igb_main.c 216.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2014 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
16
  this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
27 28
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

29 30 31
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
32
#include <linux/bitops.h>
33 34 35 36
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
37
#include <linux/slab.h>
38 39
#include <net/checksum.h>
#include <net/ip6_checksum.h>
40
#include <linux/net_tstamp.h>
41 42
#include <linux/mii.h>
#include <linux/ethtool.h>
43
#include <linux/if.h>
44 45
#include <linux/if_vlan.h>
#include <linux/pci.h>
46
#include <linux/pci-aspm.h>
47 48
#include <linux/delay.h>
#include <linux/interrupt.h>
49 50 51
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
52
#include <linux/if_ether.h>
53
#include <linux/aer.h>
54
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
55
#include <linux/pm_runtime.h>
56
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
57 58
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
59
#include <linux/i2c.h>
60 61
#include "igb.h"

C
Carolyn Wyborny 已提交
62 63
#define MAJ 5
#define MIN 0
A
Akeem G Abodunrin 已提交
64
#define BUILD 5
C
Carolyn Wyborny 已提交
65
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66
__stringify(BUILD) "-k"
67 68 69 70
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
71
static const char igb_copyright[] =
72
				"Copyright (c) 2007-2014 Intel Corporation.";
73 74 75 76 77

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

78
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 80 81
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82 83 84 85 86
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89 90 91 92
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96 97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99 100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
101 102
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
106 107
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111 112 113 114 115 116 117 118 119 120 121 122 123 124
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
125
static void igb_setup_mrqc(struct igb_adapter *);
126
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127
static void igb_remove(struct pci_dev *pdev);
128 129 130
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
131
static void igb_configure(struct igb_adapter *);
132 133 134 135
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
136 137
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
138
static void igb_set_rx_mode(struct net_device *);
139 140 141
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
142
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
143 144
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
145 146
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
147
static void igb_set_uta(struct igb_adapter *adapter);
148 149 150
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
151
static irqreturn_t igb_msix_ring(int irq, void *);
152
#ifdef CONFIG_IGB_DCA
153
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
154
static void igb_setup_dca(struct igb_adapter *);
155
#endif /* CONFIG_IGB_DCA */
156
static int igb_poll(struct napi_struct *, int);
157
static bool igb_clean_tx_irq(struct igb_q_vector *);
158
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 160 161
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
162
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 164
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165
static void igb_restore_vlan(struct igb_adapter *);
166
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 168 169
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
170
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 173 174 175
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
L
Lior Levy 已提交
176 177
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
178 179
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
180
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
181 182

#ifdef CONFIG_PCI_IOV
183
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
R
RongQing Li 已提交
185
#endif
186 187

#ifdef CONFIG_PM
188
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
189
static int igb_suspend(struct device *);
190
#endif
Y
Yan, Zheng 已提交
191 192 193 194 195 196 197 198 199 200 201
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
202 203
#endif
static void igb_shutdown(struct pci_dev *);
204
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
206 207 208 209 210 211 212
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
213 214 215 216
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
217
#ifdef CONFIG_PCI_IOV
218 219 220 221 222 223
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

224 225 226 227 228
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

229
static const struct pci_error_handlers igb_err_handler = {
230 231 232 233 234
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

235
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236 237 238 239 240

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
241
	.remove   = igb_remove,
242
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
243
	.driver.pm = &igb_pm_ops,
244 245
#endif
	.shutdown = igb_shutdown,
246
	.sriov_configure = igb_pci_sriov_configure,
247 248 249 250 251 252 253 254
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

255 256 257 258 259
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

301
/* igb_regdump - register printout routine */
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
358
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 360 361 362
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
363 364
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
365 366
}

367
/* igb_dump - Print registers, Tx-rings and Rx-rings */
368 369 370 371 372 373 374 375 376 377 378
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
379
	u16 i, n;
380 381 382 383 384 385 386

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
387 388 389 390
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
391 392 393 394
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
395
	pr_info(" Register Name   Value\n");
396 397 398 399 400 401 402 403 404 405
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
406
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
407
	for (n = 0; n < adapter->num_tx_queues; n++) {
408
		struct igb_tx_buffer *buffer_info;
409
		tx_ring = adapter->tx_ring[n];
410
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
411 412
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 414
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
415 416
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
438 439 440 441 442 443
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
444 445

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
446
			const char *next_desc;
447
			struct igb_tx_buffer *buffer_info;
448
			tx_desc = IGB_TX_DESC(tx_ring, i);
449
			buffer_info = &tx_ring->tx_buffer_info[i];
450
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
451 452 453 454 455 456 457 458 459 460 461 462
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
463 464
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
465 466
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
467 468
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
469
				buffer_info->skb, next_desc);
470

471
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 473
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
474
					16, 1, buffer_info->skb->data,
475 476
					dma_unmap_len(buffer_info, len),
					true);
477 478 479 480 481 482
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
483
	pr_info("Queue [NTU] [NTC]\n");
484 485
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
486 487
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
519 520 521 522 523 524 525
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526 527

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
528
			const char *next_desc;
529 530
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
531
			rx_desc = IGB_RX_DESC(rx_ring, i);
532 533
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
534 535 536 537 538 539 540 541

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

542 543
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
544 545
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
546 547
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
548
					next_desc);
549
			} else {
550 551
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
552 553 554
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
555
					next_desc);
556

557
				if (netif_msg_pktdata(adapter) &&
558
				    buffer_info->dma && buffer_info->page) {
559 560 561
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
562 563
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
564
					  IGB_RX_BUFSZ, true);
565 566 567 568 569 570 571 572 573
				}
			}
		}
	}

exit:
	return;
}

574 575
/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
C
Carolyn Wyborny 已提交
576 577 578 579
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
580
 **/
C
Carolyn Wyborny 已提交
581 582 583 584 585 586 587 588 589
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

590 591
/**
 *  igb_set_i2c_data - Sets the I2C data bit
C
Carolyn Wyborny 已提交
592 593 594 595
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
596
 **/
C
Carolyn Wyborny 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

615 616
/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
C
Carolyn Wyborny 已提交
617 618 619 620
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
621
 **/
C
Carolyn Wyborny 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

639 640
/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
C
Carolyn Wyborny 已提交
641 642 643
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
644
 **/
C
Carolyn Wyborny 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

663
/**
664 665 666 667
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
668
 **/
669
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 671
{
	struct igb_adapter *adapter = hw->back;
672
	return adapter->netdev;
673
}
P
Patrick Ohly 已提交
674

675
/**
676
 *  igb_init_module - Driver Registration Routine
677
 *
678 679
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
680 681 682 683
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
684
	pr_info("%s - version %s\n",
685 686
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
687
	pr_info("%s\n", igb_copyright);
688

689
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
690 691
	dca_register_notify(&dca_notifier);
#endif
692
	ret = pci_register_driver(&igb_driver);
693 694 695 696 697 698
	return ret;
}

module_init(igb_init_module);

/**
699
 *  igb_exit_module - Driver Exit Cleanup Routine
700
 *
701 702
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
703 704 705
 **/
static void __exit igb_exit_module(void)
{
706
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
707 708
	dca_unregister_notify(&dca_notifier);
#endif
709 710 711 712 713
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
716 717
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
718
 *
719 720
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
721 722 723
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
724
	int i = 0, j = 0;
725
	u32 rbase_offset = adapter->vfs_allocated_count;
726 727 728 729 730 731 732 733

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
734
		if (adapter->vfs_allocated_count) {
735
			for (; i < adapter->rss_queues; i++)
736
				adapter->rx_ring[i]->reg_idx = rbase_offset +
737
							       Q_IDX_82576(i);
738
		}
739
	case e1000_82575:
740
	case e1000_82580:
741
	case e1000_i350:
742
	case e1000_i354:
743 744
	case e1000_i210:
	case e1000_i211:
745
	default:
746
		for (; i < adapter->num_rx_queues; i++)
747
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748
		for (; j < adapter->num_tx_queues; j++)
749
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 751 752 753
		break;
	}
}

A
Alexander Duyck 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

780
#define IGB_N0_QUEUE -1
781
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782
{
783
	struct igb_adapter *adapter = q_vector->adapter;
784
	struct e1000_hw *hw = &adapter->hw;
785 786
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
787
	u32 msixbm = 0;
788

789 790 791 792
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
793 794 795

	switch (hw->mac.type) {
	case e1000_82575:
796
		/* The 82575 assigns vectors using a bitmask, which matches the
797 798 799 800
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
801
		if (rx_queue > IGB_N0_QUEUE)
802
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803
		if (tx_queue > IGB_N0_QUEUE)
804
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805
		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806
			msixbm |= E1000_EIMS_OTHER;
807
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
809 810
		break;
	case e1000_82576:
811
		/* 82576 uses a table that essentially consists of 2 columns
A
Alexander Duyck 已提交
812 813 814 815 816 817 818 819 820 821 822 823
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
824
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
825
		break;
826
	case e1000_82580:
827
	case e1000_i350:
828
	case e1000_i354:
829 830
	case e1000_i210:
	case e1000_i211:
831
		/* On 82580 and newer adapters the scheme is similar to 82576
A
Alexander Duyck 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
845 846
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
847 848 849 850
	default:
		BUG();
		break;
	}
851 852 853 854 855 856

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
857 858 859
}

/**
860 861
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
862
 *
863 864
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
865 866 867 868 869 870 871 872 873 874
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
875 876
	switch (hw->mac.type) {
	case e1000_82575:
877 878 879 880 881 882 883 884 885
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
886 887

		/* enable msix_other interrupt */
888
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
889
		adapter->eims_other = E1000_EIMS_OTHER;
890

A
Alexander Duyck 已提交
891 892 893
		break;

	case e1000_82576:
894
	case e1000_82580:
895
	case e1000_i350:
896
	case e1000_i354:
897 898
	case e1000_i210:
	case e1000_i211:
899
		/* Turn on MSI-X capability first, or our settings
900 901
		 * won't stick.  And it will take days to debug.
		 */
902
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 904
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);
905 906 907

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
908 909
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

910
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
911 912 913 914 915
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
916 917 918

	adapter->eims_enable_mask |= adapter->eims_other;

919 920
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
921

922 923 924 925
	wrfl();
}

/**
926 927
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
928
 *
929 930
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
931 932 933 934
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
935
	struct e1000_hw *hw = &adapter->hw;
936
	int i, err = 0, vector = 0, free_vector = 0;
937

938
	err = request_irq(adapter->msix_entries[vector].vector,
939
			  igb_msix_other, 0, netdev->name, adapter);
940
	if (err)
941
		goto err_out;
942 943 944 945

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

946 947
		vector++;

948 949
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

950
		if (q_vector->rx.ring && q_vector->tx.ring)
951
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 953
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
954
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 956
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
957
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958
				q_vector->rx.ring->queue_index);
959
		else
960 961
			sprintf(q_vector->name, "%s-unused", netdev->name);

