igb_main.c 217.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Intel(R) Gigabit Ethernet Linux driver
 * Copyright(c) 2007-2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */
23

J
Jeff Kirsher 已提交
24 25
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

26 27 28
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
29
#include <linux/bitops.h>
30 31 32 33
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
34
#include <linux/slab.h>
35 36
#include <net/checksum.h>
#include <net/ip6_checksum.h>
37
#include <linux/net_tstamp.h>
38 39
#include <linux/mii.h>
#include <linux/ethtool.h>
40
#include <linux/if.h>
41 42
#include <linux/if_vlan.h>
#include <linux/pci.h>
43
#include <linux/pci-aspm.h>
44 45
#include <linux/delay.h>
#include <linux/interrupt.h>
46 47 48
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
49
#include <linux/if_ether.h>
50
#include <linux/aer.h>
51
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
52
#include <linux/pm_runtime.h>
53
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
54 55
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
56
#include <linux/i2c.h>
57 58
#include "igb.h"

C
Carolyn Wyborny 已提交
59 60
#define MAJ 5
#define MIN 0
A
Akeem G Abodunrin 已提交
61
#define BUILD 5
C
Carolyn Wyborny 已提交
62
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63
__stringify(BUILD) "-k"
64 65 66 67
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
68
static const char igb_copyright[] =
69
				"Copyright (c) 2007-2014 Intel Corporation.";
70 71 72 73 74

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

75
static const struct pci_device_id igb_pci_tbl[] = {
76 77 78
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 80 81 82 83
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 85
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 87 88 89
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 94 95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 97
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
98 99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
103 104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140
					  struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158 159
static void igb_vlan_mode(struct net_device *netdev,
			  netdev_features_t features);
160 161
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162
static void igb_restore_vlan(struct igb_adapter *);
163
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 165 166
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
167
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 170 171
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
172
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
L
Lior Levy 已提交
173 174
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
175 176
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
177
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
178 179

#ifdef CONFIG_PCI_IOV
180
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
R
RongQing Li 已提交
182
#endif
183 184

#ifdef CONFIG_PM
185
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
186
static int igb_suspend(struct device *);
187
#endif
Y
Yan, Zheng 已提交
188 189 190 191 192 193 194 195 196 197 198
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
199 200
#endif
static void igb_shutdown(struct pci_dev *);
201
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
203 204 205 206 207 208 209
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
210 211 212 213
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
214
#ifdef CONFIG_PCI_IOV
215
static unsigned int max_vfs;
216
module_param(max_vfs, uint, 0);
C
Carolyn Wyborny 已提交
217
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 219
#endif /* CONFIG_PCI_IOV */

220 221 222 223 224
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

225
static const struct pci_error_handlers igb_err_handler = {
226 227 228 229 230
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

231
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232 233 234 235 236

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
237
	.remove   = igb_remove,
238
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
239
	.driver.pm = &igb_pm_ops,
240 241
#endif
	.shutdown = igb_shutdown,
242
	.sriov_configure = igb_pci_sriov_configure,
243 244 245 246 247 248 249 250
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

251 252 253 254 255
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

297
/* igb_regdump - register printout routine */
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
354
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 356 357 358
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
359 360
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
361 362
}

363
/* igb_dump - Print registers, Tx-rings and Rx-rings */
364 365 366 367 368 369 370 371 372 373 374
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
375
	u16 i, n;
376 377 378 379 380 381 382

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
C
Carolyn Wyborny 已提交
383
		pr_info("Device Name     state            trans_start      last_rx\n");
J
Jeff Kirsher 已提交
384 385
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
386 387 388 389
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
390
	pr_info(" Register Name   Value\n");
391 392 393 394 395 396 397 398 399 400
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
401
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402
	for (n = 0; n < adapter->num_tx_queues; n++) {
403
		struct igb_tx_buffer *buffer_info;
404
		tx_ring = adapter->tx_ring[n];
405
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
406 407
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 409
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
410 411
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
433 434 435
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
C
Carolyn Wyborny 已提交
436
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437 438

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
439
			const char *next_desc;
440
			struct igb_tx_buffer *buffer_info;
441
			tx_desc = IGB_TX_DESC(tx_ring, i);
442
			buffer_info = &tx_ring->tx_buffer_info[i];
443
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
444 445 446 447 448 449 450 451 452 453
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

C
Carolyn Wyborny 已提交
454 455
			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
				i, le64_to_cpu(u0->a),
456
				le64_to_cpu(u0->b),
457 458
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
459 460
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
461
				buffer_info->skb, next_desc);
462

463
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 465
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
466
					16, 1, buffer_info->skb->data,
467 468
					dma_unmap_len(buffer_info, len),
					true);
469 470 471 472 473 474
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
475
	pr_info("Queue [NTU] [NTC]\n");
476 477
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
478 479
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
511 512 513
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
C
Carolyn Wyborny 已提交
514 515
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516 517

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
518
			const char *next_desc;
519 520
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
521
			rx_desc = IGB_RX_DESC(rx_ring, i);
522 523
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
524 525 526 527 528 529 530 531

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

532 533
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
534 535
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
536 537
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
538
					next_desc);
539
			} else {
540 541
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
542 543 544
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
545
					next_desc);
546

547
				if (netif_msg_pktdata(adapter) &&
548
				    buffer_info->dma && buffer_info->page) {
549 550 551
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
552 553
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
554
					  IGB_RX_BUFSZ, true);
555 556 557 558 559 560 561 562 563
				}
			}
		}
	}

exit:
	return;
}

564 565
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
566 567 568 569
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
570
 **/
C
Carolyn Wyborny 已提交
571 572 573 574 575 576
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

577
	return !!(i2cctl & E1000_I2C_DATA_IN);
C
Carolyn Wyborny 已提交
578 579
}

580 581
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
582 583 584 585
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
586
 **/
C
Carolyn Wyborny 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

605 606
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
607 608 609 610
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
611
 **/
C
Carolyn Wyborny 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

629 630
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
631 632 633
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
634
 **/
C
Carolyn Wyborny 已提交
635 636 637 638 639 640
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

641
	return !!(i2cctl & E1000_I2C_CLK_IN);
C
Carolyn Wyborny 已提交
642 643 644 645 646 647 648 649 650 651 652
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

653
/**
654 655 656 657
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
658
 **/
659
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 661
{
	struct igb_adapter *adapter = hw->back;
662
	return adapter->netdev;
663
}
P
Patrick Ohly 已提交
664

665
/**
666
 *  igb_init_module - Driver Registration Routine
667
 *
668 669
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
670 671 672 673
 **/
static int __init igb_init_module(void)
{
	int ret;
674

J
Jeff Kirsher 已提交
675
	pr_info("%s - version %s\n",
676
	       igb_driver_string, igb_driver_version);
J
Jeff Kirsher 已提交
677
	pr_info("%s\n", igb_copyright);
678

679
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
680 681
	dca_register_notify(&dca_notifier);
#endif
682
	ret = pci_register_driver(&igb_driver);
683 684 685 686 687 688
	return ret;
}

module_init(igb_init_module);

/**
689
 *  igb_exit_module - Driver Exit Cleanup Routine
690
 *
691 692
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
693 694 695
 **/
static void __exit igb_exit_module(void)
{
696
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
697 698
	dca_unregister_notify(&dca_notifier);
#endif
699 700 701 702 703
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

704 705
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
706 707
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
708
 *
709 710
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
711 712 713
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
714
	int i = 0, j = 0;
715
	u32 rbase_offset = adapter->vfs_allocated_count;
716 717 718 719 720 721 722 723

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
724
		if (adapter->vfs_allocated_count) {
725
			for (; i < adapter->rss_queues; i++)
726
				adapter->rx_ring[i]->reg_idx = rbase_offset +
727
							       Q_IDX_82576(i);
728
		}
729
		/* Fall through */
730
	case e1000_82575:
731
	case e1000_82580:
732
	case e1000_i350:
733
	case e1000_i354:
734 735
	case e1000_i210:
	case e1000_i211:
736
		/* Fall through */
737
	default:
738
		for (; i < adapter->num_rx_queues; i++)
739
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740
		for (; j < adapter->num_tx_queues; j++)
741
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 743 744 745
		break;
	}
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
	u32 value = 0;

	if (E1000_REMOVED(hw_addr))
		return ~value;

	value = readl(&hw_addr[reg]);

	/* reads should not return all F's */
	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
		struct net_device *netdev = igb->netdev;
		hw->hw_addr = NULL;
		netif_device_detach(netdev);
		netdev_err(netdev, "PCIe link lost, device now detached\n");
	}

	return value;
}

A
Alexander Duyck 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

794
#define IGB_N0_QUEUE -1
795
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796
{
797
	struct igb_adapter *adapter = q_vector->adapter;
798
	struct e1000_hw *hw = &adapter->hw;
799 800
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
801
	u32 msixbm = 0;
802

803 804 805 806
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
807 808 809

	switch (hw->mac.type) {
	case e1000_82575:
810
		/* The 82575 assigns vectors using a bitmask, which matches the
811 812 813 814
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
815
		if (rx_queue > IGB_N0_QUEUE)
816
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817
		if (tx_queue > IGB_N0_QUEUE)
818
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819
		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820
			msixbm |= E1000_EIMS_OTHER;
821
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
823 824
		break;
	case e1000_82576:
825
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
826 827 828 829 830 831 832 833 834 835 836 837
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
838
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
839
		break;
840
	case e1000_82580:
841
	case e1000_i350:
842
	case e1000_i354:
843 844
	case e1000_i210:
	case e1000_i211:
845
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
859 860
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
861 862 863 864
	default:
		BUG();
		break;
	}
865 866 867 868 869 870

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
871 872 873
}

/**
874 875
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
876
 *
877 878
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
879 880 881 882 883 884 885 886 887 888
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
889 890
	switch (hw->mac.type) {
	case e1000_82575:
891 892 893 894 895 896 897 898 899
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
900 901

		/* enable msix_other interrupt */
902
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
903
		adapter->eims_other = E1000_EIMS_OTHER;
904

A
Alexander Duyck 已提交
905 906 907
		break;

	case e1000_82576:
908
	case e1000_82580:
909
	case e1000_i350:
910
	case e1000_i354:
911 912
	case e1000_i210:
	case e1000_i211:
913
		/* Turn on MSI-X capability first, or our settings
914 915
		 * won't stick.  And it will take days to debug.
		 */
916
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 918
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
919 920 921

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
922 923
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

924
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
925 926 927 928 929
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
930 931 932

	adapter->eims_enable_mask |= adapter->eims_other;

933 934
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
935

936 937 938 939
	wrfl();
}

/**
940 941
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
942
 *
943 944
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
945 946 947 948
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
949
	struct e1000_hw *hw = &adapter->hw;
950
	int i, err = 0, vector = 0, free_vector = 0;
951

952
	err = request_irq(adapter->msix_entries[vector].vector,
953
			  igb_msix_other, 0, netdev->name, adapter);
954
	if (err)
955
		goto err_out;
956 957 958 959

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

960 961
		vector++;

962 963
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

964
		if (q_vector->rx.ring && q_vector->tx.ring)
965
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 967
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
968
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 970
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
971
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972
				q_vector->rx.ring->queue_index);
973
		else
974 975
			sprintf(q_vector->name, "%s-unused", netdev->name);

976
		err = request_irq(adapter->msix_entries[vector].vector,
977 978
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
979
		if (err)
980
			goto err_free;
981 982 983 984
	}

	igb_configure_msix(adapter);
	return 0;
985 986 987 988 989 990 991 992 993 994 995

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
996 997 998
	return err;
}

999
/**
1000 1001 1002
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
1003
 *
1004
 *  This function frees the memory allocated to the q_vector.
1005 1006 1007 1008 1009
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	adapter->q_vector[v_idx] = NULL;

	/* igb_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

/**
 *  igb_reset_q_vector - Reset config for interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be reset
 *
 *  If NAPI is enabled it will delete any references to the
 *  NAPI struct. This is preparation for igb_free_q_vector.
 **/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

1030 1031 1032 1033 1034 1035
	/* Coming from igb_set_interrupt_capability, the vectors are not yet
	 * allocated. So, q_vector is NULL so we should stop here.
	 */
	if (!q_vector)
		return;

1036 1037 1038 1039 1040 1041 1042 1043
	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	netif_napi_del(&q_vector->napi);

1044 1045 1046 1047 1048 1049
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

1050
	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051
		pci_disable_msix(adapter->pdev);
1052
	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 1054 1055 1056
		pci_disable_msi(adapter->pdev);

	while (v_idx--)
		igb_reset_q_vector(adapter, v_idx);
1057 1058
}

1059
/**
1060 1061
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1062
 *
1063 1064 1065
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1066 1067 1068
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1069 1070 1071 1072
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1073
	adapter->num_q_vectors = 0;
1074

1075 1076
	while (v_idx--) {
		igb_reset_q_vector(adapter, v_idx);
1077
		igb_free_q_vector(adapter, v_idx);
1078
	}
1079 1080 1081
}

/**
1082 1083
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1084
 *
1085 1086
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1087 1088 1089 1090 1091 1092
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1093 1094

/**
1095 1096 1097
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1098
 *
1099 1100
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1101
 **/
1102
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 1104 1105 1106
{
	int err;
	int numvecs, i;

1107 1108
	if (!msix)
		goto msi_only;
1109
	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110

