_merge_requests_fn(q, req, next))
			return NULL;
		break;
	default:
773
		return NULL;
774
	}
775

776 777 778 779 780 781
	/*
	 * If failfast settings disagree or any of the two is already
	 * a mixed merge, mark both as mixed before proceeding.  This
	 * makes sure that all involved bios have mixable attributes
	 * set properly.
	 */
782
	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
783 784 785 786 787 788
	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
		blk_rq_set_mixed_merge(req);
		blk_rq_set_mixed_merge(next);
	}

789
	/*
790 791 792
	 * At this point we have either done a back merge or front merge. We
	 * need the smaller start_time_ns of the merged requests to be the
	 * current request for accounting purposes.
793
	 */
794 795
	if (next->start_time_ns < req->start_time_ns)
		req->start_time_ns = next->start_time_ns;
796 797 798 799

	req->biotail->bi_next = next->bio;
	req->biotail = next->biotail;

800
	req->__data_len += blk_rq_bytes(next);
801

M
Ming Lei 已提交
802
	if (!blk_discard_mergable(req))
803
		elv_merge_requests(q, req, next);
804

805 806 807
	/*
	 * 'next' is going away, so update stats accordingly
	 */
808
	blk_account_io_merge_request(next);
809

810
	trace_block_rq_merge(next);
811

812 813 814 815
	/*
	 * ownership of bio passed from next to req, return 'next' for
	 * the caller to free
	 */
816
	next->bio = NULL;
817
	return next;
818 819
}

820 821
static struct request *attempt_back_merge(struct request_queue *q,
		struct request *rq)
822 823 824 825 826 827
{
	struct request *next = elv_latter_request(q, rq);

	if (next)
		return attempt_merge(q, rq, next);

828
	return NULL;
829 830
}

831 832
static struct request *attempt_front_merge(struct request_queue *q,
		struct request *rq)
833 834 835 836 837 838
{
	struct request *prev = elv_former_request(q, rq);

	if (prev)
		return attempt_merge(q, prev, rq);

839
	return NULL;
840
}
841 842 843 844

int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
			  struct request *next)
{
845
	struct request *free;
846

847 848
	free = attempt_merge(q, rq, next);
	if (free) {
J
Jens Axboe 已提交
849
		blk_put_request(free);
850 851 852 853
		return 1;
	}

	return 0;
854
}
855 856 857

bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
{
858
	if (!rq_mergeable(rq) || !bio_mergeable(bio))
859 860
		return false;

861
	if (req_op(rq) != bio_op(bio))
862 863
		return false;

864 865 866 867
	/* different data direction or already started, don't merge */
	if (bio_data_dir(bio) != rq_data_dir(rq))
		return false;

868 869
	/* must be same device */
	if (rq->rq_disk != bio->bi_disk)
870 871 872
		return false;

	/* only merge integrity protected bio into ditto rq */
873
	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
874 875
		return false;

876 877 878 879
	/* Only merge if the crypt contexts are compatible */
	if (!bio_crypt_rq_ctx_compatible(rq, bio))
		return false;

880
	/* must be using the same buffer */
881
	if (req_op(rq) == REQ_OP_WRITE_SAME &&
882 883 884
	    !blk_write_same_mergeable(rq->bio, bio))
		return false;

885 886 887 888 889 890 891
	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (rq->write_hint != bio->bi_write_hint)
		return false;

892 893 894
	if (rq->ioprio != bio_prio(bio))
		return false;

895 896 897
	return true;
}

898
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
899
{
900
	if (blk_discard_mergable(rq))
901 902
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
903
		return ELEVATOR_BACK_MERGE;
904
	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
905 906 907
		return ELEVATOR_FRONT_MERGE;
	return ELEVATOR_NO_MERGE;
}
908 909 910 911 912 913 914 915 916 917 918

static void blk_account_io_merge_bio(struct request *req)
{
	if (!blk_do_io_stat(req))
		return;

	part_stat_lock();
	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
	part_stat_unlock();
}

