blk-merge.c 24.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10
/*
 * Functions related to segment and merge handling
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>

11 12
#include <trace/events/block.h>

13 14
#include "blk.h"

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
static inline bool bio_will_gap(struct request_queue *q,
		struct request *prev_rq, struct bio *prev, struct bio *next)
{
	struct bio_vec pb, nb;

	if (!bio_has_data(prev) || !queue_virt_boundary(q))
		return false;

	/*
	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
	 * is quite difficult to respect the sg gap limit.  We work hard to
	 * merge a huge number of small single bios in case of mkfs.
	 */
	if (prev_rq)
		bio_get_first_bvec(prev_rq->bio, &pb);
	else
		bio_get_first_bvec(prev, &pb);
32
	if (pb.bv_offset & queue_virt_boundary(q))
33 34 35 36 37 38 39 40 41 42 43 44 45
		return true;

	/*
	 * We don't need to worry about the situation that the merged segment
	 * ends in unaligned virt boundary:
	 *
	 * - if 'pb' ends aligned, the merged segment ends aligned
	 * - if 'pb' ends unaligned, the next bio must include
	 *   one single bvec of 'nb', otherwise the 'nb' can't
	 *   merge with 'pb'
	 */
	bio_get_last_bvec(prev, &pb);
	bio_get_first_bvec(next, &nb);
46
	if (biovec_phys_mergeable(q, &pb, &nb))
47 48 49 50 51 52 53 54 55 56 57 58 59 60
		return false;
	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
}

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, req, req->biotail, bio);
}

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, NULL, bio, req->bio);
}

61 62
static struct bio *blk_bio_discard_split(struct request_queue *q,
					 struct bio *bio,
63 64
					 struct bio_set *bs,
					 unsigned *nsegs)
65 66 67 68 69 70
{
	unsigned int max_discard_sectors, granularity;
	int alignment;
	sector_t tmp;
	unsigned split_sectors;

71 72
	*nsegs = 1;

73 74 75
	/* Zero-sector (unknown) and one-sector granularities are the same.  */
	granularity = max(q->limits.discard_granularity >> 9, 1U);

76 77
	max_discard_sectors = min(q->limits.max_discard_sectors,
			bio_allowed_max_sectors(q));
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	max_discard_sectors -= max_discard_sectors % granularity;

	if (unlikely(!max_discard_sectors)) {
		/* XXX: warn */
		return NULL;
	}

	if (bio_sectors(bio) <= max_discard_sectors)
		return NULL;

	split_sectors = max_discard_sectors;

	/*
	 * If the next starting sector would be misaligned, stop the discard at
	 * the previous aligned sector.
	 */
	alignment = (q->limits.discard_alignment >> 9) % granularity;

	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
	tmp = sector_div(tmp, granularity);

	if (split_sectors > tmp)
		split_sectors -= tmp;

	return bio_split(bio, split_sectors, GFP_NOIO, bs);
}

105 106 107
static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
{
108
	*nsegs = 0;
109 110 111 112 113 114 115 116 117 118

	if (!q->limits.max_write_zeroes_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
}

119 120
static struct bio *blk_bio_write_same_split(struct request_queue *q,
					    struct bio *bio,
121 122
					    struct bio_set *bs,
					    unsigned *nsegs)
123
{
124 125
	*nsegs = 1;

126 127 128 129 130 131 132 133 134
	if (!q->limits.max_write_same_sectors)
		return NULL;

	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
		return NULL;

	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
}

135 136 137 138 139 140 141 142
/*
 * Return the maximum number of sectors from the start of a bio that may be
 * submitted as a single request to a block device. If enough sectors remain,
 * align the end to the physical block size. Otherwise align the end to the
 * logical block size. This approach minimizes the number of non-aligned
 * requests that are submitted to a block device if the start of a bio is not
 * aligned to a physical block boundary.
 */
143 144 145 146
static inline unsigned get_max_io_size(struct request_queue *q,
				       struct bio *bio)
{
	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
147 148 149 150
	unsigned max_sectors = sectors;
	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
151

152 153 154 155
	max_sectors += start_offset;
	max_sectors &= ~(pbs - 1);
	if (max_sectors > start_offset)
		return max_sectors - start_offset;
156