1111
	/* Number of supported queues. */
1112
	adapter->num_rx_queues = adapter->rss_queues;
1113 1114 1115 1116
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1117

1118
	/* start with one vector for every Rx queue */
1119 1120
	numvecs = adapter->num_rx_queues;

1121
	/* if Tx handler is separate add 1 for every Tx queue */
1122 1123
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1124 1125 1126 1127 1128 1129

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1130 1131 1132
	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

1133 1134 1135 1136 1137
	err = pci_enable_msix_range(adapter->pdev,
				    adapter->msix_entries,
				    numvecs,
				    numvecs);
	if (err > 0)
1138
		return;
1139 1140 1141 1142 1143

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1144
	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156
		wrfl();
1157 1158 1159 1160
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1161
	adapter->vfs_allocated_count = 0;
1162
	adapter->rss_queues = 1;
1163
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164
	adapter->num_rx_queues = 1;
1165
	adapter->num_tx_queues = 1;
1166
	adapter->num_q_vectors = 1;
1167
	if (!pci_enable_msi(adapter->pdev))
1168
		adapter->flags |= IGB_FLAG_HAS_MSI;
1169 1170
}

1171 1172 1173 1174 1175 1176 1177
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1178
/**
1179 1180 1181 1182 1183 1184 1185 1186
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1187
 *
1188
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189
 **/
1190 1191 1192 1193
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1194 1195
{
	struct igb_q_vector *q_vector;
1196 1197
	struct igb_ring *ring;
	int ring_count, size;
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
1208 1209 1210
	q_vector = adapter->q_vector[v_idx];
	if (!q_vector)
		q_vector = kzalloc(size, GFP_KERNEL);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

1262 1263 1264
		u64_stats_init(&ring->tx_syncp);
		u64_stats_init(&ring->tx_syncp2);

1265 1266 1267 1268 1269
		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1270
	}
1271

1272 1273 1274 1275
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1276

1277 1278
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1279

1280 1281
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1282

1283 1284 1285
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286

1287
		/* On i350, i354, i210, and i211, loopback VLAN packets
1288
		 * have the tag byte-swapped.
1289
		 */
1290 1291
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292

1293 1294 1295 1296
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

1297 1298
		u64_stats_init(&ring->rx_syncp);

1299 1300 1301 1302 1303
		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1304 1305
}

1306

1307
/**
1308 1309
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1310
 *
1311 1312
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1313
 **/
1314
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315
{
1316 1317 1318 1319 1320
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1321

1322 1323 1324 1325
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1326

1327 1328 1329 1330 1331 1332
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1333 1334
		}
	}
1335 1336 1337 1338

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1353
	return 0;
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1364 1365 1366
}

/**
1367 1368 1369
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1370
 *
1371
 *  This function initializes the interrupts and allocates all of the queues.
1372
 **/
1373
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 1375 1376 1377
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1378
	igb_set_interrupt_capability(adapter, msix);
1379 1380 1381 1382 1383 1384 1385

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1386
	igb_cache_ring_register(adapter);
1387 1388

	return 0;
1389

1390 1391 1392 1393 1394
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1395
/**
1396 1397
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1398
 *
1399 1400
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1401 1402 1403 1404
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1405
	struct pci_dev *pdev = adapter->pdev;
1406 1407
	int err = 0;

1408
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1410
		if (!err)
1411 1412
			goto request_done;
		/* fall back to MSI */
1413 1414
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1415

1416
		igb_clear_interrupt_scheme(adapter);
1417 1418
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1419
			goto request_done;
1420

1421 1422
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1423
		igb_configure(adapter);
1424
	}
P
PJ Waskiewicz 已提交
1425

1426 1427
	igb_assign_vector(adapter->q_vector[0], 0);

1428
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430
				  netdev->name, adapter);
1431 1432
		if (!err)
			goto request_done;
1433

1434 1435
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1436
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 1438
	}

1439
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440
			  netdev->name, adapter);
1441

A
Andy Gospodarek 已提交
1442
	if (err)
1443
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 1445 1446 1447 1448 1449 1450 1451
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
1452
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 1454
		int vector = 0, i;

1455
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456

1457
		for (i = 0; i < adapter->num_q_vectors; i++)
1458
			free_irq(adapter->msix_entries[vector++].vector,
1459
				 adapter->q_vector[i]);
1460 1461
	} else {
		free_irq(adapter->pdev->irq, adapter);
1462 1463 1464 1465
	}
}

/**
1466 1467
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1468 1469 1470 1471 1472
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1473
	/* we need to be careful when disabling interrupts.  The VFs are also
1474 1475 1476
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1477
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478
		u32 regval = rd32(E1000_EIAM);
1479

1480 1481 1482 1483
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484
	}
P
PJ Waskiewicz 已提交
1485 1486

	wr32(E1000_IAM, 0);
1487 1488
	wr32(E1000_IMC, ~0);
	wrfl();
1489
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490
		int i;
1491

1492 1493 1494 1495 1496
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1497 1498 1499
}

/**
1500 1501
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1502 1503 1504 1505 1506
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1507
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509
		u32 regval = rd32(E1000_EIAC);
1510

1511 1512 1513
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1514
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515
		if (adapter->vfs_allocated_count) {
1516
			wr32(E1000_MBVFIMR, 0xFF);
1517 1518 1519
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1520
	} else {
1521 1522 1523 1524
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1525
	}
1526 1527 1528 1529
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1530
	struct e1000_hw *hw = &adapter->hw;
1531 1532
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1544
	    !test_bit(old_vid, adapter->active_vlans)) {
1545 1546
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1547 1548 1549 1550
	}
}

/**
1551 1552
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1553
 *
1554 1555 1556
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1570 1571
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1572
 *
1573 1574 1575
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1589 1590
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1591 1592 1593 1594 1595 1596 1597
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1598
	igb_set_rx_mode(netdev);
1599 1600 1601

	igb_restore_vlan(adapter);

1602
	igb_setup_tctl(adapter);
1603
	igb_setup_mrqc(adapter);
1604
	igb_setup_rctl(adapter);
1605 1606

	igb_configure_tx(adapter);
1607
	igb_configure_rx(adapter);
1608 1609 1610

	igb_rx_fifo_flush_82575(&adapter->hw);

1611
	/* call igb_desc_unused which always leaves
1612
	 * at least 1 descriptor unused to make sure
1613 1614
	 * next_to_use != next_to_clean
	 */
1615
	for (i = 0; i < adapter->num_rx_queues; i++) {
1616
		struct igb_ring *ring = adapter->rx_ring[i];
1617
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618 1619 1620
	}
}

1621
/**
1622 1623
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1624 1625 1626
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1627 1628
	igb_reset_phy(&adapter->hw);

1629 1630 1631 1632
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
1633 1634

	igb_setup_link(&adapter->hw);
1635 1636 1637
}

/**
1638 1639
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1640 1641 1642 1643 1644 1645 1646 1647
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/**
 * Detect and switch function for Media Auto Sense
 * @adapter: address of the board private structure
 **/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext, connsw;
	bool swap_now = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	connsw = rd32(E1000_CONNSW);

	/* need to live swap if current media is copper and we have fiber/serdes
	 * to go to.
	 */

	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
		swap_now = true;
	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
		/* copper signal takes time to appear */
		if (adapter->copper_tries < 4) {
			adapter->copper_tries++;
			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
			wr32(E1000_CONNSW, connsw);
			return;
		} else {
			adapter->copper_tries = 0;
			if ((connsw & E1000_CONNSW_PHYSD) &&
			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
				swap_now = true;
				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
				wr32(E1000_CONNSW, connsw);
			}
		}
	}

	if (!swap_now)
		return;

	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		netdev_info(adapter->netdev,
			"MAS: changing media to fiber/serdes\n");
		ctrl_ext |=
			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		adapter->copper_tries = 0;
		break;
	case e1000_media_type_internal_serdes:
	case e1000_media_type_fiber:
		netdev_info(adapter->netdev,
			"MAS: changing media to copper\n");
		ctrl_ext &=
			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		break;
	default:
		/* shouldn't get here during regular operation */
		netdev_err(adapter->netdev,
			"AMS: Invalid media type found, returning\n");
		break;
	}
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

1716
/**
1717 1718
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1730 1731 1732
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

1733
	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1734
		igb_configure_msix(adapter);
1735 1736
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1737 1738 1739 1740 1741

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1742 1743 1744
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
1745

1746 1747 1748 1749
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1750 1751
	netif_tx_start_all_queues(adapter->netdev);

1752 1753 1754 1755
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1756 1757 1758 1759
	if ((adapter->flags & IGB_FLAG_EEE) &&
	    (!hw->dev_spec._82575.eee_disable))
		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;

1760 1761 1762 1763 1764 1765
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1766
	struct e1000_hw *hw = &adapter->hw;
1767 1768 1769 1770
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1771 1772
	 * reschedule our watchdog timer
	 */
1773 1774 1775 1776 1777 1778 1779
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1780
	netif_tx_stop_all_queues(netdev);
1781 1782 1783 1784 1785 1786 1787

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
1788
	usleep_range(10000, 11000);
1789

1790 1791
	igb_irq_disable(adapter);

1792 1793
	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

1794 1795
	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1796
		napi_disable(&(adapter->q_vector[i]->napi));
1797
	}
1798 1799 1800 1801 1802 1803


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1804 1805

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1806 1807 1808
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1809

1810 1811 1812
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1813 1814
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1815 1816
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1817 1818 1819 1820 1821
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1822 1823 1824 1825 1826 1827
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1828
		usleep_range(1000, 2000);
1829 1830 1831 1832 1833
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/** igb_enable_mas - Media Autosense re-enable after swap
 *
 * @adapter: adapter struct
 **/
static s32 igb_enable_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 connsw;
	s32 ret_val = 0;

	connsw = rd32(E1000_CONNSW);
	if (!(hw->phy.media_type == e1000_media_type_copper))
		return ret_val;

	/* configure for SerDes media detect */
	if (!(connsw & E1000_CONNSW_SERDESD)) {
		connsw |= E1000_CONNSW_ENRGSRC;
		connsw |= E1000_CONNSW_AUTOSENSE_EN;
		wr32(E1000_CONNSW, connsw);
		wrfl();
	} else if (connsw & E1000_CONNSW_SERDESD) {
		/* already SerDes, no need to enable anything */
		return ret_val;
	} else {
		netdev_info(adapter->netdev,
			"MAS: Unable to configure feature, disabling..\n");
		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
	}
	return ret_val;
}

1865 1866
void igb_reset(struct igb_adapter *adapter)
{
1867
	struct pci_dev *pdev = adapter->pdev;
1868
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1869 1870
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1871
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1872 1873 1874 1875

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1876
	switch (mac->type) {
1877
	case e1000_i350:
1878
	case e1000_i354:
1879 1880 1881 1882
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1883
	case e1000_82576:
1884 1885
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1886 1887
		break;
	case e1000_82575:
1888 1889
	case e1000_i210:
	case e1000_i211:
1890 1891 1892
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1893
	}
1894

A
Alexander Duyck 已提交
1895 1896
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1897 1898 1899 1900 1901 1902 1903 1904
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1905 1906
		 * expressed in KB.
		 */
1907 1908 1909 1910 1911
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1912 1913 1914
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1915
		min_tx_space = (adapter->max_frame_size +
1916
				sizeof(union e1000_adv_tx_desc) -
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1927 1928
		 * allocation, take space away from current Rx allocation
		 */
1929 1930 1931 1932
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1933 1934 1935
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1936 1937 1938
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1939
		wr32(E1000_PBA, pba);
1940 1941 1942 1943 1944 1945 1946
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1947 1948
	 * - the full Rx FIFO size minus one full frame
	 */
1949
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1950
			((pba << 10) - 2 * adapter->max_frame_size));
1951

1952
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1953
	fc->low_water = fc->high_water - 16;
1954 1955
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1956
	fc->current_mode = fc->requested_mode;
1957

1958 1959 1960
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
1961

1962
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1963
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1964 1965

		/* ping all the active vfs to let them know we are going down */
1966
		igb_ping_all_vfs(adapter);
1967 1968 1969 1970 1971 1972

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1973
	/* Allow time for pending master requests to run */
1974
	hw->mac.ops.reset_hw(hw);
1975 1976
	wr32(E1000_WUC, 0);

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
		/* need to resetup here after media swap */
		adapter->ei.get_invariants(hw);
		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
	}
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (igb_enable_mas(adapter))
			dev_err(&pdev->dev,
				"Error enabling Media Auto Sense\n");
	}
1987
	if (hw->mac.ops.init_hw(hw))
1988
		dev_err(&pdev->dev, "Hardware Error\n");
1989

1990
	/* Flow control settings reset on hardware reset, so guarantee flow
1991 1992 1993 1994 1995
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1996
	igb_init_dmac(adapter, pba);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
J
Jeff Kirsher 已提交
2009
	/* Re-establish EEE setting */
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (mac->type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			igb_set_eee_i350(hw);
			break;
		case e1000_i354:
			igb_set_eee_i354(hw);
			break;
		default:
			break;
		}
	}
2024 2025 2026
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

2027 2028 2029 2030 2031
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

2032 2033 2034
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

2035
	igb_get_phy_info(hw);
2036 2037
}

2038 2039
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
2040
{
2041 2042
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
2043
	 */
2044 2045
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
2046
	else
2047
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
2048 2049 2050 2051

	return features;
}

2052 2053
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
2054
{
2055
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
2056
	struct igb_adapter *adapter = netdev_priv(netdev);
2057