919 920 921 922 923 924 925 926
enum bio_merge_status {
	BIO_MERGE_OK,
	BIO_MERGE_NONE,
	BIO_MERGE_FAILED,
};

static enum bio_merge_status bio_attempt_back_merge(struct request *req,
		struct bio *bio, unsigned int nr_segs)
927 928 929 930
{
	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;

	if (!ll_back_merge_fn(req, bio, nr_segs))
931
		return BIO_MERGE_FAILED;
932

933
	trace_block_bio_backmerge(bio);
934 935 936 937 938 939 940 941 942 943 944 945
	rq_qos_merge(req->q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;

	bio_crypt_free_ctx(bio);

	blk_account_io_merge_bio(req);
946
	return BIO_MERGE_OK;
947 948
}

949 950
static enum bio_merge_status bio_attempt_front_merge(struct request *req,
		struct bio *bio, unsigned int nr_segs)
951 952 953 954
{
	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;

	if (!ll_front_merge_fn(req, bio, nr_segs))
955
		return BIO_MERGE_FAILED;
956

957
	trace_block_bio_frontmerge(bio);
958 959 960 961 962 963 964 965 966 967 968 969 970 971
	rq_qos_merge(req->q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	bio->bi_next = req->bio;
	req->bio = bio;

	req->__sector = bio->bi_iter.bi_sector;
	req->__data_len += bio->bi_iter.bi_size;

	bio_crypt_do_front_merge(req, bio);

	blk_account_io_merge_bio(req);
972
	return BIO_MERGE_OK;
973 974
}

975 976
static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
		struct request *req, struct bio *bio)
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	rq_qos_merge(q, req, bio);

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;
	req->nr_phys_segments = segments + 1;

	blk_account_io_merge_bio(req);
994
	return BIO_MERGE_OK;
995 996
no_merge:
	req_set_nomerge(q, req);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	return BIO_MERGE_FAILED;
}

static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
						   struct request *rq,
						   struct bio *bio,
						   unsigned int nr_segs,
						   bool sched_allow_merge)
{
	if (!blk_rq_merge_ok(rq, bio))
		return BIO_MERGE_NONE;

	switch (blk_try_merge(rq, bio)) {
	case ELEVATOR_BACK_MERGE:
1011
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1012 1013 1014
			return bio_attempt_back_merge(rq, bio, nr_segs);
		break;
	case ELEVATOR_FRONT_MERGE:
1015
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1016 1017 1018 1019 1020 1021 1022 1023 1024
			return bio_attempt_front_merge(rq, bio, nr_segs);
		break;
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
	default:
		return BIO_MERGE_NONE;
	}

	return BIO_MERGE_FAILED;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
}

/**
 * blk_attempt_plug_merge - try to merge with %current's plugged list
 * @q: request_queue new bio is being queued at
 * @bio: new bio being queued
 * @nr_segs: number of segments in @bio
 * @same_queue_rq: pointer to &struct request that gets filled in when
 * another request associated with @q is found on the plug list
 * (optional, may be %NULL)
 *
 * Determine whether @bio being queued on @q can be merged with a request
 * on %current's plugged list.  Returns %true if merge was successful,
 * otherwise %false.
 *
 * Plugging coalesces IOs from the same issuer for the same purpose without
 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 * than scheduling, and the request, while may have elvpriv data, is not
 * added on the elevator at this point.  In addition, we don't have
 * reliable access to the elevator outside queue lock.  Only check basic
 * merging parameters without querying the elevator.
 *
 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 */
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs, struct request **same_queue_rq)
{
	struct blk_plug *plug;
	struct request *rq;
	struct list_head *plug_list;

	plug = blk_mq_plug(q, bio);
	if (!plug)
		return false;

	plug_list = &plug->mq_list;

	list_for_each_entry_reverse(rq, plug_list, queuelist) {
		if (rq->q == q && same_queue_rq) {
			/*
			 * Only blk-mq multiple hardware queues case checks the
			 * rq in the same queue, there should be only one such
			 * rq in a queue
			 **/
			*same_queue_rq = rq;
		}

1072
		if (rq->q != q)
1073 1074
			continue;

1075 1076
		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
		    BIO_MERGE_OK)
1077 1078 1079 1080 1081
			return true;
	}

	return false;
}
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

/*
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
 */
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
			struct bio *bio, unsigned int nr_segs)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, list, queuelist) {
		if (!checked--)
			break;

1097 1098
		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
		case BIO_MERGE_NONE:
1099
			continue;
1100 1101 1102 1103
		case BIO_MERGE_OK:
			return true;
		case BIO_MERGE_FAILED:
			return false;
1104 1105 1106 1107 1108 1109 1110
		}

	}

	return false;
}
EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs, struct request **merged_request)
{
	struct request *rq;

	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
	default:
		return false;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);