book3s_pr.c 41.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44

45
#include "book3s.h"
46 47 48

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
49 50 51 52 53 54 55 56 57 58 59 60 61 62

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

63
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
64 65
{
#ifdef CONFIG_PPC_BOOK3S_64
66 67 68 69
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
	svcpu_put(svcpu);
70
#endif
71
	vcpu->cpu = smp_processor_id();
72
#ifdef CONFIG_PPC_BOOK3S_32
73
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
74 75 76
#endif
}

77
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
78 79
{
#ifdef CONFIG_PPC_BOOK3S_64
80 81 82 83
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
84 85
#endif

86
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
87
	vcpu->cpu = -1;
88 89
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
}

144
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
145
{
146 147
	int r = 1; /* Indicate we want to get back into the guest */

148 149 150 151
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
152 153

	return r;
154 155
}

156
/************* MMU Notifiers *************/
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
186

187
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
188 189 190
{
	trace_kvm_unmap_hva(hva);

191
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
192 193 194 195

	return 0;
}

196 197
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
198
{
199
	do_kvm_unmap_hva(kvm, start, end);
200 201 202 203

	return 0;
}

204
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
205 206 207 208 209
{
	/* XXX could be more clever ;) */
	return 0;
}

210
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
211 212 213 214 215
{
	/* XXX could be more clever ;) */
	return 0;
}

216
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
217 218
{
	/* The page will get remapped properly on its next fault */
219
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
220 221 222 223
}

/*****************************************/

224 225 226 227 228
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong smsr = vcpu->arch.shared->msr;

	/* Guest MSR values */
229
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
230 231 232 233 234 235 236 237 238 239 240
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

241
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
242 243 244 245 246 247 248 249 250 251 252 253 254 255
{
	ulong old_msr = vcpu->arch.shared->msr;

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
	vcpu->arch.shared->msr = msr;
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
256
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
			vcpu->arch.shared->msr = msr;
		}
	}

	if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

296 297 298 299 300
	/* Preload FPU if it's enabled */
	if (vcpu->arch.shared->msr & MSR_FP)
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

301
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
302 303 304 305 306 307 308 309
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
310 311
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
312
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
313
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
314 315 316 317
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
318 319
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
320
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
321
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
322 323
	}

324 325
	kvmppc_sanity_check(vcpu);

326 327 328 329 330 331 332 333 334 335 336 337
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
395
	if (is_error_page(hpage))
396 397 398 399 400 401 402
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
403
	page = kmap_atomic(hpage);
404 405 406 407 408 409

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
		if ((page[i] & 0xff0007ff) == INS_DCBZ)
			page[i] &= 0xfffffff7;

410
	kunmap_atomic(page);
411 412 413 414 415 416 417
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

418 419 420
	if (!(vcpu->arch.shared->msr & MSR_SF))
		mp_pa = (uint32_t)mp_pa;

421 422 423 424 425 426 427 428 429 430 431 432
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
433
	bool iswrite = false;
434 435 436 437 438 439 440 441 442 443
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
	bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
	bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
	u64 vsid;

	relocated = data ? dr : ir;
444 445
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
446 447 448

	/* Resolve real address if translation turned on */
	if (relocated) {
449
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
450 451 452 453 454 455 456
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
457
		pte.page_size = MMU_PAGE_64K;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	}

	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

		if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
492
		vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr;
493
		vcpu->arch.shared->msr |=
494
			vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
495 496 497 498
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
499
		vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
500 501
		vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
		vcpu->arch.shared->msr |=
502
			vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
503 504 505 506 507 508 509
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
510 511 512 513 514 515 516 517
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
518
		/* The guest's PTE is not mapped yet. Map on the host */
519
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
520 521 522
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
523
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
524 525 526 527 528
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
529
		vcpu->arch.vaddr_accessed = pte.eaddr;
530 531 532 533 534 535 536 537 538 539
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
540
	return i * TS_FPRWIDTH;
541 542 543 544 545 546 547 548 549 550 551 552 553
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;
	u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
	u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
	u64 *thread_fpr = (u64*)t->fpr;
	int i;