157
	return sectors & (lbs - 1);
158 159
}

160 161 162
static inline unsigned get_max_segment_size(const struct request_queue *q,
					    struct page *start_page,
					    unsigned long offset)
163 164 165
{
	unsigned long mask = queue_segment_boundary(q);

166
	offset = mask & (page_to_phys(start_page) + offset);
167 168 169 170 171 172 173

	/*
	 * overflow may be triggered in case of zero page physical address
	 * on 32bit arch, use queue's max segment size when that happens.
	 */
	return min_not_zero(mask - offset + 1,
			(unsigned long)queue_max_segment_size(q));
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/**
 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 * @q:        [in] request queue associated with the bio associated with @bv
 * @bv:       [in] bvec to examine
 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 *            by the number of segments from @bv that may be appended to that
 *            bio without exceeding @max_segs
 * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
 *            by the number of sectors from @bv that may be appended to that
 *            bio without exceeding @max_sectors
 * @max_segs: [in] upper bound for *@nsegs
 * @max_sectors: [in] upper bound for *@sectors
 *
 * When splitting a bio, it can happen that a bvec is encountered that is too
 * big to fit in a single segment and hence that it has to be split in the
 * middle. This function verifies whether or not that should happen. The value
 * %true is returned if and only if appending the entire @bv to a bio with
 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 * the block driver.
195
 */
196 197
static bool bvec_split_segs(const struct request_queue *q,
			    const struct bio_vec *bv, unsigned *nsegs,
198 199
			    unsigned *sectors, unsigned max_segs,
			    unsigned max_sectors)
200
{
201 202
	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
	unsigned len = min(bv->bv_len, max_len);
203
	unsigned total_len = 0;
204
	unsigned seg_size = 0;
205

206
	while (len && *nsegs < max_segs) {
207 208
		seg_size = get_max_segment_size(q, bv->bv_page,
						bv->bv_offset + total_len);
209 210
		seg_size = min(seg_size, len);

211
		(*nsegs)++;
212 213 214 215 216 217 218
		total_len += seg_size;
		len -= seg_size;

		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
			break;
	}

219
	*sectors += total_len >> 9;
220

221 222
	/* tell the caller to split the bvec if it is too big to fit */
	return len > 0 || bv->bv_len > max_len;
223 224
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/**
 * blk_bio_segment_split - split a bio in two bios
 * @q:    [in] request queue pointer
 * @bio:  [in] bio to be split
 * @bs:	  [in] bio set to allocate the clone from
 * @segs: [out] number of segments in the bio with the first half of the sectors
 *
 * Clone @bio, update the bi_iter of the clone to represent the first sectors
 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
 * following is guaranteed for the cloned bio:
 * - That it has at most get_max_io_size(@q, @bio) sectors.
 * - That it has at most queue_max_segments(@q) segments.
 *
 * Except for discard requests the cloned bio will point at the bi_io_vec of
 * the original bio. It is the responsibility of the caller to ensure that the
 * original bio is not freed before the cloned bio. The caller is also
 * responsible for ensuring that @bs is only destroyed after processing of the
 * split bio has finished.
 */
244 245
static struct bio *blk_bio_segment_split(struct request_queue *q,
					 struct bio *bio,
246 247
					 struct bio_set *bs,
					 unsigned *segs)
248
{
249
	struct bio_vec bv, bvprv, *bvprvp = NULL;
250
	struct bvec_iter iter;
251
	unsigned nsegs = 0, sectors = 0;
252
	const unsigned max_sectors = get_max_io_size(q, bio);
253
	const unsigned max_segs = queue_max_segments(q);
254

255
	bio_for_each_bvec(bv, bio, iter) {
256 257 258 259
		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
260
		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
261 262
			goto split;

263 264 265 266 267 268 269
		if (nsegs < max_segs &&
		    sectors + (bv.bv_len >> 9) <= max_sectors &&
		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
			nsegs++;
			sectors += bv.bv_len >> 9;
		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
					 max_sectors)) {
270
			goto split;
271 272
		}

273
		bvprv = bv;
M
Ming Lei 已提交
274
		bvprvp = &bvprv;
275 276
	}

277 278
	*segs = nsegs;
	return NULL;
279
split:
280
	*segs = nsegs;
281
	return bio_split(bio, sectors, GFP_NOIO, bs);
282 283
}