2058
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
2059 2060
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

2071 2072 2073
	return 0;
}

S
Stephen Hemminger 已提交
2074
static const struct net_device_ops igb_netdev_ops = {
2075
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
2076
	.ndo_stop		= igb_close,
2077
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
2078
	.ndo_get_stats64	= igb_get_stats64,
2079
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
2080 2081 2082 2083 2084 2085 2086
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2087 2088
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2089
	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
2090
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2091
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
2092 2093 2094
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
2095 2096
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
2097 2098
};

2099 2100 2101 2102 2103 2104 2105
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
2106 2107 2108 2109 2110
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
2111
	case e1000_i210:
2112
	case e1000_i211:
2113 2114 2115 2116 2117 2118 2119 2120 2121
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
2122 2123 2124 2125 2126 2127 2128 2129 2130
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
2131
		} else if (fw.etrack_id != 0X0000) {
2132
			snprintf(adapter->fw_version,
2133 2134 2135 2136 2137 2138 2139 2140
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
2141 2142
		}
		break;
2143 2144 2145
	}
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
/**
 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 *
 * @adapter: adapter struct
 **/
static void igb_init_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_data;

	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
	switch (hw->bus.func) {
	case E1000_FUNC_0:
		if (eeprom_data & IGB_MAS_ENABLE_0) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_1:
		if (eeprom_data & IGB_MAS_ENABLE_1) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_2:
		if (eeprom_data & IGB_MAS_ENABLE_2) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_3:
		if (eeprom_data & IGB_MAS_ENABLE_3) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	default:
		/* Shouldn't get here */
		netdev_err(adapter->netdev,
			"MAS: Invalid port configuration, returning\n");
		break;
	}
}

2198 2199
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
2200
 *  @adapter: pointer to adapter structure
2201
 **/
C
Carolyn Wyborny 已提交
2202 2203
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
T
Todd Fujinaka 已提交
2204
	s32 status = 0;
C
Carolyn Wyborny 已提交
2205 2206 2207

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
T
Todd Fujinaka 已提交
2208
		return 0;
C
Carolyn Wyborny 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

2225
/**
2226 2227 2228
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
2229
 *
2230
 *  Returns 0 on success, negative on failure
2231
 *
2232 2233 2234
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
2235
 **/
2236
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2237 2238 2239 2240
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2241
	u16 eeprom_data = 0;
2242
	s32 ret_val;
2243
	static int global_quad_port_a; /* global quad port a indication */
2244
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2245
	int err, pci_using_dac;
2246
	u8 part_str[E1000_PBANUM_LENGTH];
2247

2248 2249 2250 2251 2252
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2253
			pci_name(pdev), pdev->vendor, pdev->device);
2254 2255 2256
		return -EINVAL;
	}

2257
	err = pci_enable_device_mem(pdev);
2258 2259 2260 2261
	if (err)
		return err;

	pci_using_dac = 0;
2262
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2263
	if (!err) {
2264
		pci_using_dac = 1;
2265
	} else {
2266
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2267
		if (err) {
2268 2269 2270
			dev_err(&pdev->dev,
				"No usable DMA configuration, aborting\n");
			goto err_dma;
2271 2272 2273
		}
	}

2274
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2275 2276
					   IORESOURCE_MEM),
					   igb_driver_name);
2277 2278 2279
	if (err)
		goto err_pci_reg;

2280
	pci_enable_pcie_error_reporting(pdev);
2281

2282
	pci_set_master(pdev);
2283
	pci_save_state(pdev);
2284 2285

	err = -ENOMEM;
2286
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2287
				   IGB_MAX_TX_QUEUES);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2299
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2300 2301

	err = -EIO;
2302
	hw->hw_addr = pci_iomap(pdev, 0, 0);
2303
	if (!hw->hw_addr)
2304 2305
		goto err_ioremap;

S
Stephen Hemminger 已提交
2306
	netdev->netdev_ops = &igb_netdev_ops;
2307 2308 2309 2310 2311
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

2312 2313
	netdev->mem_start = pci_resource_start(pdev, 0);
	netdev->mem_end = pci_resource_end(pdev, 0);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2329
		goto err_sw_init;
2330

2331
	/* setup the private structure */
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2351
	/* features is initialized to 0 in allocation, it might have bits
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2362 2363
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2364 2365 2366

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2367
	netdev->hw_features |= NETIF_F_RXALL;
2368 2369

	/* set this bit last since it cannot be part of hw_features */
2370
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2371 2372 2373 2374 2375 2376

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2377

2378 2379
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2380
	if (pci_using_dac) {
2381
		netdev->features |= NETIF_F_HIGHDMA;
2382 2383
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2384

2385 2386
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2387
		netdev->features |= NETIF_F_SCTP_CSUM;
2388
	}
2389

2390 2391
	netdev->priv_flags |= IFF_UNICAST_FLT;

2392
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2393 2394

	/* before reading the NVM, reset the controller to put the device in a
2395 2396
	 * known good starting state
	 */
2397 2398
	hw->mac.ops.reset_hw(hw);

2399 2400
	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
2401
	 */
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
2415 2416 2417 2418 2419
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2420
		break;
2421 2422 2423 2424 2425 2426 2427 2428
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2429
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2430 2431 2432 2433 2434
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2435 2436 2437
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2438 2439 2440 2441 2442 2443
	/* configure RXPBSIZE and TXPBSIZE */
	if (hw->mac.type == e1000_i210) {
		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
	}

2444
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2445
		    (unsigned long) adapter);
2446
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2447
		    (unsigned long) adapter);
2448 2449 2450 2451

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2452
	/* Initialize link properties that are user-changeable */
2453 2454 2455 2456
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2457 2458
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2459 2460 2461

	igb_validate_mdi_setting(hw);

2462
	/* By default, support wake on port A */
2463
	if (hw->bus.func == 0)
2464 2465 2466 2467
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2468
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2469 2470
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2471 2472
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2473

2474 2475
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2476 2477 2478

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2479 2480
	 * lan on a particular port
	 */
2481 2482
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2483
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2484 2485
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2486 2487
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2488
		/* Wake events only supported on port A for dual fiber
2489 2490
		 * regardless of eeprom setting
		 */
2491
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2492
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2493
		break;
2494
	case E1000_DEV_ID_82576_QUAD_COPPER:
2495
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2496 2497
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2498
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2499 2500 2501 2502 2503 2504
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2505 2506 2507 2508
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2509 2510 2511
	}

	/* initialize the wol settings based on the eeprom settings */
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2524 2525 2526 2527

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2528 2529 2530 2531 2532 2533 2534
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2535
	/* let the f/w know that the h/w is now under the control of the
2536 2537
	 * driver.
	 */
2538 2539 2540 2541 2542 2543 2544
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2545 2546 2547
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2548
#ifdef CONFIG_IGB_DCA
2549
	if (dca_add_requester(&pdev->dev) == 0) {
2550
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2551 2552 2553 2554
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2555
#endif
2556 2557 2558 2559
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2560

2561
		/* Read the NVM to determine if this i350 device supports an
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
2576 2577 2578 2579 2580
	/* Check if Media Autosense is enabled */
	adapter->ei = *ei;
	if (hw->dev_spec._82575.mas_capable)
		igb_init_mas(adapter);

A
Anders Berggren 已提交
2581
	/* do hw tstamp init after resetting */
2582
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2583

2584
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2599

2600 2601 2602 2603 2604 2605 2606 2607
	if ((hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

2608 2609 2610
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2611 2612
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2613
		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2614
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2615
		adapter->num_rx_queues, adapter->num_tx_queues);
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (hw->mac.type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			/* Enable EEE for internal copper PHY devices */
			err = igb_set_eee_i350(hw);
			if ((!err) &&
			    (!hw->dev_spec._82575.eee_disable)) {
				adapter->eee_advert =
					MDIO_EEE_100TX | MDIO_EEE_1000T;
				adapter->flags |= IGB_FLAG_EEE;
			}
			break;
		case e1000_i354:
2631
			if ((rd32(E1000_CTRL_EXT) &
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
				err = igb_set_eee_i354(hw);
				if ((!err) &&
					(!hw->dev_spec._82575.eee_disable)) {
					adapter->eee_advert =
					   MDIO_EEE_100TX | MDIO_EEE_1000T;
					adapter->flags |= IGB_FLAG_EEE;
				}
			}
			break;
		default:
			break;
2644
		}
2645
	}
Y
Yan, Zheng 已提交
2646
	pm_runtime_put_noidle(&pdev->dev);
2647 2648 2649 2650
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2651
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2652 2653
err_eeprom:
	if (!igb_check_reset_block(hw))
2654
		igb_reset_phy(hw);
2655 2656 2657 2658

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2659
	igb_clear_interrupt_scheme(adapter);
2660
	pci_iounmap(pdev, hw->hw_addr);
2661 2662 2663
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2664
	pci_release_selected_regions(pdev,
2665
				     pci_select_bars(pdev, IORESOURCE_MEM));
2666 2667 2668 2669 2670 2671
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2672
#ifdef CONFIG_PCI_IOV
2673
static int igb_disable_sriov(struct pci_dev *pdev)
2674 2675 2676 2677 2678 2679 2680 2681
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2682
		if (pci_vfs_assigned(pdev)) {
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

2714
	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715 2716 2717
		err = -EPERM;
		goto out;
	}
2718 2719 2720
	if (!num_vfs)
		goto out;

2721 2722 2723 2724 2725 2726
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
			 old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
	} else
		adapter->vfs_allocated_count = num_vfs;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

2740 2741 2742 2743 2744 2745
	/* only call pci_enable_sriov() if no VFs are allocated already */
	if (!old_vfs) {
		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
		if (err)
			goto err_out;
	}
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2764
/**
C
Carolyn Wyborny 已提交
2765 2766
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2767
 **/
C
Carolyn Wyborny 已提交
2768 2769 2770 2771 2772 2773
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2774
/**
2775 2776
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2777
 *
2778 2779 2780 2781
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2782
 **/
2783
static void igb_remove(struct pci_dev *pdev)
2784 2785 2786
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2787
	struct e1000_hw *hw = &adapter->hw;
2788

Y
Yan, Zheng 已提交
2789
	pm_runtime_get_noresume(&pdev->dev);
2790 2791 2792
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2793
	igb_remove_i2c(adapter);
2794
	igb_ptp_stop(adapter);
2795
	/* The watchdog timer may be rescheduled, so explicitly
2796 2797
	 * disable watchdog from being rescheduled.
	 */
2798 2799 2800 2801
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2802 2803
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2804

2805
#ifdef CONFIG_IGB_DCA
2806
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2807 2808
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2809
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2810
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2811 2812 2813
	}
#endif

2814
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2815 2816
	 * would have already happened in close and is redundant.
	 */
2817 2818 2819 2820
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2821
	igb_clear_interrupt_scheme(adapter);
2822

2823
#ifdef CONFIG_PCI_IOV
2824
	igb_disable_sriov(pdev);
2825
#endif
2826

2827
	pci_iounmap(pdev, hw->hw_addr);
2828 2829
	if (hw->flash_address)
		iounmap(hw->flash_address);
2830
	pci_release_selected_regions(pdev,
2831
				     pci_select_bars(pdev, IORESOURCE_MEM));
2832

2833
	kfree(adapter->shadow_vfta);
2834 2835
	free_netdev(netdev);

2836
	pci_disable_pcie_error_reporting(pdev);
2837

2838 2839 2840
	pci_disable_device(pdev);
}

2841
/**
2842 2843
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2844
 *
2845 2846 2847 2848
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2849
 **/
2850
static void igb_probe_vfs(struct igb_adapter *adapter)
2851 2852 2853
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2854
	struct e1000_hw *hw = &adapter->hw;
2855

2856 2857 2858 2859
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2860
	pci_sriov_set_totalvfs(pdev, 7);
2861
	igb_pci_enable_sriov(pdev, max_vfs);
2862

2863 2864 2865
#endif /* CONFIG_PCI_IOV */
}

2866
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2867 2868
{
	struct e1000_hw *hw = &adapter->hw;
2869
	u32 max_rss_queues;
2870

2871
	/* Determine the maximum number of RSS queues supported. */
2872
	switch (hw->mac.type) {
2873 2874 2875 2876
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2877
	case e1000_i210:
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2894
	case e1000_i354:
2895 2896
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2897
		break;
2898 2899 2900 2901 2902 2903 2904
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2905
	case e1000_i211:
2906
		/* Device supports enough interrupts without queue pairing. */
2907
		break;
2908
	case e1000_82576:
2909
		/* If VFs are going to be allocated with RSS queues then we
2910 2911 2912 2913 2914 2915 2916 2917 2918
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2919
	case e1000_i354:
2920
	case e1000_i210:
2921
	default:
2922
		/* If rss_queues > half of max_rss_queues, pair the queues in
2923 2924 2925 2926
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2927 2928
		break;
	}
2929 2930 2931
}

/**
2932 2933
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2934
 *
2935 2936 2937
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2970
			max_vfs = adapter->vfs_allocated_count = 7;
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2983

2984
	/* Setup and initialize a copy of the hw vlan table array */
2985 2986
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2987