962
		err = request_irq(adapter->msix_entries[vector].vector,
963 964
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
965
		if (err)
966
			goto err_free;
967 968 969 970
	}

	igb_configure_msix(adapter);
	return 0;
971 972 973 974 975 976 977 978 979 980 981

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
982 983 984
	return err;
}

985
/**
986 987 988
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
989
 *
990
 *  This function frees the memory allocated to the q_vector.
991 992 993 994 995
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	adapter->q_vector[v_idx] = NULL;

	/* igb_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

/**
 *  igb_reset_q_vector - Reset config for interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be reset
 *
 *  If NAPI is enabled it will delete any references to the
 *  NAPI struct. This is preparation for igb_free_q_vector.
 **/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

1016 1017 1018 1019 1020 1021 1022 1023
	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	netif_napi_del(&q_vector->napi);

1024 1025 1026 1027 1028 1029
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

1030
	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1031
		pci_disable_msix(adapter->pdev);
1032
	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1033 1034 1035 1036
		pci_disable_msi(adapter->pdev);

	while (v_idx--)
		igb_reset_q_vector(adapter, v_idx);
1037 1038
}

1039
/**
1040 1041
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
1042
 *
1043 1044 1045
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
1046 1047 1048
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1049 1050 1051 1052
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1053
	adapter->num_q_vectors = 0;
1054

1055 1056
	while (v_idx--) {
		igb_reset_q_vector(adapter, v_idx);
1057
		igb_free_q_vector(adapter, v_idx);
1058
	}
1059 1060 1061
}

/**
1062 1063
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
1064
 *
1065 1066
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
1067 1068 1069 1070 1071 1072
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1073 1074

/**
1075 1076 1077
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1078
 *
1079 1080
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1081
 **/
1082
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1083 1084 1085 1086
{
	int err;
	int numvecs, i;

1087 1088
	if (!msix)
		goto msi_only;
1089
	adapter->flags |= IGB_FLAG_HAS_MSIX;
1090

1091
	/* Number of supported queues. */
1092
	adapter->num_rx_queues = adapter->rss_queues;
1093 1094 1095 1096
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1097

1098
	/* start with one vector for every Rx queue */
1099 1100
	numvecs = adapter->num_rx_queues;

1101
	/* if Tx handler is separate add 1 for every Tx queue */
1102 1103
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1104 1105 1106 1107 1108 1109

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1110 1111 1112
	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

1113 1114 1115 1116 1117
	err = pci_enable_msix_range(adapter->pdev,
				    adapter->msix_entries,
				    numvecs,
				    numvecs);
	if (err > 0)
1118
		return;
1119 1120 1121 1122 1123

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135
		wrfl();
1136 1137 1138 1139
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1140
	adapter->vfs_allocated_count = 0;
1141
	adapter->rss_queues = 1;
1142
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143
	adapter->num_rx_queues = 1;
1144
	adapter->num_tx_queues = 1;
1145
	adapter->num_q_vectors = 1;
1146
	if (!pci_enable_msi(adapter->pdev))
1147
		adapter->flags |= IGB_FLAG_HAS_MSI;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1157
/**
1158 1159 1160 1161 1162 1163 1164 1165
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
1166
 *
1167
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1168
 **/
1169 1170 1171 1172
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1173 1174
{
	struct igb_q_vector *q_vector;
1175 1176
	struct igb_ring *ring;
	int ring_count, size;
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
1187 1188 1189
	q_vector = adapter->q_vector[v_idx];
	if (!q_vector)
		q_vector = kzalloc(size, GFP_KERNEL);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

1241 1242 1243
		u64_stats_init(&ring->tx_syncp);
		u64_stats_init(&ring->tx_syncp2);

1244 1245 1246 1247 1248
		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1249
	}
1250

1251 1252 1253 1254
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1255

1256 1257
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1258

1259 1260
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1261

1262 1263 1264
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265

1266 1267
		/*
		 * On i350, i354, i210, and i211, loopback VLAN packets
1268
		 * have the tag byte-swapped.
1269
		 */
1270 1271
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272

1273 1274 1275 1276
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

1277 1278
		u64_stats_init(&ring->rx_syncp);

1279 1280 1281 1282 1283
		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1284 1285
}

1286

1287
/**
1288 1289
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
1290
 *
1291 1292
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
1293
 **/
1294
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295
{
1296 1297 1298 1299 1300
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1301

1302 1303 1304 1305
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1306

1307 1308 1309 1310 1311 1312
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1313 1314
		}
	}
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1332
	return 0;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1343 1344 1345
}

/**
1346 1347 1348
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
1349
 *
1350
 *  This function initializes the interrupts and allocates all of the queues.
1351
 **/
1352
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353 1354 1355 1356
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1357
	igb_set_interrupt_capability(adapter, msix);
1358 1359 1360 1361 1362 1363 1364

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1365
	igb_cache_ring_register(adapter);
1366 1367

	return 0;
1368

1369 1370 1371 1372 1373
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1374
/**
1375 1376
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
1377
 *
1378 1379
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
1380 1381 1382 1383
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1384
	struct pci_dev *pdev = adapter->pdev;
1385 1386
	int err = 0;

1387
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1389
		if (!err)
1390 1391
			goto request_done;
		/* fall back to MSI */
1392 1393
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1394

1395
		igb_clear_interrupt_scheme(adapter);
1396 1397
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1398
			goto request_done;
1399

1400 1401
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1402
		igb_configure(adapter);
1403
	}
P
PJ Waskiewicz 已提交
1404

1405 1406
	igb_assign_vector(adapter->q_vector[0], 0);

1407
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1409
				  netdev->name, adapter);
1410 1411
		if (!err)
			goto request_done;
1412

1413 1414
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1415
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416 1417
	}

1418
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419
			  netdev->name, adapter);
1420

A
Andy Gospodarek 已提交
1421
	if (err)
1422
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423 1424 1425 1426 1427 1428 1429 1430
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
1431
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432 1433
		int vector = 0, i;

1434
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1435

1436
		for (i = 0; i < adapter->num_q_vectors; i++)
1437
			free_irq(adapter->msix_entries[vector++].vector,
1438
				 adapter->q_vector[i]);
1439 1440
	} else {
		free_irq(adapter->pdev->irq, adapter);
1441 1442 1443 1444
	}
}

/**
1445 1446
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
1447 1448 1449 1450 1451
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1452
	/* we need to be careful when disabling interrupts.  The VFs are also
1453 1454 1455
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1456
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457 1458 1459 1460 1461
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462
	}
P
PJ Waskiewicz 已提交
1463 1464

	wr32(E1000_IAM, 0);
1465 1466
	wr32(E1000_IMC, ~0);
	wrfl();
1467
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468 1469 1470 1471 1472 1473
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1474 1475 1476
}

/**
1477 1478
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
1479 1480 1481 1482 1483
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1484
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486 1487 1488 1489
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1490
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1491
		if (adapter->vfs_allocated_count) {
1492
			wr32(E1000_MBVFIMR, 0xFF);
1493 1494 1495
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1496
	} else {
1497 1498 1499 1500
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1501
	}
1502 1503 1504 1505
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1506
	struct e1000_hw *hw = &adapter->hw;
1507 1508
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1520
	    !test_bit(old_vid, adapter->active_vlans)) {
1521 1522
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1523 1524 1525 1526
	}
}

/**
1527 1528
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
1529
 *
1530 1531 1532
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
1546 1547
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
1548
 *
1549 1550 1551
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
1565 1566
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
1567 1568 1569 1570 1571 1572 1573
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1574
	igb_set_rx_mode(netdev);
1575 1576 1577

	igb_restore_vlan(adapter);

1578
	igb_setup_tctl(adapter);
1579
	igb_setup_mrqc(adapter);
1580
	igb_setup_rctl(adapter);
1581 1582

	igb_configure_tx(adapter);
1583
	igb_configure_rx(adapter);
1584 1585 1586

	igb_rx_fifo_flush_82575(&adapter->hw);

1587
	/* call igb_desc_unused which always leaves
1588
	 * at least 1 descriptor unused to make sure
1589 1590
	 * next_to_use != next_to_clean
	 */
1591
	for (i = 0; i < adapter->num_rx_queues; i++) {
1592
		struct igb_ring *ring = adapter->rx_ring[i];
1593
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594 1595 1596
	}
}

1597
/**
1598 1599
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
1600 1601 1602
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1603 1604
	igb_reset_phy(&adapter->hw);

1605 1606 1607 1608 1609 1610 1611
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
1612 1613
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
1614 1615 1616 1617 1618 1619 1620 1621
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/**
 * Detect and switch function for Media Auto Sense
 * @adapter: address of the board private structure
 **/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext, connsw;
	bool swap_now = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	connsw = rd32(E1000_CONNSW);

	/* need to live swap if current media is copper and we have fiber/serdes
	 * to go to.
	 */

	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
		swap_now = true;
	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
		/* copper signal takes time to appear */
		if (adapter->copper_tries < 4) {
			adapter->copper_tries++;
			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
			wr32(E1000_CONNSW, connsw);
			return;
		} else {
			adapter->copper_tries = 0;
			if ((connsw & E1000_CONNSW_PHYSD) &&
			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
				swap_now = true;
				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
				wr32(E1000_CONNSW, connsw);
			}
		}
	}

	if (!swap_now)
		return;

	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		netdev_info(adapter->netdev,
			"MAS: changing media to fiber/serdes\n");
		ctrl_ext |=
			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		adapter->copper_tries = 0;
		break;
	case e1000_media_type_internal_serdes:
	case e1000_media_type_fiber:
		netdev_info(adapter->netdev,
			"MAS: changing media to copper\n");
		ctrl_ext &=
			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		break;
	default:
		/* shouldn't get here during regular operation */
		netdev_err(adapter->netdev,
			"AMS: Invalid media type found, returning\n");
		break;
	}
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

1690
/**
1691 1692
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1704 1705 1706
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

1707
	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708
		igb_configure_msix(adapter);
1709 1710
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1711 1712 1713 1714 1715

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1716 1717 1718 1719 1720 1721 1722
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1723 1724
	netif_tx_start_all_queues(adapter->netdev);

1725 1726 1727 1728
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1729 1730 1731 1732
	if ((adapter->flags & IGB_FLAG_EEE) &&
	    (!hw->dev_spec._82575.eee_disable))
		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;

1733 1734 1735 1736 1737 1738
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1739
	struct e1000_hw *hw = &adapter->hw;
1740 1741 1742 1743
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
1744 1745
	 * reschedule our watchdog timer
	 */
1746 1747 1748 1749 1750 1751 1752
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1753
	netif_tx_stop_all_queues(netdev);
1754 1755 1756 1757 1758 1759 1760 1761 1762

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1763 1764
	igb_irq_disable(adapter);

1765 1766
	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

1767 1768
	for (i = 0; i < adapter->num_q_vectors; i++) {
		napi_synchronize(&(adapter->q_vector[i]->napi));
1769
		napi_disable(&(adapter->q_vector[i]->napi));
1770
	}
1771 1772 1773 1774 1775 1776