284 285 286 287 288 289 290 291
/**
 * __blk_queue_split - split a bio and submit the second half
 * @bio:     [in, out] bio to be split
 * @nr_segs: [out] number of segments in the first bio
 *
 * Split a bio into two bios, chain the two bios, submit the second half and
 * store a pointer to the first half in *@bio. If the second bio is still too
 * big it will be split by a recursive call to this function. Since this
292 293 294
 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
 * the responsibility of the caller to ensure that
 * @bio->bi_disk->queue->bio_split is only released after processing of the
295 296
 * split bio has finished.
 */
297
void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
298
{
299
	struct request_queue *q = (*bio)->bi_disk->queue;
300
	struct bio *split = NULL;
301

A
Adrian Hunter 已提交
302 303 304
	switch (bio_op(*bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
305
		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
A
Adrian Hunter 已提交
306
		break;
307
	case REQ_OP_WRITE_ZEROES:
308 309
		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
				nr_segs);
310
		break;
A
Adrian Hunter 已提交
311
	case REQ_OP_WRITE_SAME:
312 313
		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
				nr_segs);
A
Adrian Hunter 已提交
314 315
		break;
	default:
316 317 318 319 320 321 322 323 324 325
		/*
		 * All drivers must accept single-segments bios that are <=
		 * PAGE_SIZE.  This is a quick and dirty check that relies on
		 * the fact that bi_io_vec[0] is always valid if a bio has data.
		 * The check might lead to occasional false negatives when bios
		 * are cloned, but compared to the performance impact of cloned
		 * bios themselves the loop below doesn't matter anyway.
		 */
		if (!q->limits.chunk_sectors &&
		    (*bio)->bi_vcnt == 1 &&
326
		    ((*bio)->bi_io_vec[0].bv_len +
327
		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
328 329 330
			*nr_segs = 1;
			break;
		}
331
		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
A
Adrian Hunter 已提交
332 333
		break;
	}
334

335
	if (split) {
M
Ming Lei 已提交
336
		/* there isn't chance to merge the splitted bio */
J
Jens Axboe 已提交
337
		split->bi_opf |= REQ_NOMERGE;
M
Ming Lei 已提交
338

339
		bio_chain(split, *bio);
340
		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
341 342 343 344
		generic_make_request(*bio);
		*bio = split;
	}
}
345

346 347 348 349 350 351
/**
 * blk_queue_split - split a bio and submit the second half
 * @bio: [in, out] bio to be split
 *
 * Split a bio into two bios, chains the two bios, submit the second half and
 * store a pointer to the first half in *@bio. Since this function may allocate
352 353 354
 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
 * after processing of the split bio has finished.
355
 */
356
void blk_queue_split(struct bio **bio)
357 358 359
{
	unsigned int nr_segs;

360
	__blk_queue_split(bio, &nr_segs);
361
}
362 363
EXPORT_SYMBOL(blk_queue_split);

364
unsigned int blk_recalc_rq_segments(struct request *rq)
365
{
366
	unsigned int nr_phys_segs = 0;
367
	unsigned int nr_sectors = 0;
368
	struct req_iterator iter;
369
	struct bio_vec bv;
370

371
	if (!rq->bio)
372
		return 0;
373

374
	switch (bio_op(rq->bio)) {
375 376 377
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
	case REQ_OP_WRITE_ZEROES:
378 379
		return 0;
	case REQ_OP_WRITE_SAME:
380
		return 1;
381
	}
382

383
	rq_for_each_bvec(bv, rq, iter)
384
		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
385
				UINT_MAX, UINT_MAX);
386 387 388
	return nr_phys_segs;
}

389
static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		struct scatterlist *sglist)
{
	if (!*sg)
		return sglist;

	/*
	 * If the driver previously mapped a shorter list, we could see a
	 * termination bit prematurely unless it fully inits the sg table
	 * on each mapping. We KNOW that there must be more entries here
	 * or the driver would be buggy, so force clear the termination bit
	 * to avoid doing a full sg_init_table() in drivers for each command.
	 */
	sg_unmark_end(*sg);
	return sg_next(*sg);
}

static unsigned blk_bvec_map_sg(struct request_queue *q,
		struct bio_vec *bvec, struct scatterlist *sglist,
		struct scatterlist **sg)
{
	unsigned nbytes = bvec->bv_len;
411
	unsigned nsegs = 0, total = 0;
412 413

	while (nbytes > 0) {
414
		unsigned offset = bvec->bv_offset + total;
415 416
		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
					offset), nbytes);
417 418 419 420 421 422 423 424 425 426 427 428
		struct page *page = bvec->bv_page;