2988
	/* This call may decrease the number of queues */
2989
	if (igb_init_interrupt_scheme(adapter, true)) {
2990 2991 2992 2993
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2994 2995
	igb_probe_vfs(adapter);

2996 2997 2998
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2999
	if (hw->mac.type >= e1000_i350)
3000 3001
		adapter->flags &= ~IGB_FLAG_DMAC;

3002 3003 3004 3005 3006
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
3007 3008
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
3009
 *
3010
 *  Returns 0 on success, negative value on failure
3011
 *
3012 3013 3014 3015 3016
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
3017
 **/
Y
Yan, Zheng 已提交
3018
static int __igb_open(struct net_device *netdev, bool resuming)
3019 3020 3021
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
3022
	struct pci_dev *pdev = adapter->pdev;
3023 3024 3025 3026
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
3027 3028
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
3029
		return -EBUSY;
Y
Yan, Zheng 已提交
3030 3031 3032 3033
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
3034

3035 3036
	netif_carrier_off(netdev);

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3047
	igb_power_up_link(adapter);
3048 3049 3050 3051

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3052 3053
	 * clean_rx handler before we do so.
	 */
3054 3055 3056 3057 3058 3059
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

3071 3072 3073
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

3074 3075
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
3076 3077 3078

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
3079 3080 3081

	igb_irq_enable(adapter);

3082 3083 3084
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
3085

3086 3087 3088 3089
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

3090 3091
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
3092 3093 3094
	if (!resuming)
		pm_runtime_put(&pdev->dev);

3095 3096 3097
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
3098 3099 3100

	return 0;

3101 3102
err_set_queues:
	igb_free_irq(adapter);
3103 3104
err_req_irq:
	igb_release_hw_control(adapter);
3105
	igb_power_down_link(adapter);
3106 3107 3108 3109 3110
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
3111 3112
	if (!resuming)
		pm_runtime_put(&pdev->dev);
3113 3114 3115 3116

	return err;
}

Y
Yan, Zheng 已提交
3117 3118 3119 3120 3121
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

3122
/**
3123 3124
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
3125
 *
3126
 *  Returns 0, this is not allowed to fail
3127
 *
3128 3129 3130 3131
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
3132
 **/
Y
Yan, Zheng 已提交
3133
static int __igb_close(struct net_device *netdev, bool suspending)
3134 3135
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
3136
	struct pci_dev *pdev = adapter->pdev;
3137 3138 3139

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
3140 3141 3142 3143
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
3144 3145 3146 3147 3148
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
3149 3150
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
3151 3152 3153
	return 0;
}

Y
Yan, Zheng 已提交
3154 3155 3156 3157 3158
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

3159
/**
3160 3161
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3162
 *
3163
 *  Return 0 on success, negative on failure
3164
 **/
3165
int igb_setup_tx_resources(struct igb_ring *tx_ring)
3166
{
3167
	struct device *dev = tx_ring->dev;
3168 3169
	int size;

3170
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3171 3172

	tx_ring->tx_buffer_info = vzalloc(size);
3173
	if (!tx_ring->tx_buffer_info)
3174 3175 3176
		goto err;

	/* round up to nearest 4K */
3177
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3178 3179
	tx_ring->size = ALIGN(tx_ring->size, 4096);

3180 3181
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
3182 3183 3184 3185 3186
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
3187

3188 3189 3190
	return 0;

err:
3191
	vfree(tx_ring->tx_buffer_info);
3192 3193
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3194 3195 3196 3197
	return -ENOMEM;
}

/**
3198 3199 3200
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3201
 *
3202
 *  Return 0 on success, negative on failure
3203 3204 3205
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
3206
	struct pci_dev *pdev = adapter->pdev;
3207 3208 3209
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
3210
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3211
		if (err) {
3212
			dev_err(&pdev->dev,
3213 3214
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3215
				igb_free_tx_resources(adapter->tx_ring[i]);
3216 3217 3218 3219 3220 3221 3222 3223
			break;
		}
	}

	return err;
}

/**
3224 3225
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
3226
 **/
3227
void igb_setup_tctl(struct igb_adapter *adapter)
3228 3229 3230 3231
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

3232 3233
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

3249
/**
3250 3251 3252
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
3253
 *
3254
 *  Configure a transmit ring after a reset.
3255
 **/
3256
void igb_configure_tx_ring(struct igb_adapter *adapter,
3257
			   struct igb_ring *ring)
3258 3259
{
	struct e1000_hw *hw = &adapter->hw;
3260
	u32 txdctl = 0;
3261 3262 3263 3264
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
3265
	wr32(E1000_TXDCTL(reg_idx), 0);
3266 3267 3268 3269
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
3270
	     ring->count * sizeof(union e1000_adv_tx_desc));
3271
	wr32(E1000_TDBAL(reg_idx),
3272
	     tdba & 0x00000000ffffffffULL);
3273 3274
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3275
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3276
	wr32(E1000_TDH(reg_idx), 0);
3277
	writel(0, ring->tail);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3288 3289
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3290
 *
3291
 *  Configure the Tx unit of the MAC after a reset.
3292 3293 3294 3295 3296 3297
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3298
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3299 3300
}

3301
/**
3302 3303
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3304
 *
3305
 *  Returns 0 on success, negative on failure
3306
 **/
3307
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3308
{
3309
	struct device *dev = rx_ring->dev;
3310
	int size;
3311

3312
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3313 3314

	rx_ring->rx_buffer_info = vzalloc(size);
3315
	if (!rx_ring->rx_buffer_info)
3316 3317 3318
		goto err;

	/* Round up to nearest 4K */
3319
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3320 3321
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3322 3323
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3324 3325 3326
	if (!rx_ring->desc)
		goto err;

3327
	rx_ring->next_to_alloc = 0;
3328 3329 3330 3331 3332 3333
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3334 3335
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3336
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3337 3338 3339 3340
	return -ENOMEM;
}

/**
3341 3342 3343
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3344
 *
3345
 *  Return 0 on success, negative on failure
3346 3347 3348
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3349
	struct pci_dev *pdev = adapter->pdev;
3350 3351 3352
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3353
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3354
		if (err) {
3355
			dev_err(&pdev->dev,
3356 3357
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3358
				igb_free_rx_resources(adapter->rx_ring[i]);
3359 3360 3361 3362 3363 3364 3365
			break;
		}
	}

	return err;
}

3366
/**
3367 3368
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3369 3370 3371 3372 3373
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3374
	u32 j, num_rx_queues;
3375 3376 3377 3378
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3379 3380

	/* Fill out hash function seeds */
3381 3382
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3383

3384
	num_rx_queues = adapter->rss_queues;
3385

3386 3387 3388
	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
3389
		if (adapter->vfs_allocated_count)
3390
			num_rx_queues = 2;
3391 3392 3393
		break;
	default:
		break;
3394 3395
	}

3396 3397
	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
3398 3399
			adapter->rss_indir_tbl[j] =
			(j * num_rx_queues) / IGB_RETA_SIZE;
3400
		adapter->rss_indir_tbl_init = num_rx_queues;
3401
	}
3402
	igb_write_rss_indir_tbl(adapter);
3403

3404
	/* Disable raw packet checksumming so that RSS hash is placed in
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3417

3418 3419 3420
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3421 3422 3423 3424 3425
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3426

3427 3428 3429 3430 3431
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3432 3433
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3434 3435
	 * if we are only using one queue
	 */
3436 3437 3438 3439
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
3440

3441 3442 3443 3444 3445 3446
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3447
		if (adapter->rss_queues > 1)
3448
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3449
		else
3450
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3451
	} else {
3452 3453
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3454 3455 3456 3457 3458 3459
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3460
/**
3461 3462
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3463
 **/
3464
void igb_setup_rctl(struct igb_adapter *adapter)
3465 3466 3467 3468 3469 3470 3471
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3472
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3473

3474
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3475
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3476

3477
	/* enable stripping of CRC. It's unlikely this will break BMC
3478 3479
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3480
	 */
3481
	rctl |= E1000_RCTL_SECRC;
3482

3483
	/* disable store bad packets and clear size bits. */
3484
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3485

A
Alexander Duyck 已提交
3486 3487
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3488

3489 3490
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3491

3492 3493 3494 3495 3496 3497 3498 3499 3500
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3501 3502 3503
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3504 3505
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3518 3519 3520
	wr32(E1000_RCTL, rctl);
}

3521
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3522
				   int vfn)
3523 3524 3525 3526 3527
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3528 3529
	 * increase the size to support vlan tags
	 */
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3542
/**
3543 3544
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3545
 *
3546
 *  Configure maximum receivable packet size.
3547 3548 3549
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3550
	u32 max_frame_size = adapter->max_frame_size;
3551 3552 3553 3554 3555
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3556
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3557 3558 3559 3560 3561
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3562
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3563 3564 3565 3566 3567
	}

	wr32(E1000_RLPML, max_frame_size);
}

3568 3569
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3570 3571 3572 3573
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3574
	/* This register exists only on 82576 and newer so if we are older then
3575 3576 3577 3578 3579 3580
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3581
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3582 3583 3584 3585 3586 3587 3588
	if (hw->mac.type == e1000_i350) {
		u32 dvmolr;

		dvmolr = rd32(E1000_DVMOLR(vfn));
		dvmolr |= E1000_DVMOLR_STRVLAN;
		wr32(E1000_DVMOLR(vfn), dvmolr);
	}
3589
	if (aupe)
3590
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3591 3592
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3593 3594 3595 3596

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3597
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3598
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3599
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3600 3601 3602
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3603
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3604 3605 3606 3607

	wr32(E1000_VMOLR(vfn), vmolr);
}

3608
/**
3609 3610 3611
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3612
 *
3613
 *  Configure the Rx unit of the MAC after a reset.
3614
 **/
3615
void igb_configure_rx_ring(struct igb_adapter *adapter,
3616
			   struct igb_ring *ring)
3617 3618 3619 3620
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3621
	u32 srrctl = 0, rxdctl = 0;
3622 3623

	/* disable the queue */
3624
	wr32(E1000_RXDCTL(reg_idx), 0);
3625 3626 3627 3628 3629 3630

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3631
	     ring->count * sizeof(union e1000_adv_rx_desc));
3632 3633

	/* initialize head and tail */
3634
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3635
	wr32(E1000_RDH(reg_idx), 0);
3636
	writel(0, ring->tail);
3637

3638
	/* set descriptor configuration */
3639
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3640
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3641
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3642
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3643
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3644 3645 3646
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3647 3648 3649

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3650
	/* set filtering for VMDQ pools */
3651
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3652

3653 3654 3655
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3656 3657 3658

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3659 3660 3661
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3662
/**
3663 3664
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3665
 *
3666
 *  Configure the Rx unit of the MAC after a reset.
3667 3668 3669
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3670
	int i;
3671

3672 3673 3674
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3675 3676
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3677
			 adapter->vfs_allocated_count);
3678

3679
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3680 3681
	 * the Base and Length of the Rx Descriptor Ring
	 */
3682 3683
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3684 3685 3686
}

/**
3687 3688
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3689
 *
3690
 *  Free all transmit software resources
3691
 **/
3692
void igb_free_tx_resources(struct igb_ring *tx_ring)
3693
{
3694
	igb_clean_tx_ring(tx_ring);
3695

3696 3697
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3698

3699 3700 3701 3702
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3703 3704
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3705 3706 3707 3708 3709

	tx_ring->desc = NULL;
}

/**
3710 3711
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3712
 *
3713
 *  Free all transmit software resources
3714 3715 3716 3717 3718 3719
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3720
		igb_free_tx_resources(adapter->tx_ring[i]);
3721 3722
}

3723 3724 3725 3726 3727
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3728
		if (dma_unmap_len(tx_buffer, len))
3729
			dma_unmap_single(ring->dev,
3730 3731
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3732
					 DMA_TO_DEVICE);
3733
	} else if (dma_unmap_len(tx_buffer, len)) {
3734
		dma_unmap_page(ring->dev,
3735 3736
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3737 3738 3739 3740
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3741
	dma_unmap_len_set(tx_buffer, len, 0);
3742
	/* buffer_info must be completely set up in the transmit path */
3743 3744 3745
}

/**
3746 3747
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3748
 **/
3749
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3750
{
3751
	struct igb_tx_buffer *buffer_info;
3752
	unsigned long size;
3753
	u16 i;
3754

3755
	if (!tx_ring->tx_buffer_info)
3756 3757 3758 3759
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3760
		buffer_info = &tx_ring->tx_buffer_info[i];
3761
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3762 3763
	}

3764 3765
	netdev_tx_reset_queue(txring_txq(tx_ring));

3766 3767
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3768 3769 3770 3771 3772 3773 3774 3775 3776

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3777 3778
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3779 3780 3781 3782 3783 3784
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3785
		igb_clean_tx_ring(adapter->tx_ring[i]);
3786 3787 3788
}

/**
3789 3790
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3791
 *
3792
 *  Free all receive software resources
3793
 **/
3794
void igb_free_rx_resources(struct igb_ring *rx_ring)
3795
{
3796
	igb_clean_rx_ring(rx_ring);
3797

3798 3799
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3800

3801 3802 3803 3804
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3805 3806
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3807 3808 3809 3810 3811

	rx_ring->desc = NULL;
}

/**
3812 3813
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3814
 *
3815
 *  Free all receive software resources
3816 3817 3818 3819 3820 3821
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3822
		igb_free_rx_resources(adapter->rx_ring[i]);
3823 3824 3825
}