	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1777 1778

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1779 1780 1781
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1782

1783 1784 1785
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1786 1787
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1788 1789
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1790 1791 1792 1793 1794
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
/** igb_enable_mas - Media Autosense re-enable after swap
 *
 * @adapter: adapter struct
 **/
static s32 igb_enable_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 connsw;
	s32 ret_val = 0;

	connsw = rd32(E1000_CONNSW);
	if (!(hw->phy.media_type == e1000_media_type_copper))
		return ret_val;

	/* configure for SerDes media detect */
	if (!(connsw & E1000_CONNSW_SERDESD)) {
		connsw |= E1000_CONNSW_ENRGSRC;
		connsw |= E1000_CONNSW_AUTOSENSE_EN;
		wr32(E1000_CONNSW, connsw);
		wrfl();
	} else if (connsw & E1000_CONNSW_SERDESD) {
		/* already SerDes, no need to enable anything */
		return ret_val;
	} else {
		netdev_info(adapter->netdev,
			"MAS: Unable to configure feature, disabling..\n");
		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
	}
	return ret_val;
}

1838 1839
void igb_reset(struct igb_adapter *adapter)
{
1840
	struct pci_dev *pdev = adapter->pdev;
1841
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1842 1843
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1844
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1845 1846 1847 1848

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1849
	switch (mac->type) {
1850
	case e1000_i350:
1851
	case e1000_i354:
1852 1853 1854 1855
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1856
	case e1000_82576:
1857 1858
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1859 1860
		break;
	case e1000_82575:
1861 1862
	case e1000_i210:
	case e1000_i211:
1863 1864 1865
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1866
	}
1867

A
Alexander Duyck 已提交
1868 1869
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1870 1871 1872 1873 1874 1875 1876 1877
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
1878 1879
		 * expressed in KB.
		 */
1880 1881 1882 1883 1884
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
1885 1886 1887
		/* the Tx fifo also stores 16 bytes of information about the Tx
		 * but don't include ethernet FCS because hardware appends it
		 */
1888
		min_tx_space = (adapter->max_frame_size +
1889
				sizeof(union e1000_adv_tx_desc) -
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
1900 1901
		 * allocation, take space away from current Rx allocation
		 */
1902 1903 1904 1905
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

1906 1907 1908
			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
1909 1910 1911
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1912
		wr32(E1000_PBA, pba);
1913 1914 1915 1916 1917 1918 1919
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
1920 1921
	 * - the full Rx FIFO size minus one full frame
	 */
1922
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1923
			((pba << 10) - 2 * adapter->max_frame_size));
1924

1925
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1926
	fc->low_water = fc->high_water - 16;
1927 1928
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1929
	fc->current_mode = fc->requested_mode;
1930

1931 1932 1933 1934
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1935
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1936 1937

		/* ping all the active vfs to let them know we are going down */
1938
		igb_ping_all_vfs(adapter);
1939 1940 1941 1942 1943 1944

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1945
	/* Allow time for pending master requests to run */
1946
	hw->mac.ops.reset_hw(hw);
1947 1948
	wr32(E1000_WUC, 0);

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
		/* need to resetup here after media swap */
		adapter->ei.get_invariants(hw);
		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
	}
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (igb_enable_mas(adapter))
			dev_err(&pdev->dev,
				"Error enabling Media Auto Sense\n");
	}
1959
	if (hw->mac.ops.init_hw(hw))
1960
		dev_err(&pdev->dev, "Hardware Error\n");
1961

1962
	/* Flow control settings reset on hardware reset, so guarantee flow
1963 1964 1965 1966 1967
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1968
	igb_init_dmac(adapter, pba);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
J
Jeff Kirsher 已提交
1981
	/* Re-establish EEE setting */
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (mac->type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			igb_set_eee_i350(hw);
			break;
		case e1000_i354:
			igb_set_eee_i354(hw);
			break;
		default:
			break;
		}
	}
1996 1997 1998
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1999 2000 2001 2002 2003
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

2004 2005 2006
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

2007
	igb_get_phy_info(hw);
2008 2009
}

2010 2011
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
2012
{
2013 2014
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
J
Jiri Pirko 已提交
2015
	 */
2016 2017
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
2018
	else
2019
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
J
Jiri Pirko 已提交
2020 2021 2022 2023

	return features;
}

2024 2025
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
2026
{
2027
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
2028
	struct igb_adapter *adapter = netdev_priv(netdev);
2029

2030
	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
J
Jiri Pirko 已提交
2031 2032
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

2043 2044 2045
	return 0;
}

S
Stephen Hemminger 已提交
2046
static const struct net_device_ops igb_netdev_ops = {
2047
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
2048
	.ndo_stop		= igb_close,
2049
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
2050
	.ndo_get_stats64	= igb_get_stats64,
2051
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
2052 2053 2054 2055 2056 2057 2058
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2059 2060 2061
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
L
Lior Levy 已提交
2062
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2063
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
2064 2065 2066
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
2067 2068
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
2069 2070
};

2071 2072 2073 2074 2075 2076 2077
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
2078 2079 2080 2081 2082
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
2083
	case e1000_i210:
2084
	case e1000_i211:
2085 2086 2087 2088 2089 2090 2091 2092 2093
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		/* fall through */
2094 2095 2096 2097 2098 2099 2100 2101 2102
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
2103
		} else if (fw.etrack_id != 0X0000) {
2104
			snprintf(adapter->fw_version,
2105 2106 2107 2108 2109 2110 2111 2112
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
2113 2114
		}
		break;
2115 2116 2117 2118
	}
	return;
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
/**
 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 *
 * @adapter: adapter struct
 **/
static void igb_init_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_data;

	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
	switch (hw->bus.func) {
	case E1000_FUNC_0:
		if (eeprom_data & IGB_MAS_ENABLE_0) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_1:
		if (eeprom_data & IGB_MAS_ENABLE_1) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_2:
		if (eeprom_data & IGB_MAS_ENABLE_2) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_3:
		if (eeprom_data & IGB_MAS_ENABLE_3) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	default:
		/* Shouldn't get here */
		netdev_err(adapter->netdev,
			"MAS: Invalid port configuration, returning\n");
		break;
	}
}

2171 2172
/**
 *  igb_init_i2c - Init I2C interface
C
Carolyn Wyborny 已提交
2173
 *  @adapter: pointer to adapter structure
2174
 **/
C
Carolyn Wyborny 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

2198
/**
2199 2200 2201
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
2202
 *
2203
 *  Returns 0 on success, negative on failure
2204
 *
2205 2206 2207
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
2208
 **/
2209
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2210 2211 2212 2213
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
2214
	u16 eeprom_data = 0;
2215
	s32 ret_val;
2216
	static int global_quad_port_a; /* global quad port a indication */
2217
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2218
	int err, pci_using_dac;
2219
	u8 part_str[E1000_PBANUM_LENGTH];
2220

2221 2222 2223 2224 2225
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2226
			pci_name(pdev), pdev->vendor, pdev->device);
2227 2228 2229
		return -EINVAL;
	}

2230
	err = pci_enable_device_mem(pdev);
2231 2232 2233 2234
	if (err)
		return err;

	pci_using_dac = 0;
2235
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2236
	if (!err) {
2237
		pci_using_dac = 1;
2238
	} else {
2239
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2240
		if (err) {
2241 2242 2243
			dev_err(&pdev->dev,
				"No usable DMA configuration, aborting\n");
			goto err_dma;
2244 2245 2246
		}
	}

2247
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2248 2249
					   IORESOURCE_MEM),
					   igb_driver_name);
2250 2251 2252
	if (err)
		goto err_pci_reg;

2253
	pci_enable_pcie_error_reporting(pdev);
2254

2255
	pci_set_master(pdev);
2256
	pci_save_state(pdev);
2257 2258

	err = -ENOMEM;
2259
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2260
				   IGB_MAX_TX_QUEUES);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2272
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2273 2274

	err = -EIO;
2275
	hw->hw_addr = pci_iomap(pdev, 0, 0);
2276
	if (!hw->hw_addr)
2277 2278
		goto err_ioremap;

S
Stephen Hemminger 已提交
2279
	netdev->netdev_ops = &igb_netdev_ops;
2280 2281 2282 2283 2284
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

2285 2286
	netdev->mem_start = pci_resource_start(pdev, 0);
	netdev->mem_end = pci_resource_end(pdev, 0);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2302
		goto err_sw_init;
2303

2304
	/* setup the private structure */
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2324
	/* features is initialized to 0 in allocation, it might have bits
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
2335 2336
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;
2337 2338 2339

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2340
	netdev->hw_features |= NETIF_F_RXALL;
2341 2342

	/* set this bit last since it cannot be part of hw_features */
2343
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2344 2345 2346 2347 2348 2349

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2350

2351 2352
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2353
	if (pci_using_dac) {
2354
		netdev->features |= NETIF_F_HIGHDMA;
2355 2356
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2357

2358 2359
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2360
		netdev->features |= NETIF_F_SCTP_CSUM;
2361
	}
2362

2363 2364
	netdev->priv_flags |= IFF_UNICAST_FLT;

2365
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2366 2367

	/* before reading the NVM, reset the controller to put the device in a
2368 2369
	 * known good starting state
	 */
2370 2371
	hw->mac.ops.reset_hw(hw);

2372 2373
	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
2374
	 */
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
2388 2389 2390 2391 2392
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2393
		break;
2394 2395 2396 2397 2398 2399 2400 2401
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2402
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2403 2404 2405 2406 2407
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2408 2409 2410
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2411
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2412
		    (unsigned long) adapter);
2413
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2414
		    (unsigned long) adapter);
2415 2416 2417 2418

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2419
	/* Initialize link properties that are user-changeable */
2420 2421 2422 2423
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2424 2425
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2426 2427 2428

	igb_validate_mdi_setting(hw);

2429
	/* By default, support wake on port A */
2430
	if (hw->bus.func == 0)
2431 2432 2433 2434
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2435
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2436 2437
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
2438 2439
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2440

2441 2442
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2443 2444 2445

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
2446 2447
	 * lan on a particular port
	 */
2448 2449
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2450
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2451 2452
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2453 2454
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2455
		/* Wake events only supported on port A for dual fiber
2456 2457
		 * regardless of eeprom setting
		 */
2458
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2459
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2460
		break;
2461
	case E1000_DEV_ID_82576_QUAD_COPPER:
2462
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2463 2464
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2465
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2466 2467 2468 2469 2470 2471
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2472 2473 2474 2475
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2476 2477 2478
	}

	/* initialize the wol settings based on the eeprom settings */
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2491 2492 2493 2494

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2495 2496 2497 2498 2499 2500 2501
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2502 2503 2504 2505 2506 2507 2508 2509 2510
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2511 2512 2513
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2514
#ifdef CONFIG_IGB_DCA
2515
	if (dca_add_requester(&pdev->dev) == 0) {
2516
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2517 2518 2519 2520
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2521
#endif
2522 2523 2524 2525
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2526