		/*
		 * Unfortunately a fair number of drivers barf on scatterlists
		 * that have an offset larger than PAGE_SIZE, despite other
		 * subsystems dealing with that invariant just fine.  For now
		 * stick to the legacy format where we never present those from
		 * the block layer, but the code below should be removed once
		 * these offenders (mostly MMC/SD drivers) are fixed.
		 */
		page += (offset >> PAGE_SHIFT);
		offset &= ~PAGE_MASK;
429 430

		*sg = blk_next_sg(sg, sglist);
431
		sg_set_page(*sg, page, len, offset);
432

433 434
		total += len;
		nbytes -= len;
435 436 437 438 439 440
		nsegs++;
	}

	return nsegs;
}

441 442 443 444 445 446 447 448
static inline int __blk_bvec_map_sg(struct bio_vec bv,
		struct scatterlist *sglist, struct scatterlist **sg)
{
	*sg = blk_next_sg(sg, sglist);
	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
	return 1;
}

449 450 451 452
/* only try to merge bvecs into one sg if they are from two bios */
static inline bool
__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
			   struct bio_vec *bvprv, struct scatterlist **sg)
453 454 455 456
{

	int nbytes = bvec->bv_len;

457 458
	if (!*sg)
		return false;
459

460 461 462 463 464 465 466 467 468
	if ((*sg)->length + nbytes > queue_max_segment_size(q))
		return false;

	if (!biovec_phys_mergeable(q, bvprv, bvec))
		return false;

	(*sg)->length += nbytes;

	return true;
469 470
}

471 472 473
static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
			     struct scatterlist *sglist,
			     struct scatterlist **sg)
474
{
475
	struct bio_vec uninitialized_var(bvec), bvprv = { NULL };
476
	struct bvec_iter iter;
477
	int nsegs = 0;
478
	bool new_bio = false;
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	for_each_bio(bio) {
		bio_for_each_bvec(bvec, bio, iter) {
			/*
			 * Only try to merge bvecs from two bios given we
			 * have done bio internal merge when adding pages
			 * to bio
			 */
			if (new_bio &&
			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
				goto next_bvec;

			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
			else
				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 next_bvec:
			new_bio = false;
		}
498 499 500 501
		if (likely(bio->bi_iter.bi_size)) {
			bvprv = bvec;
			new_bio = true;
		}
502
	}
503

504 505 506 507 508 509 510
	return nsegs;
}

/*
 * map a request to scatterlist, return number of sg entries setup. Caller
 * must make sure sg can hold rq->nr_phys_segments entries
 */
511 512
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist, struct scatterlist **last_sg)
513 514 515
{
	int nsegs = 0;

516
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
517
		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
518
	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
519
		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
520
	else if (rq->bio)
521
		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
522

523 524
	if (*last_sg)
		sg_mark_end(*last_sg);
525

526 527 528 529
	/*
	 * Something must have been wrong if the figured number of
	 * segment is bigger than number of req's physical segments
	 */
530
	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
531

532 533
	return nsegs;
}
534
EXPORT_SYMBOL(__blk_rq_map_sg);
535

536 537
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
		unsigned int nr_phys_segs)
538
{
539
	if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(req->q))
540 541
		goto no_merge;

542
	if (blk_integrity_merge_bio(req->q, req, bio) == false)
543
		goto no_merge;
544 545 546 547 548 549 550

	/*
	 * This will form the start of a new hw segment.  Bump both
	 * counters.
	 */
	req->nr_phys_segments += nr_phys_segs;
	return 1;
551 552

no_merge:
553
	req_set_nomerge(req->q, req);
554
	return 0;
555 556
}

557
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
558
{
559 560
	if (req_gap_back_merge(req, bio))
		return 0;
561 562 563
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_back_merge(req, bio))
		return 0;
564 565
	if (!bio_crypt_ctx_back_mergeable(req, bio))
		return 0;
566
	if (blk_rq_sectors(req) + bio_sectors(bio) >
D
Damien Le Moal 已提交
567
	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
568
		req_set_nomerge(req->q, req);
569 570 571
		return 0;
	}