/**
3826 3827
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3828
 **/
3829
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3830 3831
{
	unsigned long size;
3832
	u16 i;
3833

3834 3835 3836 3837
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3838
	if (!rx_ring->rx_buffer_info)
3839
		return;
3840

3841 3842
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3843
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3854
		buffer_info->page = NULL;
3855 3856
	}

3857 3858
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3859 3860 3861 3862

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3863
	rx_ring->next_to_alloc = 0;
3864 3865 3866 3867 3868
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3869 3870
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3871 3872 3873 3874 3875 3876
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3877
		igb_clean_rx_ring(adapter->rx_ring[i]);
3878 3879 3880
}

/**
3881 3882 3883
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3884
 *
3885
 *  Returns 0 on success, negative on failure
3886 3887 3888 3889
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3890
	struct e1000_hw *hw = &adapter->hw;
3891 3892 3893 3894 3895 3896
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3897
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3898

3899 3900
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3901
			 adapter->vfs_allocated_count);
3902

3903 3904 3905 3906
	return 0;
}

/**
3907 3908
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3909
 *
3910 3911 3912 3913
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3914
 **/
3915
static int igb_write_mc_addr_list(struct net_device *netdev)
3916 3917 3918
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3919
	struct netdev_hw_addr *ha;
3920
	u8  *mta_list;
3921 3922
	int i;

3923
	if (netdev_mc_empty(netdev)) {
3924 3925 3926 3927 3928
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3929

3930
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3931 3932
	if (!mta_list)
		return -ENOMEM;
3933

3934
	/* The shared function expects a packed array of only addresses. */
3935
	i = 0;
3936 3937
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3938 3939 3940 3941

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3942
	return netdev_mc_count(netdev);
3943 3944 3945
}

/**
3946 3947
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3948
 *
3949 3950 3951 3952
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3963
	if (netdev_uc_count(netdev) > rar_entries)
3964
		return -ENOMEM;
3965

3966
	if (!netdev_uc_empty(netdev) && rar_entries) {
3967
		struct netdev_hw_addr *ha;
3968 3969

		netdev_for_each_uc_addr(ha, netdev) {
3970 3971
			if (!rar_entries)
				break;
3972
			igb_rar_set_qsel(adapter, ha->addr,
3973 3974
					 rar_entries--,
					 vfn);
3975
			count++;
3976 3977 3978 3979 3980 3981 3982 3983 3984
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3985 3986 3987 3988
	return count;
}

/**
3989 3990
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3991
 *
3992 3993 3994 3995
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
4012
		/* retain VLAN HW filtering if in VT mode */
4013
		if (adapter->vfs_allocated_count)
4014
			rctl |= E1000_RCTL_VFE;
4015 4016 4017 4018 4019 4020 4021
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
4022
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
4023
			 * then we should just turn on promiscuous mode so
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
4034
		/* Write addresses to available RAR registers, if there is not
4035
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
4036
		 * unicast promiscuous mode
4037 4038 4039 4040 4041 4042 4043
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
4044
	}
4045
	wr32(E1000_RCTL, rctl);
4046

4047
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4048 4049 4050 4051
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
4052
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4053
		return;
4054

4055
	vmolr |= rd32(E1000_VMOLR(vfn)) &
4056
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4057
	wr32(E1000_VMOLR(vfn), vmolr);
4058
	igb_restore_vf_multicasts(adapter);
4059 4060
}

G
Greg Rose 已提交
4061 4062 4063 4064 4065 4066 4067 4068
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
4069 4070
		wvbr = rd32(E1000_WVBR);
		if (!wvbr)
G
Greg Rose 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

4089
	for (j = 0; j < adapter->vfs_allocated_count; j++) {
G
Greg Rose 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

4101
/* Need to wait a few seconds after link up to get diagnostic information from
4102 4103
 * the phy
 */
4104 4105 4106
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
4107
	igb_get_phy_info(&adapter->hw);
4108 4109
}

A
Alexander Duyck 已提交
4110
/**
4111 4112
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
4113
 **/
4114
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
4126 4127
		if (!hw->mac.get_link_status)
			return true;
A
Alexander Duyck 已提交
4128
	case e1000_media_type_internal_serdes:
4129 4130
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
A
Alexander Duyck 已提交
4131 4132 4133 4134 4135 4136
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

A
Alexander Duyck 已提交
4148 4149 4150
	return link_active;
}

4151 4152 4153 4154 4155
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

4156
	/* check for thermal sensor event on i350 copper only */
4157 4158 4159 4160 4161
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
4162
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4163 4164 4165 4166 4167 4168
			ret = !!(thstat & event);
	}

	return ret;
}

4169
/**
4170 4171
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
4183 4184
						   struct igb_adapter,
						   watchdog_task);
4185
	struct e1000_hw *hw = &adapter->hw;
4186
	struct e1000_phy_info *phy = &hw->phy;
4187
	struct net_device *netdev = adapter->netdev;
4188
	u32 link;
4189
	int i;
4190
	u32 connsw;
4191

A
Alexander Duyck 已提交
4192
	link = igb_has_link(adapter);
4193 4194 4195 4196 4197 4198 4199 4200

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

4201 4202 4203 4204 4205 4206 4207 4208
	/* Force link down if we have fiber to swap to */
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (hw->phy.media_type == e1000_media_type_copper) {
			connsw = rd32(E1000_CONNSW);
			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
				link = 0;
		}
	}
4209
	if (link) {
4210 4211 4212 4213 4214 4215
		/* Perform a reset if the media type changed. */
		if (hw->dev_spec._82575.media_changed) {
			hw->dev_spec._82575.media_changed = false;
			adapter->flags |= IGB_FLAG_MEDIA_RESET;
			igb_reset(adapter);
		}
Y
Yan, Zheng 已提交
4216 4217 4218
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4219 4220
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
4221

4222
			hw->mac.ops.get_speed_and_duplex(hw,
4223 4224
							 &adapter->link_speed,
							 &adapter->link_duplex);
4225 4226

			ctrl = rd32(E1000_CTRL);
4227
			/* Links status message must follow this format */
C
Carolyn Wyborny 已提交
4228 4229
			netdev_info(netdev,
			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4230 4231 4232
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
4233 4234 4235 4236 4237
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247
			/* disable EEE if enabled */
			if ((adapter->flags & IGB_FLAG_EEE) &&
				(adapter->link_duplex == HALF_DUPLEX)) {
				dev_info(&adapter->pdev->dev,
				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
				adapter->hw.dev_spec._82575.eee_disable = true;
				adapter->flags &= ~IGB_FLAG_EEE;
			}

4248 4249 4250 4251 4252
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

4253
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4254
			if (igb_thermal_sensor_event(hw,
4255
			    E1000_THSTAT_LINK_THROTTLE))
C
Carolyn Wyborny 已提交
4256
				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4257

4258
			/* adjust timeout factor according to speed/duplex */
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

4271
			igb_ping_all_vfs(adapter);
4272
			igb_check_vf_rate_limit(adapter);
4273

4274
			/* link state has changed, schedule phy info update */
4275 4276 4277 4278 4279 4280 4281 4282
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4283 4284

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4285 4286
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
C
Carolyn Wyborny 已提交
4287
				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4288
			}
4289

4290
			/* Links status message must follow this format */
C
Carolyn Wyborny 已提交
4291
			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4292
			       netdev->name);
4293
			netif_carrier_off(netdev);
4294

4295 4296
			igb_ping_all_vfs(adapter);

4297
			/* link state has changed, schedule phy info update */
4298 4299 4300
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
4301

4302 4303 4304 4305 4306 4307 4308 4309 4310
			/* link is down, time to check for alternate media */
			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
				igb_check_swap_media(adapter);
				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
					schedule_work(&adapter->reset_task);
					/* return immediately */
					return;
				}
			}
Y
Yan, Zheng 已提交
4311 4312
			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322

		/* also check for alternate media here */
		} else if (!netif_carrier_ok(netdev) &&
			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
			igb_check_swap_media(adapter);
			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
				schedule_work(&adapter->reset_task);
				/* return immediately */
				return;
			}
4323 4324 4325
		}
	}

E
Eric Dumazet 已提交
4326 4327 4328
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4329

4330
	for (i = 0; i < adapter->num_tx_queues; i++) {
4331
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4332
		if (!netif_carrier_ok(netdev)) {
4333 4334 4335
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4336 4337
			 * (Do the reset outside of interrupt context).
			 */
4338 4339 4340 4341 4342 4343
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4344 4345
		}

4346
		/* Force detection of hung controller every watchdog period */
4347
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4348
	}
4349

4350
	/* Cause software interrupt to ensure Rx ring is cleaned */
4351
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4352
		u32 eics = 0;
4353

4354 4355
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4356 4357 4358 4359
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4360

G
Greg Rose 已提交
4361
	igb_spoof_check(adapter);
4362
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4363

4364
	/* Reset the timer */
4365 4366 4367 4368 4369 4370 4371 4372
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
4373 4374 4375 4376 4377 4378 4379 4380 4381
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4382
/**
4383 4384
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4385
 *
4386 4387 4388 4389 4390 4391 4392
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
4393
 *  This functionality is controlled by ethtool's coalescing settings.
4394 4395
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4396
 **/
4397
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4398
{
4399
	int new_val = q_vector->itr_val;
4400
	int avg_wire_size = 0;
4401
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4402
	unsigned int packets;
4403

4404 4405 4406 4407
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4408
		new_val = IGB_4K_ITR;
4409
		goto set_itr_val;
4410
	}
4411

4412 4413 4414
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4415

4416 4417 4418 4419
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4420 4421 4422 4423

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4424

4425 4426 4427 4428 4429
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4430

4431 4432 4433 4434 4435
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4436

4437 4438 4439 4440 4441
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4442

4443
set_itr_val:
4444 4445 4446
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4447
	}
4448
clear_counts:
4449 4450 4451 4452
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4453 4454 4455
}

/**
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
4467
 *  This functionality is controlled by ethtool's coalescing settings.
4468 4469
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4470
 **/
4471 4472
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4473
{
4474 4475 4476
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4477

4478
	/* no packets, exit with status unchanged */
4479
	if (packets == 0)
4480
		return;
4481

4482
	switch (itrval) {
4483 4484 4485
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4486
			itrval = bulk_latency;
4487
		else if ((packets < 5) && (bytes > 512))
4488
			itrval = low_latency;
4489 4490 4491 4492
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
4493
			if (bytes/packets > 8000)
4494
				itrval = bulk_latency;
4495
			else if ((packets < 10) || ((bytes/packets) > 1200))
4496
				itrval = bulk_latency;
4497
			else if ((packets > 35))
4498
				itrval = lowest_latency;
4499
		} else if (bytes/packets > 2000) {
4500
			itrval = bulk_latency;
4501
		} else if (packets <= 2 && bytes < 512) {
4502
			itrval = lowest_latency;
4503 4504 4505 4506 4507
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4508
				itrval = low_latency;
4509
		} else if (bytes < 1500) {
4510
			itrval = low_latency;
4511 4512 4513 4514
		}
		break;
	}

4515 4516 4517 4518 4519 4520
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4521 4522
}

4523
static void igb_set_itr(struct igb_q_vector *q_vector)
4524
{
4525
	struct igb_adapter *adapter = q_vector->adapter;
4526
	u32 new_itr = q_vector->itr_val;
4527
	u8 current_itr = 0;
4528 4529 4530 4531

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4532
		new_itr = IGB_4K_ITR;
4533 4534 4535
		goto set_itr_now;
	}

4536 4537
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4538

4539
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4540

4541
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4542 4543 4544
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4545 4546
		current_itr = low_latency;

4547 4548 4549
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4550
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4551 4552
		break;
	case low_latency:
4553
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4554 4555
		break;
	case bulk_latency:
4556
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4557 4558 4559 4560 4561 4562
		break;
	default:
		break;
	}

set_itr_now:
4563
	if (new_itr != q_vector->itr_val) {
4564 4565
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4566 4567
		 * increasing
		 */
4568
		new_itr = new_itr > q_vector->itr_val ?
4569 4570 4571
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4572 4573 4574 4575 4576 4577
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4578 4579
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4580 4581 4582
	}
}

4583 4584
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4598
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4599 4600 4601 4602 4603 4604 4605 4606
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4607 4608 4609
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4610
{
4611
	struct sk_buff *skb = first->skb;
4612 4613
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;
4614
	int err;
4615

4616 4617 4618
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4619 4620
	if (!skb_is_gso(skb))
		return 0;
4621

4622 4623 4624
	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;
4625

4626 4627
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4628

4629
	if (first->protocol == htons(ETH_P_IP)) {
4630 4631 4632 4633 4634 4635 4636
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4637
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4638 4639 4640
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4641
	} else if (skb_is_gso_v6(skb)) {
4642 4643 4644 4645
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4646 4647
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4648 4649
	}

4650
	/* compute header lengths */
4651 4652
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4653

4654 4655 4656 4657
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4658
	/* MSS L4LEN IDX */
4659 4660
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4661

4662 4663 4664
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4665
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4666

4667
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4668

4669
	return 1;
4670 4671
}

4672
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4673
{
4674
	struct sk_buff *skb = first->skb;
4675 4676 4677
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4678

4679
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4680 4681
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4682 4683
	} else {
		u8 l4_hdr = 0;
4684