2527
		/* Read the NVM to determine if this i350 device supports an
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
2542 2543 2544 2545 2546
	/* Check if Media Autosense is enabled */
	adapter->ei = *ei;
	if (hw->dev_spec._82575.mas_capable)
		igb_init_mas(adapter);

A
Anders Berggren 已提交
2547
	/* do hw tstamp init after resetting */
2548
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2549

2550
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}
2565

2566 2567 2568 2569 2570 2571 2572 2573
	if ((hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

2574 2575 2576
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2577 2578
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2579
		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2580
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2581
		adapter->num_rx_queues, adapter->num_tx_queues);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (hw->mac.type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			/* Enable EEE for internal copper PHY devices */
			err = igb_set_eee_i350(hw);
			if ((!err) &&
			    (!hw->dev_spec._82575.eee_disable)) {
				adapter->eee_advert =
					MDIO_EEE_100TX | MDIO_EEE_1000T;
				adapter->flags |= IGB_FLAG_EEE;
			}
			break;
		case e1000_i354:
2597
			if ((rd32(E1000_CTRL_EXT) &
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
				err = igb_set_eee_i354(hw);
				if ((!err) &&
					(!hw->dev_spec._82575.eee_disable)) {
					adapter->eee_advert =
					   MDIO_EEE_100TX | MDIO_EEE_1000T;
					adapter->flags |= IGB_FLAG_EEE;
				}
			}
			break;
		default:
			break;
2610
		}
2611
	}
Y
Yan, Zheng 已提交
2612
	pm_runtime_put_noidle(&pdev->dev);
2613 2614 2615 2616
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2617
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2618 2619
err_eeprom:
	if (!igb_check_reset_block(hw))
2620
		igb_reset_phy(hw);
2621 2622 2623 2624

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2625
	igb_clear_interrupt_scheme(adapter);
2626 2627 2628 2629
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2630
	pci_release_selected_regions(pdev,
2631
				     pci_select_bars(pdev, IORESOURCE_MEM));
2632 2633 2634 2635 2636 2637
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2638
#ifdef CONFIG_PCI_IOV
2639
static int igb_disable_sriov(struct pci_dev *pdev)
2640 2641 2642 2643 2644 2645 2646 2647
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
2648
		if (pci_vfs_assigned(pdev)) {
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

2680
	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2681 2682 2683
		err = -EPERM;
		goto out;
	}
2684 2685 2686
	if (!num_vfs)
		goto out;

2687 2688 2689 2690 2691 2692
	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
			 old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
	} else
		adapter->vfs_allocated_count = num_vfs;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

2706 2707 2708 2709 2710 2711
	/* only call pci_enable_sriov() if no VFs are allocated already */
	if (!old_vfs) {
		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
		if (err)
			goto err_out;
	}
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
2730
/**
C
Carolyn Wyborny 已提交
2731 2732
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
2733
 **/
C
Carolyn Wyborny 已提交
2734 2735 2736 2737 2738 2739
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2740
/**
2741 2742
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
2743
 *
2744 2745 2746 2747
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
2748
 **/
2749
static void igb_remove(struct pci_dev *pdev)
2750 2751 2752
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2753
	struct e1000_hw *hw = &adapter->hw;
2754

Y
Yan, Zheng 已提交
2755
	pm_runtime_get_noresume(&pdev->dev);
2756 2757 2758
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2759
	igb_remove_i2c(adapter);
2760
	igb_ptp_stop(adapter);
2761
	/* The watchdog timer may be rescheduled, so explicitly
2762 2763
	 * disable watchdog from being rescheduled.
	 */
2764 2765 2766 2767
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2768 2769
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2770

2771
#ifdef CONFIG_IGB_DCA
2772
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2773 2774
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2775
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2776
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2777 2778 2779
	}
#endif

2780
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2781 2782
	 * would have already happened in close and is redundant.
	 */
2783 2784 2785 2786
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2787
	igb_clear_interrupt_scheme(adapter);
2788

2789
#ifdef CONFIG_PCI_IOV
2790
	igb_disable_sriov(pdev);
2791
#endif
2792

2793 2794 2795
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2796
	pci_release_selected_regions(pdev,
2797
				     pci_select_bars(pdev, IORESOURCE_MEM));
2798

2799
	kfree(adapter->shadow_vfta);
2800 2801
	free_netdev(netdev);

2802
	pci_disable_pcie_error_reporting(pdev);
2803

2804 2805 2806
	pci_disable_device(pdev);
}

2807
/**
2808 2809
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
2810
 *
2811 2812 2813 2814
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
2815
 **/
2816
static void igb_probe_vfs(struct igb_adapter *adapter)
2817 2818 2819
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2820
	struct e1000_hw *hw = &adapter->hw;
2821

2822 2823 2824 2825
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2826
	pci_sriov_set_totalvfs(pdev, 7);
2827
	igb_pci_enable_sriov(pdev, max_vfs);
2828

2829 2830 2831
#endif /* CONFIG_PCI_IOV */
}

2832
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2833 2834
{
	struct e1000_hw *hw = &adapter->hw;
2835
	u32 max_rss_queues;
2836

2837
	/* Determine the maximum number of RSS queues supported. */
2838
	switch (hw->mac.type) {
2839 2840 2841 2842
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2843
	case e1000_i210:
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
2860
	case e1000_i354:
2861 2862
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2863
		break;
2864 2865 2866 2867 2868 2869 2870
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2871
	case e1000_i211:
2872
		/* Device supports enough interrupts without queue pairing. */
2873
		break;
2874
	case e1000_82576:
2875
		/* If VFs are going to be allocated with RSS queues then we
2876 2877 2878 2879 2880 2881 2882 2883 2884
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
2885
	case e1000_i354:
2886
	case e1000_i210:
2887
	default:
2888
		/* If rss_queues > half of max_rss_queues, pair the queues in
2889 2890 2891 2892
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2893 2894
		break;
	}
2895 2896 2897
}

/**
2898 2899
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
2900
 *
2901 2902 2903
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
2936
			max_vfs = adapter->vfs_allocated_count = 7;
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2949

2950
	/* Setup and initialize a copy of the hw vlan table array */
2951 2952
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2953

2954
	/* This call may decrease the number of queues */
2955
	if (igb_init_interrupt_scheme(adapter, true)) {
2956 2957 2958 2959
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2960 2961
	igb_probe_vfs(adapter);

2962 2963 2964
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2965
	if (hw->mac.type >= e1000_i350)
2966 2967
		adapter->flags &= ~IGB_FLAG_DMAC;

2968 2969 2970 2971 2972
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
2973 2974
 *  igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
2975
 *
2976
 *  Returns 0 on success, negative value on failure
2977
 *
2978 2979 2980 2981 2982
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
2983
 **/
Y
Yan, Zheng 已提交
2984
static int __igb_open(struct net_device *netdev, bool resuming)
2985 2986 2987
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2988
	struct pci_dev *pdev = adapter->pdev;
2989 2990 2991 2992
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2993 2994
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2995
		return -EBUSY;
Y
Yan, Zheng 已提交
2996 2997 2998 2999
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
3000

3001 3002
	netif_carrier_off(netdev);

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3013
	igb_power_up_link(adapter);
3014 3015 3016 3017

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3018 3019
	 * clean_rx handler before we do so.
	 */
3020 3021 3022 3023 3024 3025
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

3037 3038 3039
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

3040 3041
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
3042 3043 3044

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
3045 3046 3047

	igb_irq_enable(adapter);

3048 3049 3050 3051 3052 3053 3054
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

3055 3056
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
3057 3058 3059
	if (!resuming)
		pm_runtime_put(&pdev->dev);

3060 3061 3062
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
3063 3064 3065

	return 0;

3066 3067
err_set_queues:
	igb_free_irq(adapter);
3068 3069
err_req_irq:
	igb_release_hw_control(adapter);
3070
	igb_power_down_link(adapter);
3071 3072 3073 3074 3075
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
3076 3077
	if (!resuming)
		pm_runtime_put(&pdev->dev);
3078 3079 3080 3081

	return err;
}

Y
Yan, Zheng 已提交
3082 3083 3084 3085 3086
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

3087
/**
3088 3089
 *  igb_close - Disables a network interface
 *  @netdev: network interface device structure
3090
 *
3091
 *  Returns 0, this is not allowed to fail
3092
 *
3093 3094 3095 3096
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
3097
 **/
Y
Yan, Zheng 已提交
3098
static int __igb_close(struct net_device *netdev, bool suspending)
3099 3100
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
3101
	struct pci_dev *pdev = adapter->pdev;
3102 3103 3104

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
3105 3106 3107 3108
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
3109 3110 3111 3112 3113
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
3114 3115
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
3116 3117 3118
	return 0;
}

Y
Yan, Zheng 已提交
3119 3120 3121 3122 3123
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

3124
/**
3125 3126
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3127
 *
3128
 *  Return 0 on success, negative on failure
3129
 **/
3130
int igb_setup_tx_resources(struct igb_ring *tx_ring)
3131
{
3132
	struct device *dev = tx_ring->dev;
3133 3134
	int size;

3135
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3136 3137

	tx_ring->tx_buffer_info = vzalloc(size);
3138
	if (!tx_ring->tx_buffer_info)
3139 3140 3141
		goto err;

	/* round up to nearest 4K */
3142
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3143 3144
	tx_ring->size = ALIGN(tx_ring->size, 4096);

3145 3146
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
3147 3148 3149 3150 3151
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
3152

3153 3154 3155
	return 0;

err:
3156
	vfree(tx_ring->tx_buffer_info);
3157 3158
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3159 3160 3161 3162
	return -ENOMEM;
}

/**
3163 3164 3165
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3166
 *
3167
 *  Return 0 on success, negative on failure
3168 3169 3170
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
3171
	struct pci_dev *pdev = adapter->pdev;
3172 3173 3174
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
3175
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3176
		if (err) {
3177
			dev_err(&pdev->dev,
3178 3179
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3180
				igb_free_tx_resources(adapter->tx_ring[i]);
3181 3182 3183 3184 3185 3186 3187 3188
			break;
		}
	}

	return err;
}

/**
3189 3190
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
3191
 **/
3192
void igb_setup_tctl(struct igb_adapter *adapter)
3193 3194 3195 3196
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

3197 3198
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

3214
/**
3215 3216 3217
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
3218
 *
3219
 *  Configure a transmit ring after a reset.
3220
 **/
3221 3222
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3223 3224
{
	struct e1000_hw *hw = &adapter->hw;
3225
	u32 txdctl = 0;
3226 3227 3228 3229
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
3230
	wr32(E1000_TXDCTL(reg_idx), 0);
3231 3232 3233 3234
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
3235
	     ring->count * sizeof(union e1000_adv_tx_desc));
3236
	wr32(E1000_TDBAL(reg_idx),
3237
	     tdba & 0x00000000ffffffffULL);
3238 3239
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

3240
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3241
	wr32(E1000_TDH(reg_idx), 0);
3242
	writel(0, ring->tail);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
3253 3254
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
3255
 *
3256
 *  Configure the Tx unit of the MAC after a reset.
3257 3258 3259 3260 3261 3262
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3263
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3264 3265
}