554 555 556 557 558 559 560 561 562
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
563 564 565 566 567 568
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

569 570 571 572 573 574
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
		 * registers into thread.fpr[].
		 */
575 576
		if (current->thread.regs->msr & MSR_FP)
			giveup_fpu(current);
577 578 579 580
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
			vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];

		vcpu->arch.fpscr = t->fpscr.val;
581 582 583 584 585 586 587 588

#ifdef CONFIG_VSX
		if (cpu_has_feature(CPU_FTR_VSX))
			for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
				vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
	}

589
#ifdef CONFIG_ALTIVEC
590
	if (msr & MSR_VEC) {
591 592
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
593 594 595
		memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
		vcpu->arch.vscr = t->vscr;
	}
596
#endif
597

598
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	kvmppc_recalc_shadow_msr(vcpu);
}

static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
		ulong msr = vcpu->arch.shared->msr;

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
		vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;
	u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
	u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
	u64 *thread_fpr = (u64*)t->fpr;
	int i;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

	if (!(vcpu->arch.shared->msr & msr)) {
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
673 674
	}

675 676 677 678 679
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

680 681 682 683
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

684
	if (msr & MSR_FP) {
685 686
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
			thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
687 688 689 690
#ifdef CONFIG_VSX
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
			thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
#endif
691 692 693
		t->fpscr.val = vcpu->arch.fpscr;
		t->fpexc_mode = 0;
		kvmppc_load_up_fpu();
694 695 696
	}

	if (msr & MSR_VEC) {
697 698 699 700 701 702 703 704
#ifdef CONFIG_ALTIVEC
		memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
		t->vscr = vcpu->arch.vscr;
		t->vrsave = -1;
		kvmppc_load_up_altivec();
#endif
	}

705
	current->thread.regs->msr |= msr;
706 707 708 709 710 711
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

	if (lost_ext & MSR_FP)
		kvmppc_load_up_fpu();
726
#ifdef CONFIG_ALTIVEC
727 728
	if (lost_ext & MSR_VEC)
		kvmppc_load_up_altivec();
729
#endif
730 731 732
	current->thread.regs->msr |= lost_ext;
}

733 734
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
735 736
{
	int r = RESUME_HOST;
737
	int s;
738 739 740 741 742 743

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

744
	/* We get here with MSR.EE=1 */
745

746
	trace_kvm_exit(exit_nr, vcpu);
747
	kvm_guest_exit();
748

749 750
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
751
	{
752
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
753 754 755 756 757
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
758 759 760 761 762 763
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
764
			svcpu_put(svcpu);
765 766 767 768 769
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
770 771 772 773
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
774
		if (shadow_srr1 & 0x40000000) {
775
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
776
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
777
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
778 779 780 781 782 783 784 785 786 787 788
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
789
			vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
790 791 792 793
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
794
	}
795 796 797
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
798
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
799 800 801 802 803
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
804 805 806 807 808 809
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
810
			svcpu_put(svcpu);
811 812 813 814 815
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
816 817 818
		}
#endif

819 820 821 822 823 824 825
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
826
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
827
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
828 829
		} else {
			vcpu->arch.shared->dar = dar;
830
			vcpu->arch.shared->dsisr = fault_dsisr;
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
			vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
853
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
854 855 856 857
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
858 859
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
860 861 862 863 864 865 866
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
867
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
868 869 870 871 872
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
873
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

		if (vcpu->arch.shared->msr & MSR_PR) {
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
906
		case EMULATE_EXIT_USER:
907 908
			r = RESUME_HOST_NV;
			break;
909 910 911 912 913 914
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
915
		if (vcpu->arch.papr_enabled &&
916
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
917 918 919 920 921
		    !(vcpu->arch.shared->msr & MSR_PR)) {
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

922
#ifdef CONFIG_PPC_BOOK3S_64
923 924 925 926
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
927
#endif
928 929 930 931 932 933 934 935 936 937