4685
		switch (first->protocol) {
4686
		case htons(ETH_P_IP):
4687 4688 4689 4690
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
4691
		case htons(ETH_P_IPV6):
4692 4693 4694 4695 4696 4697
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4698 4699
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4700
			}
4701 4702
			break;
		}
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4722 4723
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4724
			}
4725
			break;
4726
		}
4727 4728 4729

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4730
	}
4731

4732
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4733
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4734

4735
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4736 4737
}

4738 4739 4740 4741 4742 4743
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4744 4745
{
	/* set type for advanced descriptor with frame checksum insertion */
4746 4747 4748
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4749 4750

	/* set HW vlan bit if vlan is present */
4751 4752 4753 4754 4755 4756
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4757 4758

	/* set timestamp bit if present */
4759 4760
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4761

4762 4763
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4764 4765 4766 4767

	return cmd_type;
}

4768 4769 4770
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4771 4772 4773
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4774 4775
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4776 4777 4778
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4779 4780 4781
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4782

4783 4784 4785 4786
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4787

4788
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4789 4790
}

4791 4792
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4793
		       const u8 hdr_len)
4794
{
4795
	struct sk_buff *skb = first->skb;
4796
	struct igb_tx_buffer *tx_buffer;
4797
	union e1000_adv_tx_desc *tx_desc;
4798
	struct skb_frag_struct *frag;
4799
	dma_addr_t dma;
4800
	unsigned int data_len, size;
4801
	u32 tx_flags = first->tx_flags;
4802
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4803 4804 4805 4806
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4807 4808 4809 4810
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4811 4812

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4813

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4825 4826 4827

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4828
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4829 4830 4831 4832 4833 4834 4835

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4836
			tx_desc->read.olinfo_status = 0;
4837 4838 4839 4840 4841 4842 4843 4844 4845

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4846

4847
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4848

4849
		i++;
4850 4851 4852
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4853
			i = 0;
4854
		}
4855
		tx_desc->read.olinfo_status = 0;
4856

E
Eric Dumazet 已提交
4857
		size = skb_frag_size(frag);
4858 4859 4860
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4861
				       size, DMA_TO_DEVICE);
4862

4863
		tx_buffer = &tx_ring->tx_buffer_info[i];
4864 4865
	}

4866
	/* write last descriptor with RS and EOP bits */
4867 4868
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4869

4870 4871
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4872 4873 4874
	/* set the timestamp */
	first->time_stamp = jiffies;

4875
	/* Force memory writes to complete before letting h/w know there
4876 4877 4878 4879 4880 4881 4882 4883
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4884
	/* set next_to_watch value indicating a packet is present */
4885
	first->next_to_watch = tx_desc;
4886

4887 4888 4889
	i++;
	if (i == tx_ring->count)
		i = 0;
4890

4891
	tx_ring->next_to_use = i;
4892

4893
	writel(i, tx_ring->tail);
4894

4895
	/* we need this if more than one processor can write to our tail
4896 4897
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4898 4899 4900 4901 4902 4903 4904 4905 4906
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4907 4908 4909
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4910
			break;
4911 4912
		if (i == 0)
			i = tx_ring->count;
4913 4914 4915
		i--;
	}

4916 4917 4918
	tx_ring->next_to_use = i;
}

4919
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4920
{
4921 4922
	struct net_device *netdev = tx_ring->netdev;

4923 4924
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4925 4926
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4927 4928
	 * but since that doesn't exist yet, just open code it.
	 */
4929 4930 4931
	smp_mb();

	/* We need to check again in a case another CPU has just
4932 4933
	 * made room available.
	 */
4934
	if (igb_desc_unused(tx_ring) < size)
4935 4936 4937
		return -EBUSY;

	/* A reprieve! */
4938
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4939 4940 4941 4942 4943

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4944 4945 4946
	return 0;
}

4947
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4948
{
4949
	if (igb_desc_unused(tx_ring) >= size)
4950
		return 0;
4951
	return __igb_maybe_stop_tx(tx_ring, size);
4952 4953
}

4954 4955
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4956
{
4957
	struct igb_tx_buffer *first;
4958
	int tso;
N
Nick Nunley 已提交
4959
	u32 tx_flags = 0;
4960
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4961
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4962
	u8 hdr_len = 0;
4963

4964 4965
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4966 4967
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4968 4969 4970 4971
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
4972

4973 4974 4975 4976 4977 4978 4979
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4980 4981 4982
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4983

4984 4985 4986 4987 4988 4989
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4990 4991
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4992

4993 4994
		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
					   &adapter->state)) {
4995 4996 4997 4998 4999 5000 5001 5002
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
5003
	}
5004

5005 5006
	skb_tx_timestamp(skb);

5007
	if (vlan_tx_tag_present(skb)) {
5008 5009 5010 5011
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

5012 5013 5014
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
5015

5016 5017
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
5018
		goto out_drop;
5019 5020
	else if (!tso)
		igb_tx_csum(tx_ring, first);
5021

5022
	igb_tx_map(tx_ring, first, hdr_len);
5023 5024

	/* Make sure there is space in the ring for the next send. */
5025
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5026

5027
	return NETDEV_TX_OK;
5028 5029

out_drop:
5030 5031
	igb_unmap_and_free_tx_resource(tx_ring, first);

5032
	return NETDEV_TX_OK;
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

5046 5047
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
5048 5049
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

5061
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5062 5063
	 * in order to meet this minimum size requirement.
	 */
5064 5065
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
5066 5067
			return NETDEV_TX_OK;
		skb->len = 17;
5068
		skb_set_tail_pointer(skb, 17);
5069
	}
5070

5071
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5072 5073 5074
}

/**
5075 5076
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
5077 5078 5079 5080 5081 5082 5083 5084
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
5085

5086
	if (hw->mac.type >= e1000_82580)
5087 5088
		hw->dev_spec._82575.global_device_reset = true;

5089
	schedule_work(&adapter->reset_task);
5090 5091
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
5092 5093 5094 5095 5096 5097 5098
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

5099 5100
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
5101 5102 5103 5104
	igb_reinit_locked(adapter);
}

/**
5105 5106 5107
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
5108
 **/
E
Eric Dumazet 已提交
5109
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5110
						struct rtnl_link_stats64 *stats)
5111
{
E
Eric Dumazet 已提交
5112 5113 5114 5115 5116 5117 5118 5119
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
5120 5121 5122
}

/**
5123 5124 5125
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
5126
 *
5127
 *  Returns 0 on success, negative on failure
5128 5129 5130 5131
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5132
	struct pci_dev *pdev = adapter->pdev;
5133
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5134

5135
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5136
		dev_err(&pdev->dev, "Invalid MTU setting\n");
5137 5138 5139
		return -EINVAL;
	}

5140
#define MAX_STD_JUMBO_FRAME_SIZE 9238
5141
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5142
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5143 5144 5145
		return -EINVAL;
	}

5146 5147 5148 5149
	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

5150
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5151
		usleep_range(1000, 2000);
5152

5153 5154
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
5155

5156 5157
	if (netif_running(netdev))
		igb_down(adapter);
5158

5159
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
5174 5175
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
5176
 **/
E
Eric Dumazet 已提交
5177 5178
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
5179 5180 5181
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
5182
	u32 reg, mpc;
5183
	u16 phy_tmp;
5184 5185
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
5186 5187
	unsigned int start;
	u64 _bytes, _packets;
5188 5189 5190

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

5191
	/* Prevent stats update while adapter is being reset, or if the pci
5192 5193 5194 5195 5196 5197 5198
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

5199 5200
	bytes = 0;
	packets = 0;
5201 5202

	rcu_read_lock();
5203
	for (i = 0; i < adapter->num_rx_queues; i++) {
5204
		struct igb_ring *ring = adapter->rx_ring[i];
5205 5206 5207
		u32 rqdpc = rd32(E1000_RQDPC(i));
		if (hw->mac.type >= e1000_i210)
			wr32(E1000_RQDPC(i), 0);
E
Eric Dumazet 已提交
5208

5209 5210 5211 5212
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
5213 5214

		do {
5215
			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
E
Eric Dumazet 已提交
5216 5217
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
5218
		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
E
Eric Dumazet 已提交
5219 5220
		bytes += _bytes;
		packets += _packets;
5221 5222
	}

5223 5224
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
5225 5226 5227 5228

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
5229
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
5230
		do {
5231
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
E
Eric Dumazet 已提交
5232 5233
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
5234
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
E
Eric Dumazet 已提交
5235 5236
		bytes += _bytes;
		packets += _packets;
5237
	}
5238 5239
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
5240
	rcu_read_unlock();
5241 5242

	/* read stats registers */
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

5260 5261 5262
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
5277
	adapter->stats.rnbc += rd32(E1000_RNBC);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

5295 5296
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
5297 5298

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5299 5300 5301 5302
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5303 5304 5305 5306 5307

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
5308 5309
	}

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
5324 5325
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
5326 5327 5328 5329

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
5330 5331
	 * our own version based on RUC and ROC
	 */
5332
	net_stats->rx_errors = adapter->stats.rxerrc +
5333 5334 5335
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
5336 5337 5338 5339 5340
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5341 5342

	/* Tx Errors */
5343 5344 5345 5346 5347
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5348 5349 5350 5351 5352 5353

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5354
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5355 5356 5357 5358 5359 5360 5361 5362 5363
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5364 5365 5366 5367 5368 5369 5370 5371 5372

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5373 5374 5375 5376
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5377
	struct igb_adapter *adapter = data;
5378
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5379 5380
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5381

5382 5383 5384
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5385
	if (icr & E1000_ICR_DOUTSYNC) {
5386 5387
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5388 5389
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5390 5391
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5392
		igb_check_wvbr(adapter);
5393
	}
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5417
	wr32(E1000_EIMS, adapter->eims_other);
5418 5419 5420 5421

	return IRQ_HANDLED;
}

5422
static void igb_write_itr(struct igb_q_vector *q_vector)
5423
{
5424
	struct igb_adapter *adapter = q_vector->adapter;
5425
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5426

5427 5428
	if (!q_vector->set_itr)
		return;
5429

5430 5431
	if (!itr_val)
		itr_val = 0x4;
5432

5433 5434
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5435
	else
5436
		itr_val |= E1000_EITR_CNT_IGNR;
5437

5438 5439
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5440 5441
}

5442
static irqreturn_t igb_msix_ring(int irq, void *data)
5443
{
5444
	struct igb_q_vector *q_vector = data;
5445

5446 5447
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5448

5449
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5450

5451
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5452 5453
}

5454
#ifdef CONFIG_IGB_DCA
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5465
	/* We can enable relaxed ordering for reads, but not writes when
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5486
	/* We can enable relaxed ordering for reads, but not writes when
5487 5488 5489 5490 5491 5492 5493 5494 5495
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5496
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5497
{
5498
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5499 5500
	int cpu = get_cpu();

5501 5502 5503
	if (q_vector->cpu == cpu)
		goto out_no_update;

5504 5505 5506 5507 5508 5509
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5510 5511
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5512 5513 5514 5515 5516
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5517
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5518 5519
	int i;

5520
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5521 5522
		return;

5523 5524 5525
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5526
	for (i = 0; i < adapter->num_q_vectors; i++) {
5527 5528
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5529 5530 5531 5532 5533 5534 5535
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5536
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5537 5538 5539 5540 5541 5542
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5543
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5544 5545
			break;
		if (dca_add_requester(dev) == 0) {
5546
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5547
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5548 5549 5550 5551 5552
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5553
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5554
			/* without this a class_device is left
5555 5556
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5557
			dca_remove_requester(dev);
5558
			dev_info(&pdev->dev, "DCA disabled\n");
5559
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5560
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5561 5562 5563
		}
		break;
	}
5564

J
Jeb Cramer 已提交
5565
	return 0;
5566 5567
}

J
Jeb Cramer 已提交
5568
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5569
			  void *p)
J
Jeb Cramer 已提交
5570 5571 5572 5573
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5574
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5575 5576 5577

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5578
#endif /* CONFIG_IGB_DCA */
5579

5580 5581 5582 5583 5584
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5585
	eth_zero_addr(mac_addr);
5586 5587
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5588 5589 5590
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5591
	return 0;
5592 5593 5594
}

#endif
5595 5596 5597 5598 5599 5600 5601 5602
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5603
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5604 5605 5606 5607 5608
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5609 5610 5611 5612 5613 5614
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5615
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5616
			    IGB_VF_FLAG_MULTI_PROMISC);
5617 5618 5619 5620
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5621
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5622 5623
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5624
		/* if we have hashes and we are clearing a multicast promisc
5625 5626 5627 5628 5629 5630 5631
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
5632

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5648 5649 5650 5651 5652 5653 5654 5655
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5656
	/* salt away the number of multicast addresses assigned
5657 5658 5659 5660 5661
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5662 5663 5664 5665 5666
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5667
	for (i = 0; i < n; i++)
5668
		vf_data->vf_mc_hashes[i] = hash_list[i];
5669 5670

	/* Flush and reset the mta with the new values */
5671
	igb_set_rx_mode(adapter->netdev);
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5683
		u32 vmolr = rd32(E1000_VMOLR(i));
5684