3266
/**
3267 3268
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3269
 *
3270
 *  Returns 0 on success, negative on failure
3271
 **/
3272
int igb_setup_rx_resources(struct igb_ring *rx_ring)
3273
{
3274
	struct device *dev = rx_ring->dev;
3275
	int size;
3276

3277
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3278 3279

	rx_ring->rx_buffer_info = vzalloc(size);
3280
	if (!rx_ring->rx_buffer_info)
3281 3282 3283
		goto err;

	/* Round up to nearest 4K */
3284
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3285 3286
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3287 3288
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3289 3290 3291
	if (!rx_ring->desc)
		goto err;

3292
	rx_ring->next_to_alloc = 0;
3293 3294 3295 3296 3297 3298
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3299 3300
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3301
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3302 3303 3304 3305
	return -ENOMEM;
}

/**
3306 3307 3308
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
3309
 *
3310
 *  Return 0 on success, negative on failure
3311 3312 3313
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3314
	struct pci_dev *pdev = adapter->pdev;
3315 3316 3317
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3318
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3319
		if (err) {
3320
			dev_err(&pdev->dev,
3321 3322
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3323
				igb_free_rx_resources(adapter->rx_ring[i]);
3324 3325 3326 3327 3328 3329 3330
			break;
		}
	}

	return err;
}

3331
/**
3332 3333
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
3334 3335 3336 3337 3338
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3339
	u32 j, num_rx_queues;
3340 3341 3342 3343
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3344 3345

	/* Fill out hash function seeds */
3346 3347
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3348

3349
	num_rx_queues = adapter->rss_queues;
3350

3351 3352 3353
	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
3354
		if (adapter->vfs_allocated_count)
3355
			num_rx_queues = 2;
3356 3357 3358
		break;
	default:
		break;
3359 3360
	}

3361 3362 3363 3364
	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
3365
	}
3366
	igb_write_rss_indir_tbl(adapter);
3367

3368
	/* Disable raw packet checksumming so that RSS hash is placed in
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3381

3382 3383 3384
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3385 3386 3387 3388 3389
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3390

3391 3392 3393 3394 3395
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3396 3397
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
3398 3399
	 * if we are only using one queue
	 */
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3410
		if (adapter->rss_queues > 1)
3411
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3412
		else
3413
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3414
	} else {
3415 3416
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3417 3418 3419 3420 3421 3422
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3423
/**
3424 3425
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
3426
 **/
3427
void igb_setup_rctl(struct igb_adapter *adapter)
3428 3429 3430 3431 3432 3433 3434
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3435
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3436

3437
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3438
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3439

3440
	/* enable stripping of CRC. It's unlikely this will break BMC
3441 3442
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3443
	 */
3444
	rctl |= E1000_RCTL_SECRC;
3445

3446
	/* disable store bad packets and clear size bits. */
3447
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3448

A
Alexander Duyck 已提交
3449 3450
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3451

3452 3453
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3464 3465 3466
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
3467 3468
		 * in e1000e_set_rx_mode
		 */
B
Ben Greear 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3481 3482 3483
	wr32(E1000_RCTL, rctl);
}

3484 3485 3486 3487 3488 3489 3490
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
3491 3492
	 * increase the size to support vlan tags
	 */
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3505
/**
3506 3507
 *  igb_rlpml_set - set maximum receive packet size
 *  @adapter: board private structure
3508
 *
3509
 *  Configure maximum receivable packet size.
3510 3511 3512
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3513
	u32 max_frame_size = adapter->max_frame_size;
3514 3515 3516 3517 3518
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3519
		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3520 3521 3522 3523 3524
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3525
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3526 3527 3528 3529 3530
	}

	wr32(E1000_RLPML, max_frame_size);
}

3531 3532
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3533 3534 3535 3536
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

3537
	/* This register exists only on 82576 and newer so if we are older then
3538 3539 3540 3541 3542 3543
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3544
	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3545
	if (aupe)
3546
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3547 3548
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3549 3550 3551 3552

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3553
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3554
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3555
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3556 3557 3558
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
3559
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3560 3561 3562 3563

	wr32(E1000_VMOLR(vfn), vmolr);
}

3564
/**
3565 3566 3567
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
3568
 *
3569
 *  Configure the Rx unit of the MAC after a reset.
3570
 **/
3571
void igb_configure_rx_ring(struct igb_adapter *adapter,
3572
			   struct igb_ring *ring)
3573 3574 3575 3576
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3577
	u32 srrctl = 0, rxdctl = 0;
3578 3579

	/* disable the queue */
3580
	wr32(E1000_RXDCTL(reg_idx), 0);
3581 3582 3583 3584 3585 3586

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
3587
	     ring->count * sizeof(union e1000_adv_rx_desc));
3588 3589

	/* initialize head and tail */
3590
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3591
	wr32(E1000_RDH(reg_idx), 0);
3592
	writel(0, ring->tail);
3593

3594
	/* set descriptor configuration */
3595
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3596
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3597
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3598
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3599
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3600 3601 3602
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3603 3604 3605

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3606
	/* set filtering for VMDQ pools */
3607
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3608

3609 3610 3611
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3612 3613 3614

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3615 3616 3617
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3618
/**
3619 3620
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
3621
 *
3622
 *  Configure the Rx unit of the MAC after a reset.
3623 3624 3625
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3626
	int i;
3627

3628 3629 3630
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3631 3632
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3633
			 adapter->vfs_allocated_count);
3634

3635
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3636 3637
	 * the Base and Length of the Rx Descriptor Ring
	 */
3638 3639
	for (i = 0; i < adapter->num_rx_queues; i++)
		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3640 3641 3642
}

/**
3643 3644
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
3645
 *
3646
 *  Free all transmit software resources
3647
 **/
3648
void igb_free_tx_resources(struct igb_ring *tx_ring)
3649
{
3650
	igb_clean_tx_ring(tx_ring);
3651

3652 3653
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3654

3655 3656 3657 3658
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3659 3660
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3661 3662 3663 3664 3665

	tx_ring->desc = NULL;
}

/**
3666 3667
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
3668
 *
3669
 *  Free all transmit software resources
3670 3671 3672 3673 3674 3675
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3676
		igb_free_tx_resources(adapter->tx_ring[i]);
3677 3678
}

3679 3680 3681 3682 3683
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3684
		if (dma_unmap_len(tx_buffer, len))
3685
			dma_unmap_single(ring->dev,
3686 3687
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3688
					 DMA_TO_DEVICE);
3689
	} else if (dma_unmap_len(tx_buffer, len)) {
3690
		dma_unmap_page(ring->dev,
3691 3692
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3693 3694 3695 3696
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3697
	dma_unmap_len_set(tx_buffer, len, 0);
3698
	/* buffer_info must be completely set up in the transmit path */
3699 3700 3701
}

/**
3702 3703
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
3704
 **/
3705
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3706
{
3707
	struct igb_tx_buffer *buffer_info;
3708
	unsigned long size;
3709
	u16 i;
3710

3711
	if (!tx_ring->tx_buffer_info)
3712 3713 3714 3715
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3716
		buffer_info = &tx_ring->tx_buffer_info[i];
3717
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3718 3719
	}

3720 3721
	netdev_tx_reset_queue(txring_txq(tx_ring));

3722 3723
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3724 3725 3726 3727 3728 3729 3730 3731 3732

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
3733 3734
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
3735 3736 3737 3738 3739 3740
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3741
		igb_clean_tx_ring(adapter->tx_ring[i]);
3742 3743 3744
}

/**
3745 3746
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
3747
 *
3748
 *  Free all receive software resources
3749
 **/
3750
void igb_free_rx_resources(struct igb_ring *rx_ring)
3751
{
3752
	igb_clean_rx_ring(rx_ring);
3753

3754 3755
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3756

3757 3758 3759 3760
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3761 3762
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3763 3764 3765 3766 3767

	rx_ring->desc = NULL;
}

/**
3768 3769
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
3770
 *
3771
 *  Free all receive software resources
3772 3773 3774 3775 3776 3777
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3778
		igb_free_rx_resources(adapter->rx_ring[i]);
3779 3780 3781
}

/**
3782 3783
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
3784
 **/
3785
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3786 3787
{
	unsigned long size;
3788
	u16 i;
3789

3790 3791 3792 3793
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3794
	if (!rx_ring->rx_buffer_info)
3795
		return;
3796

3797 3798
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3799
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3800

3801 3802 3803 3804 3805 3806 3807 3808 3809
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3810
		buffer_info->page = NULL;
3811 3812
	}

3813 3814
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3815 3816 3817 3818

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3819
	rx_ring->next_to_alloc = 0;
3820 3821 3822 3823 3824
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
3825 3826
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
3827 3828 3829 3830 3831 3832
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3833
		igb_clean_rx_ring(adapter->rx_ring[i]);
3834 3835 3836
}

/**
3837 3838 3839
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
3840
 *
3841
 *  Returns 0 on success, negative on failure
3842 3843 3844 3845
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3846
	struct e1000_hw *hw = &adapter->hw;
3847 3848 3849 3850 3851 3852
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3853
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3854

3855 3856
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3857
			 adapter->vfs_allocated_count);
3858

3859 3860 3861 3862
	return 0;
}

/**
3863 3864
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
3865
 *
3866 3867 3868 3869
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
3870
 **/
3871
static int igb_write_mc_addr_list(struct net_device *netdev)
3872 3873 3874
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3875
	struct netdev_hw_addr *ha;
3876
	u8  *mta_list;
3877 3878
	int i;

3879
	if (netdev_mc_empty(netdev)) {
3880 3881 3882 3883 3884
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3885

3886
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3887 3888
	if (!mta_list)
		return -ENOMEM;
3889

3890
	/* The shared function expects a packed array of only addresses. */
3891
	i = 0;
3892 3893
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3894 3895 3896 3897

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3898
	return netdev_mc_count(netdev);
3899 3900 3901
}

/**
3902 3903
 *  igb_write_uc_addr_list - write unicast addresses to RAR table
 *  @netdev: network interface device structure
3904
 *
3905 3906 3907 3908
 *  Writes unicast address list to the RAR table.
 *  Returns: -ENOMEM on failure/insufficient address space
 *           0 on no addresses written
 *           X on writing X addresses to the RAR table
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3919
	if (netdev_uc_count(netdev) > rar_entries)
3920
		return -ENOMEM;
3921

3922
	if (!netdev_uc_empty(netdev) && rar_entries) {
3923
		struct netdev_hw_addr *ha;
3924 3925

		netdev_for_each_uc_addr(ha, netdev) {
3926 3927
			if (!rar_entries)
				break;
3928
			igb_rar_set_qsel(adapter, ha->addr,
3929 3930
					 rar_entries--,
					 vfn);
3931
			count++;
3932 3933 3934 3935 3936 3937 3938 3939 3940
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3941 3942 3943 3944
	return count;
}