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
		} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
			vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
				kvmppc_get_last_inst(vcpu));
			vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
				kvmppc_get_last_inst(vcpu));
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1004
	{
1005
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1006 1007
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1008
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1009 1010 1011 1012
		r = RESUME_HOST;
		BUG();
		break;
	}
1013
	}
1014 1015 1016 1017 1018

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1019 1020 1021 1022 1023 1024 1025

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1026
		local_irq_disable();
1027 1028
		s = kvmppc_prepare_to_enter(vcpu);
		if (s <= 0) {
1029
			local_irq_enable();
1030
			r = s;
1031
		} else {
1032
			kvmppc_fix_ee_before_entry();
1033
		}
1034
		kvmppc_handle_lost_ext(vcpu);
1035 1036 1037 1038 1039 1040 1041
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1042 1043
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
			sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1069 1070
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1071 1072 1073 1074
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1075
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1105 1106
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1107
{
1108
	int r = 0;
1109

1110
	switch (id) {
1111
	case KVM_REG_PPC_HIOR:
1112
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1113
		break;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
#ifdef CONFIG_VSX
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
		long int i = id - KVM_REG_PPC_VSR0;

		if (!cpu_has_feature(CPU_FTR_VSX)) {
			r = -ENXIO;
			break;
		}
		val->vsxval[0] = vcpu->arch.fpr[i];
		val->vsxval[1] = vcpu->arch.vsr[i];
		break;
	}
#endif /* CONFIG_VSX */
1127
	default:
1128
		r = -EINVAL;
1129 1130 1131 1132 1133 1134
		break;
	}

	return r;
}

1135 1136
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1137
{
1138
	int r = 0;
1139

1140
	switch (id) {
1141
	case KVM_REG_PPC_HIOR:
1142 1143
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1144
		break;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef CONFIG_VSX
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
		long int i = id - KVM_REG_PPC_VSR0;

		if (!cpu_has_feature(CPU_FTR_VSX)) {
			r = -ENXIO;
			break;
		}
		vcpu->arch.fpr[i] = val->vsxval[0];
		vcpu->arch.vsr[i] = val->vsxval[1];
		break;
	}
#endif /* CONFIG_VSX */
1158
	default:
1159
		r = -EINVAL;
1160 1161 1162 1163 1164 1165
		break;
	}

	return r;
}

1166 1167
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1168 1169 1170 1171 1172 1173
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1174 1175 1176 1177
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
		goto out;

1178 1179
	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
1180 1181
		goto free_vcpu;
	vcpu->arch.book3s = vcpu_book3s;
1182

1183
#ifdef CONFIG_KVM_BOOK3S_32
1184 1185 1186 1187
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1188
#endif
1189

1190 1191 1192 1193
	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1194
	err = -ENOMEM;
1195 1196 1197
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1198 1199
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1200 1201

#ifdef CONFIG_PPC_BOOK3S_64
1202 1203 1204 1205 1206
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1207
	vcpu->arch.pvr = 0x3C0301;
1208 1209
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1210 1211 1212 1213
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1214
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	vcpu->arch.slb_nr = 64;

	vcpu->arch.shadow_msr = MSR_USER64;

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1228
#ifdef CONFIG_KVM_BOOK3S_32
1229 1230
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1231
#endif
1232
	vfree(vcpu_book3s);
1233 1234
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1235 1236 1237 1238
out:
	return ERR_PTR(err);
}

1239
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1240 1241 1242 1243 1244
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1245 1246 1247
#ifdef CONFIG_KVM_BOOK3S_32
	kfree(vcpu->arch.shadow_vcpu);
#endif
1248
	vfree(vcpu_book3s);
1249
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1250 1251
}

1252
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
{
	int ret;
	double fpr[32][TS_FPRWIDTH];
	unsigned int fpscr;
	int fpexc_mode;
#ifdef CONFIG_ALTIVEC
	vector128 vr[32];
	vector128 vscr;
	unsigned long uninitialized_var(vrsave);
	int used_vr;
#endif
#ifdef CONFIG_VSX
	int used_vsr;
#endif
	ulong ext_msr;