5685 5686
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5687
		vf_data = &adapter->vf_data[i];
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5726 5727

	adapter->vf_data[vf].vlans_enabled = 0;
5728 5729 5730 5731 5732 5733 5734
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5735 5736 5737 5738 5739
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5769 5770
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5771 5772
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5773 5774
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5775
			wr32(E1000_VLVF(i), reg);
5776 5777 5778 5779 5780 5781 5782

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
5783

5784 5785 5786 5787 5788 5789 5790 5791
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5792
			adapter->vf_data[vf].vlans_enabled++;
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5804 5805 5806 5807 5808 5809 5810 5811

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
5812

5813 5814 5815 5816 5817 5818 5819
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5820 5821
		}
	}
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5855
				 "The VF VLAN has been set, but the PF device is not up.\n");
5856
			dev_warn(&adapter->pdev->dev,
5857
				 "Bring the PF device up before attempting to use the VF device.\n");
5858 5859 5860
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5861
			     false, vf);
5862 5863 5864 5865
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5866
	}
5867
out:
5868
	return err;
5869 5870
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5891 5892
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5893
	struct e1000_hw *hw = &adapter->hw;
5894 5895
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5896
	int err = 0;
5897

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;
		int regndx = igb_find_vlvf_entry(adapter, vid);
5918

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5940 5941
}

5942
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5943
{
G
Greg Rose 已提交
5944 5945
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5946
	adapter->vf_data[vf].last_nack = jiffies;
5947 5948

	/* reset offloads to defaults */
5949
	igb_set_vmolr(adapter, vf, true);
5950 5951 5952

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5953 5954 5955 5956 5957 5958
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5959 5960 5961 5962 5963

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5964
	igb_set_rx_mode(adapter->netdev);
5965 5966
}

5967 5968 5969 5970
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5971
	/* clear mac address as we were hotplug removed/added */
5972
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5973
		eth_zero_addr(vf_mac);
5974 5975 5976 5977 5978 5979

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5980 5981 5982
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5983
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5984 5985 5986 5987
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5988
	igb_vf_reset(adapter, vf);
5989 5990

	/* set vf mac address */
5991
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5992 5993 5994 5995 5996 5997 5998

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5999
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6000 6001 6002

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6003
	memcpy(addr, vf_mac, ETH_ALEN);
6004 6005 6006 6007 6008
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
6009
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
6010 6011
	 * starting at the second 32 bit word of the msg array
	 */
6012 6013
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
6014

6015 6016
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
6017

6018
	return err;
6019 6020 6021 6022 6023
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
6024
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6025 6026 6027
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
6028 6029
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6030
		igb_write_mbx(hw, &msg, 1, vf);
6031
		vf_data->last_nack = jiffies;
6032 6033 6034
	}
}

6035
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6036
{
6037 6038
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6039
	struct e1000_hw *hw = &adapter->hw;
6040
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6041 6042
	s32 retval;

6043
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6044

6045 6046
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
6047
		dev_err(&pdev->dev, "Error receiving message from VF\n");
6048 6049 6050 6051 6052
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
6053 6054 6055

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6056
		return;
6057

6058
	/* until the vf completes a reset it should not be
6059 6060 6061 6062
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
6063
		return;
6064 6065
	}

6066
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6067 6068 6069 6070
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
6071 6072 6073 6074
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
6075 6076 6077 6078 6079
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
6080 6081
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
6082
		break;
6083 6084 6085
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
6086 6087 6088 6089 6090 6091 6092
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
6093 6094 6095
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
6096 6097
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
6098 6099
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6100 6101
		break;
	default:
6102
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6103 6104 6105 6106
		retval = -1;
		break;
	}

6107 6108
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
6109 6110 6111 6112 6113 6114 6115
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
6116
}
6117

6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
6136 6137
}

6138 6139 6140 6141 6142 6143 6144
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
6145 6146
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

6165
/**
6166 6167 6168
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
6169 6170 6171
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
6172 6173
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
6174 6175 6176 6177
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

6178
	igb_write_itr(q_vector);
6179

6180 6181 6182
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

6183
	if (icr & E1000_ICR_DOUTSYNC) {
6184 6185 6186 6187
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

6188 6189 6190 6191 6192 6193
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

6205
	napi_schedule(&q_vector->napi);
6206 6207 6208 6209 6210

	return IRQ_HANDLED;
}

/**
6211 6212 6213
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
6214 6215 6216
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
6217 6218
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
6219 6220
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6221 6222
	 * need for the IMC write
	 */
6223 6224 6225
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6226 6227
	 * not set, then the adapter didn't send an interrupt
	 */
6228 6229 6230
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

6231 6232
	igb_write_itr(q_vector);

6233 6234 6235
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

6236
	if (icr & E1000_ICR_DOUTSYNC) {
6237 6238 6239 6240
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

6241 6242 6243 6244 6245 6246 6247
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

6259
	napi_schedule(&q_vector->napi);
6260 6261 6262 6263

	return IRQ_HANDLED;
}

6264
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6265
{
6266
	struct igb_adapter *adapter = q_vector->adapter;
6267
	struct e1000_hw *hw = &adapter->hw;
6268

6269 6270 6271 6272
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
6273
		else
6274
			igb_update_ring_itr(q_vector);
6275 6276
	}

6277
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6278
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6279
			wr32(E1000_EIMS, q_vector->eims_value);
6280 6281 6282
		else
			igb_irq_enable(adapter);
	}
6283 6284
}

6285
/**
6286 6287 6288
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
6289 6290
 **/
static int igb_poll(struct napi_struct *napi, int budget)
6291
{
6292
	struct igb_q_vector *q_vector = container_of(napi,
6293 6294
						     struct igb_q_vector,
						     napi);
6295
	bool clean_complete = true;
6296

6297
#ifdef CONFIG_IGB_DCA
6298 6299
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
6300
#endif
6301
	if (q_vector->tx.ring)
6302
		clean_complete = igb_clean_tx_irq(q_vector);
6303

6304
	if (q_vector->rx.ring)
6305
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6306

6307 6308 6309
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
6310

6311
	/* If not enough Rx work done, exit the polling mode */
6312 6313
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
6314

6315
	return 0;
6316
}
A
Al Viro 已提交
6317

6318
/**
6319 6320
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
6321
 *
6322
 *  returns true if ring is completely cleaned
6323
 **/
6324
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6325
{
6326
	struct igb_adapter *adapter = q_vector->adapter;
6327
	struct igb_ring *tx_ring = q_vector->tx.ring;
6328
	struct igb_tx_buffer *tx_buffer;
6329
	union e1000_adv_tx_desc *tx_desc;
6330
	unsigned int total_bytes = 0, total_packets = 0;
6331
	unsigned int budget = q_vector->tx.work_limit;
6332
	unsigned int i = tx_ring->next_to_clean;
6333

6334 6335
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
6336

6337
	tx_buffer = &tx_ring->tx_buffer_info[i];
6338
	tx_desc = IGB_TX_DESC(tx_ring, i);
6339
	i -= tx_ring->count;
6340

6341 6342
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6343 6344 6345 6346

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6347

6348
		/* prevent any other reads prior to eop_desc */
6349
		read_barrier_depends();
6350

6351 6352 6353 6354
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6355 6356
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6357

6358 6359 6360
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6361

6362 6363
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6364

6365 6366
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6367 6368
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6369 6370
				 DMA_TO_DEVICE);

6371 6372 6373 6374
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6375 6376
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6377 6378
			tx_buffer++;
			tx_desc++;
6379
			i++;
6380 6381
			if (unlikely(!i)) {
				i -= tx_ring->count;
6382
				tx_buffer = tx_ring->tx_buffer_info;
6383 6384
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6385 6386

			/* unmap any remaining paged data */
6387
			if (dma_unmap_len(tx_buffer, len)) {
6388
				dma_unmap_page(tx_ring->dev,
6389 6390
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6391
					       DMA_TO_DEVICE);
6392
				dma_unmap_len_set(tx_buffer, len, 0);
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6405 6406 6407 6408 6409 6410 6411

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6412

6413 6414
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6415
	i += tx_ring->count;
6416
	tx_ring->next_to_clean = i;
6417 6418 6419 6420
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6421 6422
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6423

6424
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6425
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6426

6427
		/* Detect a transmit hang in hardware, this serializes the
6428 6429
		 * check with the clearing of time_stamp and movement of i
		 */
6430
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6431
		if (tx_buffer->next_to_watch &&
6432
		    time_after(jiffies, tx_buffer->time_stamp +
6433 6434
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6435 6436

			/* detected Tx unit hang */
6437
			dev_err(tx_ring->dev,
6438
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6439
				"  Tx Queue             <%d>\n"
6440 6441 6442 6443 6444 6445
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6446
				"  next_to_watch        <%p>\n"
6447 6448
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6449
				tx_ring->queue_index,
6450
				rd32(E1000_TDH(tx_ring->reg_idx)),
6451
				readl(tx_ring->tail),
6452 6453
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6454
				tx_buffer->time_stamp,
6455
				tx_buffer->next_to_watch,
6456
				jiffies,
6457
				tx_buffer->next_to_watch->wb.status);
6458 6459 6460 6461 6462
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6463 6464
		}
	}
6465

6466
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6467
	if (unlikely(total_packets &&
6468 6469
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6487 6488
}

6489
/**
6490 6491 6492
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6493
 *
6494
 *  Synchronizes page for reuse by the adapter
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
6509
	*new_buff = *old_buff;
6510 6511 6512 6513

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6514
					 IGB_RX_BUFSZ,
6515 6516 6517
					 DMA_FROM_DEVICE);
}

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6553
/**
6554 6555 6556 6557 6558
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6559
 *
6560 6561 6562 6563
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6564
 *
6565 6566
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6567 6568 6569 6570 6571 6572 6573 6574
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6575 6576 6577 6578 6579
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6602
			rx_buffer->page_offset, size, truesize);
6603

6604 6605
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6606

6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6637
		/* we will be copying header into skb->data in
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6648
				      IGB_RX_BUFSZ,
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6667
static inline void igb_rx_checksum(struct igb_ring *ring,
6668 6669
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6670
{
6671
	skb_checksum_none_assert(skb);
6672

6673
	/* Ignore Checksum bit is set */
6674
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6675 6676 6677 6678
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6679
		return;
6680

6681
	/* TCP/UDP checksum error bit is set */
6682 6683 6684
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6685
		/* work around errata with sctp packets where the TCPE aka
6686 6687 6688
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6689 6690
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6691
			u64_stats_update_begin(&ring->rx_syncp);
6692
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6693 6694
			u64_stats_update_end(&ring->rx_syncp);
		}
6695 6696 6697 6698
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6699 6700
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6701 6702
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6703 6704
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6705 6706
}

6707 6708 6709 6710 6711
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
6712 6713 6714
		skb_set_hash(skb,
			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
			     PKT_HASH_TYPE_L3);
6715 6716
}

6717
/**
6718 6719 6720 6721
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6722
 *
6723 6724 6725 6726
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6745
/**
6746 6747 6748
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6749
 *
6750 6751 6752 6753 6754
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
6784
	if (protocol == htons(ETH_P_8021Q)) {
6785 6786 6787 6788 6789 6790 6791 6792
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
6793
	if (protocol == htons(ETH_P_IP)) {
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6804
		/* record next protocol if header is present */
6805
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6806
			nexthdr = hdr.ipv4->protocol;
6807
	} else if (protocol == htons(ETH_P_IPV6)) {
6808 6809 6810 6811 6812
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6813
		hlen = sizeof(struct ipv6hdr);
6814 6815 6816 6817
	} else {
		return hdr.network - data;
	}

6818 6819 6820
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6841
	/* If everything has gone correctly hdr.network should be the
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6853 6854 6855 6856
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6857
 *
6858 6859 6860 6861 6862 6863
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6864 6865 6866 6867
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6868
{
6869 6870 6871 6872
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6873
	/* it is valid to use page_address instead of kmap since we are
6874 6875
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6876
	 */
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6893
	/* we need the header to contain the greater of either ETH_HLEN or
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6909 6910 6911 6912
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6913
 *
6914 6915
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6916
 *
6917 6918
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6919
 *
6920
 *  Returns true if an error was encountered and skb was freed.
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6949 6950
}

6951
/**
6952 6953 6954 6955
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6956
 *
6957 6958 6959
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6971 6972 6973
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6974

6975
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6976 6977
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
6978

6979 6980 6981 6982 6983 6984
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6985
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6986 6987 6988 6989 6990 6991 6992
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6993
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6994
{
6995
	struct igb_ring *rx_ring = q_vector->rx.ring;
6996
	struct sk_buff *skb = rx_ring->skb;
6997
	unsigned int total_bytes = 0, total_packets = 0;
6998
	u16 cleaned_count = igb_desc_unused(rx_ring);
6999

7000
	while (likely(total_packets < budget)) {
7001
		union e1000_adv_rx_desc *rx_desc;
7002

7003 7004 7005 7006 7007
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
7008

7009
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7010

7011 7012
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
7013

7014 7015 7016 7017 7018 7019
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

7020
		/* retrieve a buffer from the ring */
7021
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7022

7023 7024 7025
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
7026

7027
		cleaned_count++;
7028

7029 7030 7031
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
7032 7033 7034 7035 7036

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
7037 7038
		}

7039
		/* probably a little skewed due to removing CRC */
7040 7041
		total_bytes += skb->len;

7042 7043
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
7044

J
Jiri Pirko 已提交
7045
		napi_gro_receive(&q_vector->napi, skb);
7046

7047 7048 7049
		/* reset skb pointer */
		skb = NULL;