/**
3945 3946
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
3947
 *
3948 3949 3950 3951
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
3968
		/* retain VLAN HW filtering if in VT mode */
3969
		if (adapter->vfs_allocated_count)
3970
			rctl |= E1000_RCTL_VFE;
3971 3972 3973 3974 3975 3976 3977
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
3978
			/* Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3979
			 * then we should just turn on promiscuous mode so
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
3990
		/* Write addresses to available RAR registers, if there is not
3991
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3992
		 * unicast promiscuous mode
3993 3994 3995 3996 3997 3998 3999
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
4000
	}
4001
	wr32(E1000_RCTL, rctl);
4002

4003
	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4004 4005 4006 4007
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
4008
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4009
		return;
4010

4011
	vmolr |= rd32(E1000_VMOLR(vfn)) &
4012
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4013
	wr32(E1000_VMOLR(vfn), vmolr);
4014
	igb_restore_vf_multicasts(adapter);
4015 4016
}

G
Greg Rose 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

4056
/* Need to wait a few seconds after link up to get diagnostic information from
4057 4058
 * the phy
 */
4059 4060 4061
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
4062
	igb_get_phy_info(&adapter->hw);
4063 4064
}

A
Alexander Duyck 已提交
4065
/**
4066 4067
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
A
Alexander Duyck 已提交
4068
 **/
4069
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
4081 4082
		if (!hw->mac.get_link_status)
			return true;
A
Alexander Duyck 已提交
4083
	case e1000_media_type_internal_serdes:
4084 4085
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
A
Alexander Duyck 已提交
4086 4087 4088 4089 4090 4091
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

A
Alexander Duyck 已提交
4103 4104 4105
	return link_active;
}

4106 4107 4108 4109 4110
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

4111
	/* check for thermal sensor event on i350 copper only */
4112 4113 4114 4115 4116
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
4117
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4118 4119 4120 4121 4122 4123
			ret = !!(thstat & event);
	}

	return ret;
}

4124
/**
4125 4126
 *  igb_watchdog - Timer Call-back
 *  @data: pointer to adapter cast into an unsigned long
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
4138 4139
						   struct igb_adapter,
						   watchdog_task);
4140
	struct e1000_hw *hw = &adapter->hw;
4141
	struct e1000_phy_info *phy = &hw->phy;
4142
	struct net_device *netdev = adapter->netdev;
4143
	u32 link;
4144
	int i;
4145
	u32 connsw;
4146

A
Alexander Duyck 已提交
4147
	link = igb_has_link(adapter);
4148 4149 4150 4151 4152 4153 4154 4155

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

4156 4157 4158 4159 4160 4161 4162 4163
	/* Force link down if we have fiber to swap to */
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (hw->phy.media_type == e1000_media_type_copper) {
			connsw = rd32(E1000_CONNSW);
			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
				link = 0;
		}
	}
4164
	if (link) {
4165 4166 4167 4168 4169 4170
		/* Perform a reset if the media type changed. */
		if (hw->dev_spec._82575.media_changed) {
			hw->dev_spec._82575.media_changed = false;
			adapter->flags |= IGB_FLAG_MEDIA_RESET;
			igb_reset(adapter);
		}
Y
Yan, Zheng 已提交
4171 4172 4173
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4174 4175
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
4176
			hw->mac.ops.get_speed_and_duplex(hw,
4177 4178
							 &adapter->link_speed,
							 &adapter->link_duplex);
4179 4180

			ctrl = rd32(E1000_CTRL);
4181
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
4182 4183
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
4184 4185 4186
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
4187 4188 4189 4190 4191
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4192

4193 4194 4195 4196 4197 4198 4199 4200 4201
			/* disable EEE if enabled */
			if ((adapter->flags & IGB_FLAG_EEE) &&
				(adapter->link_duplex == HALF_DUPLEX)) {
				dev_info(&adapter->pdev->dev,
				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
				adapter->hw.dev_spec._82575.eee_disable = true;
				adapter->flags &= ~IGB_FLAG_EEE;
			}

4202 4203 4204 4205 4206
			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

4207
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4208 4209 4210 4211 4212
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
4213
			}
4214

4215
			/* adjust timeout factor according to speed/duplex */
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

4228
			igb_ping_all_vfs(adapter);
4229
			igb_check_vf_rate_limit(adapter);
4230

4231
			/* link state has changed, schedule phy info update */
4232 4233 4234 4235 4236 4237 4238 4239
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4240 4241

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
4242 4243 4244 4245
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
4246
			}
4247

4248 4249 4250
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
4251
			netif_carrier_off(netdev);
4252

4253 4254
			igb_ping_all_vfs(adapter);

4255
			/* link state has changed, schedule phy info update */
4256 4257 4258
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
4259

4260 4261 4262 4263 4264 4265 4266 4267 4268
			/* link is down, time to check for alternate media */
			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
				igb_check_swap_media(adapter);
				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
					schedule_work(&adapter->reset_task);
					/* return immediately */
					return;
				}
			}
Y
Yan, Zheng 已提交
4269 4270
			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

		/* also check for alternate media here */
		} else if (!netif_carrier_ok(netdev) &&
			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
			igb_check_swap_media(adapter);
			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
				schedule_work(&adapter->reset_task);
				/* return immediately */
				return;
			}
4281 4282 4283
		}
	}

E
Eric Dumazet 已提交
4284 4285 4286
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
4287

4288
	for (i = 0; i < adapter->num_tx_queues; i++) {
4289
		struct igb_ring *tx_ring = adapter->tx_ring[i];
4290
		if (!netif_carrier_ok(netdev)) {
4291 4292 4293
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4294 4295
			 * (Do the reset outside of interrupt context).
			 */
4296 4297 4298 4299 4300 4301
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
4302 4303
		}

4304
		/* Force detection of hung controller every watchdog period */
4305
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4306
	}
4307

4308
	/* Cause software interrupt to ensure Rx ring is cleaned */
4309
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4310
		u32 eics = 0;
4311 4312
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4313 4314 4315 4316
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4317

G
Greg Rose 已提交
4318
	igb_spoof_check(adapter);
4319
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4320

4321
	/* Reset the timer */
4322 4323 4324 4325 4326 4327 4328 4329
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
4330 4331 4332 4333 4334 4335 4336 4337 4338
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4339
/**
4340 4341
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
4342
 *
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
4354
 **/
4355
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4356
{
4357
	int new_val = q_vector->itr_val;
4358
	int avg_wire_size = 0;
4359
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4360
	unsigned int packets;
4361

4362 4363 4364 4365
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4366
		new_val = IGB_4K_ITR;
4367
		goto set_itr_val;
4368
	}
4369

4370 4371 4372
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4373

4374 4375 4376 4377
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4378 4379 4380 4381

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4382

4383 4384 4385 4386 4387
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4388

4389 4390 4391 4392 4393
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4394

4395 4396 4397 4398 4399
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4400

4401
set_itr_val:
4402 4403 4404
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4405
	}
4406
clear_counts:
4407 4408 4409 4410
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4411 4412 4413
}

/**
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  this functionality is controlled by the InterruptThrottleRate module
 *  parameter (see igb_param.c)
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
4429
 **/
4430 4431
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4432
{
4433 4434 4435
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4436

4437
	/* no packets, exit with status unchanged */
4438
	if (packets == 0)
4439
		return;
4440

4441
	switch (itrval) {
4442 4443 4444
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4445
			itrval = bulk_latency;
4446
		else if ((packets < 5) && (bytes > 512))
4447
			itrval = low_latency;
4448 4449 4450 4451 4452
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4453
				itrval = bulk_latency;
4454
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4455
				itrval = bulk_latency;
4456
			} else if ((packets > 35)) {
4457
				itrval = lowest_latency;
4458 4459
			}
		} else if (bytes/packets > 2000) {
4460
			itrval = bulk_latency;
4461
		} else if (packets <= 2 && bytes < 512) {
4462
			itrval = lowest_latency;
4463 4464 4465 4466 4467
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4468
				itrval = low_latency;
4469
		} else if (bytes < 1500) {
4470
			itrval = low_latency;
4471 4472 4473 4474
		}
		break;
	}

4475 4476 4477 4478 4479 4480
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4481 4482
}

4483
static void igb_set_itr(struct igb_q_vector *q_vector)
4484
{
4485
	struct igb_adapter *adapter = q_vector->adapter;
4486
	u32 new_itr = q_vector->itr_val;
4487
	u8 current_itr = 0;
4488 4489 4490 4491

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4492
		new_itr = IGB_4K_ITR;
4493 4494 4495
		goto set_itr_now;
	}

4496 4497
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4498

4499
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4500

4501
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4502 4503 4504
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4505 4506
		current_itr = low_latency;

4507 4508 4509
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4510
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4511 4512
		break;
	case low_latency:
4513
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4514 4515
		break;
	case bulk_latency:
4516
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4517 4518 4519 4520 4521 4522
		break;
	default:
		break;
	}

set_itr_now:
4523
	if (new_itr != q_vector->itr_val) {
4524 4525
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
4526 4527
		 * increasing
		 */
4528
		new_itr = new_itr > q_vector->itr_val ?
4529 4530 4531
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
4532 4533 4534 4535 4536 4537
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4538 4539
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4540 4541 4542
	}
}

4543 4544
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4558
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4559 4560 4561 4562 4563 4564 4565 4566
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4567 4568 4569
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4570
{
4571
	struct sk_buff *skb = first->skb;
4572 4573 4574
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4575 4576 4577
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4578 4579
	if (!skb_is_gso(skb))
		return 0;
4580 4581

	if (skb_header_cloned(skb)) {
4582
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4583 4584 4585 4586
		if (err)
			return err;
	}

4587 4588
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4589

4590
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4591 4592 4593 4594 4595 4596 4597
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4598
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4599 4600 4601
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4602
	} else if (skb_is_gso_v6(skb)) {
4603 4604 4605 4606
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4607 4608
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4609 4610
	}

4611
	/* compute header lengths */
4612 4613
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4614

4615 4616 4617 4618
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4619
	/* MSS L4LEN IDX */
4620 4621
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4622

4623 4624 4625
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4626
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4627

4628
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4629

4630
	return 1;
4631 4632
}

4633
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4634
{
4635
	struct sk_buff *skb = first->skb;
4636 4637 4638
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4639

4640
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4641 4642
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4643 4644
	} else {
		u8 l4_hdr = 0;
4645
		switch (first->protocol) {
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4658 4659
					 "partial checksum but proto=%x!\n",
					 first->protocol);
4660
			}
4661 4662
			break;
		}
4663

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
4682 4683
					 "partial checksum but l4 proto=%x!\n",
					 l4_hdr);
4684
			}
4685
			break;
4686
		}
4687 4688 4689

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4690
	}
4691

4692
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694

4695
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696 4697
}

4698 4699 4700 4701 4702 4703
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4704 4705
{
	/* set type for advanced descriptor with frame checksum insertion */
4706 4707 4708
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4709 4710