1269 1270 1271
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1272 1273
		ret = -EINVAL;
		goto out;
1274 1275
	}

1276 1277 1278 1279 1280 1281
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1282
	local_irq_disable();
1283 1284
	ret = kvmppc_prepare_to_enter(vcpu);
	if (ret <= 0) {
1285
		local_irq_enable();
1286
		goto out;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}

	/* Save FPU state in stack */
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);
	memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
	fpscr = current->thread.fpscr.val;
	fpexc_mode = current->thread.fpexc_mode;

#ifdef CONFIG_ALTIVEC
	/* Save Altivec state in stack */
	used_vr = current->thread.used_vr;
	if (used_vr) {
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
		memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
		vscr = current->thread.vscr;
		vrsave = current->thread.vrsave;
	}
#endif

#ifdef CONFIG_VSX
	/* Save VSX state in stack */
	used_vsr = current->thread.used_vsr;
	if (used_vsr && (current->thread.regs->msr & MSR_VSX))
1312
		__giveup_vsx(current);
1313 1314 1315 1316 1317 1318 1319 1320 1321
#endif

	/* Remember the MSR with disabled extensions */
	ext_msr = current->thread.regs->msr;

	/* Preload FPU if it's enabled */
	if (vcpu->arch.shared->msr & MSR_FP)
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1322
	kvmppc_fix_ee_before_entry();
1323 1324 1325

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1326 1327
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1328 1329

	/* Make sure we save the guest FPU/Altivec/VSX state */
1330 1331 1332
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

	current->thread.regs->msr = ext_msr;
1333

1334
	/* Restore FPU/VSX state from stack */
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
	current->thread.fpscr.val = fpscr;
	current->thread.fpexc_mode = fpexc_mode;

#ifdef CONFIG_ALTIVEC
	/* Restore Altivec state from stack */
	if (used_vr && current->thread.used_vr) {
		memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
		current->thread.vscr = vscr;
		current->thread.vrsave = vrsave;
	}
	current->thread.used_vr = used_vr;
#endif

#ifdef CONFIG_VSX
	current->thread.used_vsr = used_vsr;
#endif

1353
out:
1354
	vcpu->mode = OUTSIDE_GUEST_MODE;
1355 1356 1357
	return ret;
}

1358 1359 1360
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1361 1362
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
{
	return;
}

static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
	return 0;
}

static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
{
	return;
}

static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
{
	return;
}

static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
{
	return 0;
}


1430
#ifdef CONFIG_PPC64
1431 1432
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1433
{
1434 1435 1436 1437
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1468
	/* Standard 16M large page size segment */
1469 1470 1471 1472
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1473 1474 1475

	return 0;
}
1476 1477 1478
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1479
{
1480 1481
	/* We should not get called */
	BUG();
1482
}
1483
#endif /* CONFIG_PPC64 */
1484

1485 1486 1487
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1488
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1489
{
1490
	mutex_init(&kvm->arch.hpt_mutex);
1491

1492 1493 1494 1495 1496 1497
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1498 1499 1500
	return 0;
}

1501
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1502
{
1503 1504 1505
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1506 1507 1508 1509 1510 1511 1512 1513

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1514 1515
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int kvmppc_core_check_processor_compat_pr(void)
{
	/* we are always compatible */
	return 0;
}

static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}

1528
static struct kvmppc_ops kvm_ops_pr = {
1529
	.is_hv_enabled = false,
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
};

1563 1564

int kvmppc_book3s_init_pr(void)
1565 1566 1567
{
	int r;

1568 1569
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1570 1571
		return r;

1572 1573
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1574

1575
	r = kvmppc_mmu_hpte_sysinit();
1576 1577 1578
	return r;
}

1579
void kvmppc_book3s_exit_pr(void)
1580
{
1581
	kvmppc_pr_ops = NULL;
1582 1583 1584
	kvmppc_mmu_hpte_sysexit();
}

1585 1586 1587 1588 1589
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1590 1591
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1592 1593

MODULE_LICENSE("GPL");
1594
#endif