572
	return ll_new_hw_segment(req, bio, nr_segs);
573 574
}

575
int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
576
{
577 578
	if (req_gap_front_merge(req, bio))
		return 0;
579 580 581
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_front_merge(req, bio))
		return 0;
582 583
	if (!bio_crypt_ctx_front_mergeable(req, bio))
		return 0;
584
	if (blk_rq_sectors(req) + bio_sectors(bio) >
D
Damien Le Moal 已提交
585
	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
586
		req_set_nomerge(req->q, req);
587 588 589
		return 0;
	}

590
	return ll_new_hw_segment(req, bio, nr_segs);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
		struct request *next)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
	return true;
no_merge:
	req_set_nomerge(q, req);
	return false;
}

611 612 613 614 615
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
				struct request *next)
{
	int total_phys_segments;

616
	if (req_gap_back_merge(req, next->bio))
617 618
		return 0;

619 620 621
	/*
	 * Will it become too large?
	 */
622
	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
D
Damien Le Moal 已提交
623
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
624 625 626
		return 0;

	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
627
	if (total_phys_segments > queue_max_segments(q))
628 629
		return 0;

630
	if (blk_integrity_merge_rq(q, req, next) == false)
631 632
		return 0;

633 634 635
	if (!bio_crypt_ctx_merge_rq(req, next))
		return 0;

636 637 638 639 640
	/* Merge is OK... */
	req->nr_phys_segments = total_phys_segments;
	return 1;
}

641 642 643 644 645 646 647 648 649 650 651 652 653 654
/**
 * blk_rq_set_mixed_merge - mark a request as mixed merge
 * @rq: request to mark as mixed merge
 *
 * Description:
 *     @rq is about to be mixed merged.  Make sure the attributes
 *     which can be mixed are set in each bio and mark @rq as mixed
 *     merged.
 */
void blk_rq_set_mixed_merge(struct request *rq)
{
	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	struct bio *bio;

655
	if (rq->rq_flags & RQF_MIXED_MERGE)
656 657 658 659 660 661 662 663
		return;

	/*
	 * @rq will no longer represent mixable attributes for all the
	 * contained bios.  It will just track those of the first one.
	 * Distributes the attributs to each bio.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
J
Jens Axboe 已提交
664 665 666
		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
		bio->bi_opf |= ff;
667
	}
668
	rq->rq_flags |= RQF_MIXED_MERGE;
669 670
}

671
static void blk_account_io_merge_request(struct request *req)
672 673
{
	if (blk_do_io_stat(req)) {
674
		part_stat_lock();
675
		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
676
		part_stat_unlock();
677 678

		hd_struct_put(req->part);
679 680
	}
}
681

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/*
 * Two cases of handling DISCARD merge:
 * If max_discard_segments > 1, the driver takes every bio
 * as a range and send them to controller together. The ranges
 * needn't to be contiguous.
 * Otherwise, the bios/requests will be handled as same as
 * others which should be contiguous.
 */
static inline bool blk_discard_mergable(struct request *req)
{
	if (req_op(req) == REQ_OP_DISCARD &&
	    queue_max_discard_segments(req->q) > 1)
		return true;
	return false;
}

698 699
static enum elv_merge blk_try_req_merge(struct request *req,
					struct request *next)
700 701 702 703 704 705 706 707
{
	if (blk_discard_mergable(req))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
		return ELEVATOR_BACK_MERGE;

	return ELEVATOR_NO_MERGE;
}
708

709
/*
710 711
 * For non-mq, this has to be called with the request spinlock acquired.
 * For mq with scheduling, the appropriate queue wide lock should be held.
712
 */
713 714
static struct request *attempt_merge(struct request_queue *q,
				     struct request *req, struct request *next)
715 716
{
	if (!rq_mergeable(req) || !rq_mergeable(next))
717
		return NULL;
718

719
	if (req_op(req) != req_op(next))
720
		return NULL;
721

722
	if (rq_data_dir(req) != rq_data_dir(next)
723
	    || req->rq_disk != next->rq_disk)
724
		return NULL;
725

726
	if (req_op(req) == REQ_OP_WRITE_SAME &&
727
	    !blk_write_same_mergeable(req->bio, next->bio))
728
		return NULL;
729

730 731 732 733 734 735 736
	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (req->write_hint != next->write_hint)
		return NULL;

737 738 739
	if (req->ioprio != next->ioprio)
		return NULL;