7050 7051
		/* update budget accounting */
		total_packets++;
7052
	}
7053

7054 7055 7056
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
7057
	u64_stats_update_begin(&rx_ring->rx_syncp);
7058 7059
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
7060
	u64_stats_update_end(&rx_ring->rx_syncp);
7061 7062
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
7063 7064

	if (cleaned_count)
7065
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7066

7067
	return total_packets < budget;
7068 7069
}

7070
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7071
				  struct igb_rx_buffer *bi)
7072 7073
{
	struct page *page = bi->page;
7074
	dma_addr_t dma;
7075

7076 7077
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
7078 7079
		return true;

7080 7081 7082 7083 7084
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
7085 7086
	}

7087 7088
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7089

7090
	/* if mapping failed free memory back to system since
7091 7092
	 * there isn't much point in holding memory we can't use
	 */
7093
	if (dma_mapping_error(rx_ring->dev, dma)) {
7094 7095
		__free_page(page);

7096 7097 7098 7099
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

7100
	bi->dma = dma;
7101 7102
	bi->page = page;
	bi->page_offset = 0;
7103

7104 7105 7106
	return true;
}

7107
/**
7108 7109
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
7110
 **/
7111
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7112 7113
{
	union e1000_adv_rx_desc *rx_desc;
7114
	struct igb_rx_buffer *bi;
7115
	u16 i = rx_ring->next_to_use;
7116

7117 7118 7119 7120
	/* nothing to do */
	if (!cleaned_count)
		return;

7121
	rx_desc = IGB_RX_DESC(rx_ring, i);
7122
	bi = &rx_ring->rx_buffer_info[i];
7123
	i -= rx_ring->count;
7124

7125
	do {
7126
		if (!igb_alloc_mapped_page(rx_ring, bi))
7127
			break;
7128

7129
		/* Refresh the desc even if buffer_addrs didn't change
7130 7131
		 * because each write-back erases this info.
		 */
7132
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7133

7134 7135
		rx_desc++;
		bi++;
7136
		i++;
7137
		if (unlikely(!i)) {
7138
			rx_desc = IGB_RX_DESC(rx_ring, 0);
7139
			bi = rx_ring->rx_buffer_info;
7140 7141 7142 7143 7144
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
7145 7146 7147

		cleaned_count--;
	} while (cleaned_count);
7148

7149 7150
	i += rx_ring->count;

7151
	if (rx_ring->next_to_use != i) {
7152
		/* record the next descriptor to use */
7153 7154
		rx_ring->next_to_use = i;

7155 7156 7157
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

7158
		/* Force memory writes to complete before letting h/w
7159 7160
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
7161 7162
		 * such as IA-64).
		 */
7163
		wmb();
7164
		writel(i, rx_ring->tail);
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
7187
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7188
				     &data->val_out))
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
7211 7212
	case SIOCGHWTSTAMP:
		return igb_ptp_get_ts_config(netdev, ifr);
7213
	case SIOCSHWTSTAMP:
7214
		return igb_ptp_set_ts_config(netdev, ifr);
7215 7216 7217 7218 7219
	default:
		return -EOPNOTSUPP;
	}
}

7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_read_config_word(adapter->pdev, reg, value);
}

void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_write_config_word(adapter->pdev, reg, *value);
}

7234 7235 7236 7237
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

7238
	if (pcie_capability_read_word(adapter->pdev, reg, value))
7239 7240 7241 7242 7243 7244 7245 7246 7247
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

7248
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7249 7250 7251 7252 7253
		return -E1000_ERR_CONFIG;

	return 0;
}

7254
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7255 7256 7257 7258
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
7259
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7260

7261
	if (enable) {
7262 7263 7264 7265 7266
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

7267
		/* Disable CFI check */
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

7278
	igb_rlpml_set(adapter);
7279 7280
}

7281 7282
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
7283 7284 7285
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7286
	int pf_id = adapter->vfs_allocated_count;
7287

7288 7289
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
7290

7291 7292
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
7293 7294

	set_bit(vid, adapter->active_vlans);
7295 7296

	return 0;
7297 7298
}

7299 7300
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
7301 7302 7303
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7304
	int pf_id = adapter->vfs_allocated_count;
7305
	s32 err;
7306

7307 7308
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
7309

7310 7311
	/* if vid was not present in VLVF just remove it from table */
	if (err)
7312
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
7313 7314

	clear_bit(vid, adapter->active_vlans);
7315 7316

	return 0;
7317 7318 7319 7320
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
7321
	u16 vid;
7322

7323 7324
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
7325
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7326
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7327 7328
}

7329
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7330
{
7331
	struct pci_dev *pdev = adapter->pdev;
7332 7333 7334 7335
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7336
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7337 7338
	 * for the switch() below to work
	 */
7339 7340 7341
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7355

7356
	switch (spd + dplx) {
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7375
		goto err_inval;
7376
	}
7377 7378 7379 7380

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7381
	return 0;
7382 7383 7384 7385

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7386 7387
}

Y
Yan, Zheng 已提交
7388 7389
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7390 7391 7392 7393
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7394
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7395
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7396 7397 7398 7399 7400 7401
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7402
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7403
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7404

7405
	igb_clear_interrupt_scheme(adapter);
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7419
		igb_set_rx_mode(netdev);
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7437
		igb_disable_pcie_master(hw);
7438 7439 7440 7441 7442 7443 7444 7445

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7446 7447
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7448 7449 7450
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7451 7452

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7453 7454
	 * would have already happened in close and is redundant.
	 */
7455 7456 7457 7458 7459 7460 7461 7462
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7463
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7464
static int igb_suspend(struct device *dev)
7465 7466 7467
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7468
	struct pci_dev *pdev = to_pci_dev(dev);
7469

Y
Yan, Zheng 已提交
7470
	retval = __igb_shutdown(pdev, &wake, 0);
7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7483
#endif /* CONFIG_PM_SLEEP */
7484

Y
Yan, Zheng 已提交
7485
static int igb_resume(struct device *dev)
7486
{
Y
Yan, Zheng 已提交
7487
	struct pci_dev *pdev = to_pci_dev(dev);
7488 7489 7490 7491 7492 7493 7494
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7495
	pci_save_state(pdev);
T
Taku Izumi 已提交
7496

7497
	err = pci_enable_device_mem(pdev);
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7508
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7509 7510
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7511 7512 7513
	}

	igb_reset(adapter);
7514 7515

	/* let the f/w know that the h/w is now under the control of the
7516 7517
	 * driver.
	 */
7518 7519
	igb_get_hw_control(adapter);

7520 7521
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7522
	if (netdev->flags & IFF_UP) {
7523
		rtnl_lock();
Y
Yan, Zheng 已提交
7524
		err = __igb_open(netdev, true);
7525
		rtnl_unlock();
A
Alexander Duyck 已提交
7526 7527 7528
		if (err)
			return err;
	}
7529 7530

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7563 7564 7565

	return 0;
}
Y
Yan, Zheng 已提交
7566 7567 7568 7569 7570 7571

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7572 7573 7574 7575
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7576 7577
	bool wake;

Y
Yan, Zheng 已提交
7578
	__igb_shutdown(pdev, &wake, 0);
7579 7580 7581 7582 7583

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7584 7585
}

7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);
7597 7598
	else
		igb_reset(adapter);
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7654
#ifdef CONFIG_NET_POLL_CONTROLLER
7655
/* Polling 'interrupt' - used by things like netconsole to send skbs
7656 7657 7658 7659 7660 7661
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7662
	struct e1000_hw *hw = &adapter->hw;
7663
	struct igb_q_vector *q_vector;
7664 7665
	int i;

7666
	for (i = 0; i < adapter->num_q_vectors; i++) {
7667
		q_vector = adapter->q_vector[i];
7668
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7669 7670 7671
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7672
		napi_schedule(&q_vector->napi);
7673
	}
7674 7675 7676 7677
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7678 7679 7680
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7681
 *
7682 7683 7684
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7685 7686 7687 7688 7689 7690 7691 7692
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7693 7694 7695
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7696 7697 7698 7699 7700 7701 7702 7703 7704
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7705 7706
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7707
 *
7708 7709 7710
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7711 7712 7713 7714 7715
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7716
	pci_ers_result_t result;
T
Taku Izumi 已提交
7717
	int err;
7718

7719
	if (pci_enable_device_mem(pdev)) {
7720 7721
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7722 7723 7724 7725
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7726
		pci_save_state(pdev);
7727

7728 7729
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7730

7731 7732 7733 7734
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7735

7736 7737
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7738 7739 7740
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7741 7742
		/* non-fatal, continue */
	}
7743 7744

	return result;
7745 7746 7747
}

/**
7748 7749
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7750
 *
7751 7752 7753
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7770 7771
	 * driver.
	 */
7772 7773 7774
	igb_get_hw_control(adapter);
}

7775
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7776
			     u8 qsel)
7777 7778 7779 7780 7781 7782 7783 7784
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7785
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7802
static int igb_set_vf_mac(struct igb_adapter *adapter,
7803
			  int vf, unsigned char *mac_addr)
7804 7805
{
	struct e1000_hw *hw = &adapter->hw;
7806
	/* VF MAC addresses start at end of receive addresses and moves
7807 7808
	 * towards the first, as a result a collision should not be possible
	 */
7809
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7810

7811
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7812

7813
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7814 7815 7816 7817

	return 0;
}

7818 7819 7820 7821 7822 7823 7824
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7825 7826
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7827
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7828 7829 7830 7831
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7832 7833 7834 7835
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7858 7859
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7860 7861

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7862 7863
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7864 7865 7866 7867 7868 7869
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7870
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7871 7872 7873
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7892
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7893 7894 7895 7896 7897 7898 7899
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7900 7901
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7902 7903 7904
	}
}

7905 7906
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
			     int min_tx_rate, int max_tx_rate)
7907
{
7908 7909 7910 7911 7912 7913 7914
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

7915 7916 7917
	if (min_tx_rate)
		return -EINVAL;

7918 7919 7920
	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7921 7922
	    (max_tx_rate < 0) ||
	    (max_tx_rate > actual_link_speed))
7923 7924 7925
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
7926 7927
	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7928 7929

	return 0;
7930 7931
}

L
Lior Levy 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
T
Todd Fujinaka 已提交
7956
	return 0;
L
Lior Levy 已提交
7957 7958
}

7959 7960 7961 7962 7963 7964 7965 7966
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7967 7968
	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
	ivi->min_tx_rate = 0;
7969 7970
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7971
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7972 7973 7974
	return 0;
}

7975 7976 7977
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7978
	u32 reg;
7979

7980 7981
	switch (hw->mac.type) {
	case e1000_82575:
7982 7983
	case e1000_i210:
	case e1000_i211:
7984
	case e1000_i354:
7985 7986
	default:
		/* replication is not supported for 82575 */
7987
		return;
7988 7989 7990 7991 7992
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
7993
		/* Fall through */
7994 7995 7996 7997 7998
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7999
		/* Fall through */
8000 8001
	case e1000_i350:
		/* none of the above registers are supported by i350 */
8002 8003
		break;
	}
8004

8005 8006 8007
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
8008
		igb_vmdq_set_anti_spoofing_pf(hw, true,
8009
					      adapter->vfs_allocated_count);
8010 8011 8012 8013
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
8014 8015
}

8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

8029
			/* DMA Coalescing high water mark needs to be greater
8030 8031
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
8032
			 */
8033 8034 8035 8036 8037 8038 8039 8040 8041
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

8042
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8043 8044 8045 8046 8047
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
8058 8059

			/* Disable BMC-to-OS Watchdog Enable */
8060 8061 8062
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

8063 8064
			wr32(E1000_DMACR, reg);

8065
			/* no lower threshold to disable
8066 8067 8068 8069 8070 8071 8072 8073
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

8074
			/* free space in tx packet buffer to wake from
8075 8076 8077 8078 8079
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

8080
			/* make low power state decision controlled
8081 8082 8083 8084 8085 8086 8087 8088
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
8089

8090 8091 8092 8093 8094
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

8095 8096
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
8097 8098 8099 8100 8101 8102 8103
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
8104
 **/
C
Carolyn Wyborny 已提交
8105
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8106
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
8107 8108
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8109
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
8110 8111 8112 8113 8114 8115 8116 8117
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

T
Todd Fujinaka 已提交
8118
	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
C
Carolyn Wyborny 已提交
8119 8120 8121 8122 8123 8124 8125 8126 8127
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
T
Todd Fujinaka 已提交
8128
		return 0;
C
Carolyn Wyborny 已提交
8129 8130 8131
	}
}

8132 8133
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
8134 8135 8136 8137 8138 8139 8140
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
8141
 **/
C
Carolyn Wyborny 已提交
8142
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8143
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
8144 8145
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8146
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
8147 8148 8149 8150 8151 8152
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

T
Todd Fujinaka 已提交
8153
	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
C
Carolyn Wyborny 已提交
8154 8155 8156 8157 8158 8159 8160
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
T
Todd Fujinaka 已提交
8161
		return 0;
C
Carolyn Wyborny 已提交
8162 8163

}
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173

int igb_reinit_queues(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (netif_running(netdev))
		igb_close(netdev);

8174
	igb_reset_interrupt_capability(adapter);
8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		err = igb_open(netdev);

	return err;
}
8186
/* igb_main.c */