	/* set HW vlan bit if vlan is present */
4711 4712 4713 4714 4715 4716
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4717 4718

	/* set timestamp bit if present */
4719 4720
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4721

4722 4723
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4724 4725 4726 4727

	return cmd_type;
}

4728 4729 4730
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4731 4732 4733
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4734 4735
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4736 4737 4738
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4739 4740 4741
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4742

4743 4744 4745 4746
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4747

4748
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4749 4750
}

4751 4752
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4753
		       const u8 hdr_len)
4754
{
4755
	struct sk_buff *skb = first->skb;
4756
	struct igb_tx_buffer *tx_buffer;
4757
	union e1000_adv_tx_desc *tx_desc;
4758
	struct skb_frag_struct *frag;
4759
	dma_addr_t dma;
4760
	unsigned int data_len, size;
4761
	u32 tx_flags = first->tx_flags;
4762
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4763 4764 4765 4766
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4767 4768 4769 4770
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4771 4772

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4773

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4785 4786 4787

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4788
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4789 4790 4791 4792 4793 4794 4795

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4796
			tx_desc->read.olinfo_status = 0;
4797 4798 4799 4800 4801 4802 4803 4804 4805

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4806

4807
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4808

4809
		i++;
4810 4811 4812
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4813
			i = 0;
4814
		}
4815
		tx_desc->read.olinfo_status = 0;
4816

E
Eric Dumazet 已提交
4817
		size = skb_frag_size(frag);
4818 4819 4820
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4821
				       size, DMA_TO_DEVICE);
4822

4823
		tx_buffer = &tx_ring->tx_buffer_info[i];
4824 4825
	}

4826
	/* write last descriptor with RS and EOP bits */
4827 4828
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4829

4830 4831
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4832 4833 4834
	/* set the timestamp */
	first->time_stamp = jiffies;

4835
	/* Force memory writes to complete before letting h/w know there
4836 4837 4838 4839 4840 4841 4842 4843
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4844
	/* set next_to_watch value indicating a packet is present */
4845
	first->next_to_watch = tx_desc;
4846

4847 4848 4849
	i++;
	if (i == tx_ring->count)
		i = 0;
4850

4851
	tx_ring->next_to_use = i;
4852

4853
	writel(i, tx_ring->tail);
4854

4855
	/* we need this if more than one processor can write to our tail
4856 4857
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4858 4859 4860 4861 4862 4863 4864 4865 4866
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4867 4868 4869
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4870
			break;
4871 4872
		if (i == 0)
			i = tx_ring->count;
4873 4874 4875
		i--;
	}

4876 4877 4878
	tx_ring->next_to_use = i;
}

4879
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4880
{
4881 4882
	struct net_device *netdev = tx_ring->netdev;

4883 4884
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4885 4886
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
4887 4888
	 * but since that doesn't exist yet, just open code it.
	 */
4889 4890 4891
	smp_mb();

	/* We need to check again in a case another CPU has just
4892 4893
	 * made room available.
	 */
4894
	if (igb_desc_unused(tx_ring) < size)
4895 4896 4897
		return -EBUSY;

	/* A reprieve! */
4898
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4899 4900 4901 4902 4903

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4904 4905 4906
	return 0;
}

4907
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4908
{
4909
	if (igb_desc_unused(tx_ring) >= size)
4910
		return 0;
4911
	return __igb_maybe_stop_tx(tx_ring, size);
4912 4913
}

4914 4915
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4916
{
4917
	struct igb_tx_buffer *first;
4918
	int tso;
N
Nick Nunley 已提交
4919
	u32 tx_flags = 0;
4920
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4921
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4922
	u8 hdr_len = 0;
4923

4924 4925
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4926 4927
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4939 4940 4941
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4942

4943 4944 4945 4946 4947 4948
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4949 4950
	skb_tx_timestamp(skb);

4951 4952
	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962
		if (!(adapter->ptp_tx_skb)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		}
4963
	}
4964

4965
	if (vlan_tx_tag_present(skb)) {
4966 4967 4968 4969
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4970 4971 4972
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4973

4974 4975
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4976
		goto out_drop;
4977 4978
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4979

4980
	igb_tx_map(tx_ring, first, hdr_len);
4981 4982

	/* Make sure there is space in the ring for the next send. */
4983
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4984

4985
	return NETDEV_TX_OK;
4986 4987

out_drop:
4988 4989
	igb_unmap_and_free_tx_resource(tx_ring, first);

4990
	return NETDEV_TX_OK;
4991 4992
}

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

5004 5005
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
5006 5007
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

5019
	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5020 5021
	 * in order to meet this minimum size requirement.
	 */
5022 5023
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
5024 5025
			return NETDEV_TX_OK;
		skb->len = 17;
5026
		skb_set_tail_pointer(skb, 17);
5027
	}
5028

5029
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5030 5031 5032
}

/**
5033 5034
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
5035 5036 5037 5038 5039 5040 5041 5042
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
5043

5044
	if (hw->mac.type >= e1000_82580)
5045 5046
		hw->dev_spec._82575.global_device_reset = true;

5047
	schedule_work(&adapter->reset_task);
5048 5049
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
5050 5051 5052 5053 5054 5055 5056
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

5057 5058
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
5059 5060 5061 5062
	igb_reinit_locked(adapter);
}

/**
5063 5064 5065
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
5066
 **/
E
Eric Dumazet 已提交
5067
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5068
						struct rtnl_link_stats64 *stats)
5069
{
E
Eric Dumazet 已提交
5070 5071 5072 5073 5074 5075 5076 5077
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
5078 5079 5080
}

/**
5081 5082 5083
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
5084
 *
5085
 *  Returns 0 on success, negative on failure
5086 5087 5088 5089
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
5090
	struct pci_dev *pdev = adapter->pdev;
5091
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5092

5093
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5094
		dev_err(&pdev->dev, "Invalid MTU setting\n");
5095 5096 5097
		return -EINVAL;
	}

5098
#define MAX_STD_JUMBO_FRAME_SIZE 9238
5099
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5100
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5101 5102 5103
		return -EINVAL;
	}

5104 5105 5106 5107
	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

5108 5109
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
5110

5111 5112
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
5113

5114 5115
	if (netif_running(netdev))
		igb_down(adapter);
5116

5117
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
5132 5133
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
5134
 **/
E
Eric Dumazet 已提交
5135 5136
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
5137 5138 5139
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
5140
	u32 reg, mpc;
5141
	u16 phy_tmp;
5142 5143
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
5144 5145
	unsigned int start;
	u64 _bytes, _packets;
5146 5147 5148

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

5149
	/* Prevent stats update while adapter is being reset, or if the pci
5150 5151 5152 5153 5154 5155 5156
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

5157 5158
	bytes = 0;
	packets = 0;
5159 5160

	rcu_read_lock();
5161
	for (i = 0; i < adapter->num_rx_queues; i++) {
5162
		u32 rqdpc = rd32(E1000_RQDPC(i));
5163
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
5164

5165 5166 5167 5168
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
5169 5170

		do {
5171
			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
E
Eric Dumazet 已提交
5172 5173
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
5174
		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
E
Eric Dumazet 已提交
5175 5176
		bytes += _bytes;
		packets += _packets;
5177 5178
	}

5179 5180
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
5181 5182 5183 5184

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
5185
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
5186
		do {
5187
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
E
Eric Dumazet 已提交
5188 5189
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
5190
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
E
Eric Dumazet 已提交
5191 5192
		bytes += _bytes;
		packets += _packets;
5193
	}
5194 5195
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
5196
	rcu_read_unlock();
5197 5198

	/* read stats registers */
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

5216 5217 5218
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
5233
	adapter->stats.rnbc += rd32(E1000_RNBC);
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

5251 5252
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
5253 5254

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5255 5256 5257 5258
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5259 5260 5261 5262 5263

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
5264 5265
	}

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
5280 5281
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
5282 5283 5284 5285

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
5286 5287
	 * our own version based on RUC and ROC
	 */
5288
	net_stats->rx_errors = adapter->stats.rxerrc +
5289 5290 5291
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
5292 5293 5294 5295 5296
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
5297 5298

	/* Tx Errors */
5299 5300 5301 5302 5303
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5304 5305 5306 5307 5308 5309

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
5310
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5311 5312 5313 5314 5315 5316 5317 5318 5319
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5320 5321 5322 5323 5324 5325 5326 5327 5328

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5329 5330 5331 5332
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5333
	struct igb_adapter *adapter = data;
5334
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5335 5336
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5337

5338 5339 5340
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5341
	if (icr & E1000_ICR_DOUTSYNC) {
5342 5343
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5344 5345
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
5346 5347
		 * see if it is really a spoof event.
		 */
G
Greg Rose 已提交
5348
		igb_check_wvbr(adapter);
5349
	}
5350

5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5373
	wr32(E1000_EIMS, adapter->eims_other);
5374 5375 5376 5377

	return IRQ_HANDLED;
}

5378
static void igb_write_itr(struct igb_q_vector *q_vector)
5379
{
5380
	struct igb_adapter *adapter = q_vector->adapter;
5381
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5382

5383 5384
	if (!q_vector->set_itr)
		return;
5385

5386 5387
	if (!itr_val)
		itr_val = 0x4;
5388

5389 5390
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5391
	else
5392
		itr_val |= E1000_EITR_CNT_IGNR;
5393

5394 5395
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5396 5397
}

5398
static irqreturn_t igb_msix_ring(int irq, void *data)
5399
{
5400
	struct igb_q_vector *q_vector = data;
5401

5402 5403
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5404

5405
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5406

5407
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5408 5409
}

5410
#ifdef CONFIG_IGB_DCA
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

5421
	/* We can enable relaxed ordering for reads, but not writes when
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

5442
	/* We can enable relaxed ordering for reads, but not writes when
5443 5444 5445 5446 5447 5448 5449 5450 5451
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5452
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5453
{
5454
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5455 5456
	int cpu = get_cpu();

5457 5458 5459
	if (q_vector->cpu == cpu)
		goto out_no_update;

5460 5461 5462 5463 5464 5465
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5466 5467
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5468 5469 5470 5471 5472
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5473
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5474 5475
	int i;

5476
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5477 5478
		return;

5479 5480 5481
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5482
	for (i = 0; i < adapter->num_q_vectors; i++) {
5483 5484
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5485 5486 5487 5488 5489 5490 5491
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5492
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5493 5494 5495 5496 5497 5498
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5499
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5500 5501
			break;
		if (dca_add_requester(dev) == 0) {
5502
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5503
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5504 5505 5506 5507 5508
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5509
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5510
			/* without this a class_device is left
5511 5512
			 * hanging around in the sysfs model
			 */
J
Jeb Cramer 已提交
5513
			dca_remove_requester(dev);
5514
			dev_info(&pdev->dev, "DCA disabled\n");
5515
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5516
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5517 5518 5519
		}
		break;
	}
5520