740 741 742 743
	/*
	 * If we are allowed to merge, then append bio list
	 * from next to rq and release next. merge_requests_fn
	 * will have updated segment counts, update sector
744 745
	 * counts here. Handle DISCARDs separately, as they
	 * have separate settings.
746
	 */
747 748 749

	switch (blk_try_req_merge(req, next)) {
	case ELEVATOR_DISCARD_MERGE:
750 751
		if (!req_attempt_discard_merge(q, req, next))
			return NULL;
752 753 754 755 756 757
		break;
	case ELEVATOR_BACK_MERGE:
		if (!ll_merge_requests_fn(q, req, next))
			return NULL;
		break;
	default:
758
		return NULL;
759
	}
760

761 762 763 764 765 766
	/*
	 * If failfast settings disagree or any of the two is already
	 * a mixed merge, mark both as mixed before proceeding.  This
	 * makes sure that all involved bios have mixable attributes
	 * set properly.
	 */
767
	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
768 769 770 771 772 773
	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
		blk_rq_set_mixed_merge(req);
		blk_rq_set_mixed_merge(next);
	}

774
	/*
775 776 777
	 * At this point we have either done a back merge or front merge. We
	 * need the smaller start_time_ns of the merged requests to be the
	 * current request for accounting purposes.
778
	 */
779 780
	if (next->start_time_ns < req->start_time_ns)
		req->start_time_ns = next->start_time_ns;
781 782 783 784

	req->biotail->bi_next = next->bio;
	req->biotail = next->biotail;

785
	req->__data_len += blk_rq_bytes(next);
786

M
Ming Lei 已提交
787
	if (!blk_discard_mergable(req))
788
		elv_merge_requests(q, req, next);
789

790 791 792
	/*
	 * 'next' is going away, so update stats accordingly
	 */
793
	blk_account_io_merge_request(next);
794

795 796
	trace_block_rq_merge(q, next);

797 798 799 800
	/*
	 * ownership of bio passed from next to req, return 'next' for
	 * the caller to free
	 */
801
	next->bio = NULL;
802
	return next;
803 804
}

805
struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
806 807 808 809 810 811
{
	struct request *next = elv_latter_request(q, rq);

	if (next)
		return attempt_merge(q, rq, next);

812
	return NULL;
813 814
}

815
struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
816 817 818 819 820 821
{
	struct request *prev = elv_former_request(q, rq);

	if (prev)
		return attempt_merge(q, prev, rq);

822
	return NULL;
823
}
824 825 826 827

int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
			  struct request *next)
{
828
	struct request *free;
829

830 831
	free = attempt_merge(q, rq, next);
	if (free) {
J
Jens Axboe 已提交
832
		blk_put_request(free);
833 834 835 836
		return 1;
	}

	return 0;
837
}
838 839 840

bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
{
841
	if (!rq_mergeable(rq) || !bio_mergeable(bio))
842 843
		return false;

844
	if (req_op(rq) != bio_op(bio))
845 846
		return false;

847 848 849 850
	/* different data direction or already started, don't merge */
	if (bio_data_dir(bio) != rq_data_dir(rq))
		return false;

851 852
	/* must be same device */
	if (rq->rq_disk != bio->bi_disk)
853 854 855
		return false;

	/* only merge integrity protected bio into ditto rq */
856
	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
857 858
		return false;

859 860 861 862
	/* Only merge if the crypt contexts are compatible */
	if (!bio_crypt_rq_ctx_compatible(rq, bio))
		return false;

863
	/* must be using the same buffer */
864
	if (req_op(rq) == REQ_OP_WRITE_SAME &&
865 866 867
	    !blk_write_same_mergeable(rq->bio, bio))
		return false;

868 869 870 871 872 873 874
	/*
	 * Don't allow merge of different write hints, or for a hint with
	 * non-hint IO.
	 */
	if (rq->write_hint != bio->bi_write_hint)
		return false;

875 876 877
	if (rq->ioprio != bio_prio(bio))
		return false;

878 879 880
	return true;
}

881
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
882
{
883
	if (blk_discard_mergable(rq))
884 885
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
886
		return ELEVATOR_BACK_MERGE;
887
	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
888 889 890
		return ELEVATOR_FRONT_MERGE;
	return ELEVATOR_NO_MERGE;
}