J
Jeb Cramer 已提交
5521
	return 0;
5522 5523
}

J
Jeb Cramer 已提交
5524
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5525
			  void *p)
J
Jeb Cramer 已提交
5526 5527 5528 5529
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5530
					 __igb_notify_dca);
J
Jeb Cramer 已提交
5531 5532 5533

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5534
#endif /* CONFIG_IGB_DCA */
5535

5536 5537 5538 5539 5540
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5541
	eth_zero_addr(mac_addr);
5542 5543
	igb_set_vf_mac(adapter, vf, mac_addr);

L
Lior Levy 已提交
5544 5545 5546
	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

5547
	return 0;
5548 5549 5550
}

#endif
5551 5552 5553 5554 5555 5556 5557 5558
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5559
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5560 5561 5562 5563 5564
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5565 5566 5567 5568 5569 5570
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5571
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5572
			    IGB_VF_FLAG_MULTI_PROMISC);
5573 5574 5575 5576
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5577
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5578 5579
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
5580
		/* if we have hashes and we are clearing a multicast promisc
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

5603 5604 5605 5606 5607 5608 5609 5610
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5611
	/* salt away the number of multicast addresses assigned
5612 5613 5614 5615 5616
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5617 5618 5619 5620 5621
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5622
	for (i = 0; i < n; i++)
5623
		vf_data->vf_mc_hashes[i] = hash_list[i];
5624 5625

	/* Flush and reset the mta with the new values */
5626
	igb_set_rx_mode(adapter->netdev);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5638 5639 5640
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5641
		vf_data = &adapter->vf_data[i];
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5680 5681

	adapter->vf_data[vf].vlans_enabled = 0;
5682 5683 5684 5685 5686 5687 5688
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5689 5690 5691 5692 5693
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5723 5724
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5725 5726
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5727 5728
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5729
			wr32(E1000_VLVF(i), reg);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5745
			adapter->vf_data[vf].vlans_enabled++;
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5772 5773
		}
	}
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
5807
				 "The VF VLAN has been set, but the PF device is not up.\n");
5808
			dev_warn(&adapter->pdev->dev,
5809
				 "Bring the PF device up before attempting to use the VF device.\n");
5810 5811 5812
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5813
			     false, vf);
5814 5815 5816 5817
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
5818
	}
5819
out:
5820
	return err;
5821 5822
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 reg;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (i >= E1000_VLVF_ARRAY_SIZE)
		i = -1;

	return i;
}

5843 5844
static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
5845
	struct e1000_hw *hw = &adapter->hw;
5846 5847
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5848
	int err = 0;
5849

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
	/* If in promiscuous mode we need to make sure the PF also has
	 * the VLAN filter set.
	 */
	if (add && (adapter->netdev->flags & IFF_PROMISC))
		err = igb_vlvf_set(adapter, vid, add,
				   adapter->vfs_allocated_count);
	if (err)
		goto out;

	err = igb_vlvf_set(adapter, vid, add, vf);

	if (err)
		goto out;

	/* Go through all the checks to see if the VLAN filter should
	 * be wiped completely.
	 */
	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
		u32 vlvf, bits;

		int regndx = igb_find_vlvf_entry(adapter, vid);
		if (regndx < 0)
			goto out;
		/* See if any other pools are set for this VLAN filter
		 * entry other than the PF.
		 */
		vlvf = bits = rd32(E1000_VLVF(regndx));
		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
			      adapter->vfs_allocated_count);
		/* If the filter was removed then ensure PF pool bit
		 * is cleared if the PF only added itself to the pool
		 * because the PF is in promiscuous mode.
		 */
		if ((vlvf & VLAN_VID_MASK) == vid &&
		    !test_bit(vid, adapter->active_vlans) &&
		    !bits)
			igb_vlvf_set(adapter, vid, add,
				     adapter->vfs_allocated_count);
	}

out:
	return err;
5892 5893
}

5894
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5895
{
G
Greg Rose 已提交
5896 5897
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5898
	adapter->vf_data[vf].last_nack = jiffies;
5899 5900

	/* reset offloads to defaults */
5901
	igb_set_vmolr(adapter, vf, true);
5902 5903 5904

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5905 5906 5907 5908 5909 5910
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5911 5912 5913 5914 5915

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5916
	igb_set_rx_mode(adapter->netdev);
5917 5918
}

5919 5920 5921 5922
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5923
	/* clear mac address as we were hotplug removed/added */
5924
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5925
		eth_zero_addr(vf_mac);
5926 5927 5928 5929 5930 5931

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5932 5933 5934
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5935
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5936 5937 5938 5939
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5940
	igb_vf_reset(adapter, vf);
5941 5942

	/* set vf mac address */
5943
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5944 5945 5946 5947 5948 5949 5950

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5951
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5952 5953 5954

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5955
	memcpy(addr, vf_mac, ETH_ALEN);
5956 5957 5958 5959 5960
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
5961
	/* The VF MAC Address is stored in a packed array of bytes
G
Greg Rose 已提交
5962 5963
	 * starting at the second 32 bit word of the msg array
	 */
5964 5965
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5966

5967 5968
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5969

5970
	return err;
5971 5972 5973 5974 5975
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5976
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5977 5978 5979
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5980 5981
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5982
		igb_write_mbx(hw, &msg, 1, vf);
5983
		vf_data->last_nack = jiffies;
5984 5985 5986
	}
}

5987
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5988
{
5989 5990
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5991
	struct e1000_hw *hw = &adapter->hw;
5992
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5993 5994
	s32 retval;

5995
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5996

5997 5998
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5999
		dev_err(&pdev->dev, "Error receiving message from VF\n");
6000 6001 6002 6003 6004
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
6005 6006 6007

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6008
		return;
6009

6010
	/* until the vf completes a reset it should not be
6011 6012 6013 6014
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
6015
		return;
6016 6017
	}

6018
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6019 6020 6021 6022
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
6023 6024 6025 6026
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
6027 6028 6029 6030 6031
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
6032 6033
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
6034
		break;
6035 6036 6037
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
6038 6039 6040 6041 6042 6043 6044
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
6045 6046 6047
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
6048 6049
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
6050 6051
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6052 6053
		break;
	default:
6054
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6055 6056 6057 6058
		retval = -1;
		break;
	}

6059 6060
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
6061 6062 6063 6064 6065 6066 6067
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
6068
}
6069

6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
6088 6089
}

6090 6091 6092 6093 6094 6095 6096
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
6097 6098
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

6117
/**
6118 6119 6120
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
6121 6122 6123
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
6124 6125
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
6126 6127 6128 6129
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

6130
	igb_write_itr(q_vector);
6131

6132 6133 6134
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

6135
	if (icr & E1000_ICR_DOUTSYNC) {
6136 6137 6138 6139
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

6140 6141 6142 6143 6144 6145
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

6157
	napi_schedule(&q_vector->napi);
6158 6159 6160 6161 6162

	return IRQ_HANDLED;
}

/**
6163 6164 6165
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
6166 6167 6168
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
6169 6170
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
6171 6172
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6173 6174
	 * need for the IMC write
	 */
6175 6176 6177
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6178 6179
	 * not set, then the adapter didn't send an interrupt
	 */
6180 6181 6182
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

6183 6184
	igb_write_itr(q_vector);

6185 6186 6187
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

6188
	if (icr & E1000_ICR_DOUTSYNC) {
6189 6190 6191 6192
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

6193 6194 6195 6196 6197 6198 6199
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

6211
	napi_schedule(&q_vector->napi);
6212 6213 6214 6215

	return IRQ_HANDLED;
}

6216
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6217
{
6218
	struct igb_adapter *adapter = q_vector->adapter;
6219
	struct e1000_hw *hw = &adapter->hw;
6220

6221 6222 6223 6224
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
6225
		else
6226
			igb_update_ring_itr(q_vector);
6227 6228
	}

6229
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6230
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6231
			wr32(E1000_EIMS, q_vector->eims_value);
6232 6233 6234
		else
			igb_irq_enable(adapter);
	}
6235 6236
}

6237
/**
6238 6239 6240
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
6241 6242
 **/
static int igb_poll(struct napi_struct *napi, int budget)
6243
{
6244
	struct igb_q_vector *q_vector = container_of(napi,
6245 6246
						     struct igb_q_vector,
						     napi);
6247
	bool clean_complete = true;
6248

6249
#ifdef CONFIG_IGB_DCA
6250 6251
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
6252
#endif
6253
	if (q_vector->tx.ring)
6254
		clean_complete = igb_clean_tx_irq(q_vector);
6255

6256
	if (q_vector->rx.ring)
6257
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6258

6259 6260 6261
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
6262

6263
	/* If not enough Rx work done, exit the polling mode */
6264 6265
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
6266

6267
	return 0;
6268
}
A
Al Viro 已提交
6269

6270
/**
6271 6272
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
6273
 *
6274
 *  returns true if ring is completely cleaned
6275
 **/
6276
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6277
{
6278
	struct igb_adapter *adapter = q_vector->adapter;
6279
	struct igb_ring *tx_ring = q_vector->tx.ring;
6280
	struct igb_tx_buffer *tx_buffer;
6281
	union e1000_adv_tx_desc *tx_desc;
6282
	unsigned int total_bytes = 0, total_packets = 0;
6283
	unsigned int budget = q_vector->tx.work_limit;
6284
	unsigned int i = tx_ring->next_to_clean;
6285

6286 6287
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
6288

6289
	tx_buffer = &tx_ring->tx_buffer_info[i];
6290
	tx_desc = IGB_TX_DESC(tx_ring, i);
6291
	i -= tx_ring->count;
6292

6293 6294
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6295 6296 6297 6298

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
6299

6300
		/* prevent any other reads prior to eop_desc */
6301
		read_barrier_depends();
6302

6303 6304 6305 6306
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

6307 6308
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
6309

6310 6311 6312
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
6313

6314 6315
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
6316

6317 6318
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
6319 6320
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
6321 6322
				 DMA_TO_DEVICE);

6323 6324 6325 6326
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

6327 6328
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
6329 6330
			tx_buffer++;
			tx_desc++;
6331
			i++;
6332 6333
			if (unlikely(!i)) {
				i -= tx_ring->count;
6334
				tx_buffer = tx_ring->tx_buffer_info;
6335 6336
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
6337 6338

			/* unmap any remaining paged data */
6339
			if (dma_unmap_len(tx_buffer, len)) {
6340
				dma_unmap_page(tx_ring->dev,
6341 6342
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
6343
					       DMA_TO_DEVICE);
6344
				dma_unmap_len_set(tx_buffer, len, 0);
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6357 6358 6359 6360 6361 6362 6363

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6364

6365 6366
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6367
	i += tx_ring->count;
6368
	tx_ring->next_to_clean = i;
6369 6370 6371 6372
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6373 6374
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6375

6376
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6377
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6378

6379
		/* Detect a transmit hang in hardware, this serializes the
6380 6381
		 * check with the clearing of time_stamp and movement of i
		 */
6382
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6383
		if (tx_buffer->next_to_watch &&
6384
		    time_after(jiffies, tx_buffer->time_stamp +
6385 6386
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6387 6388

			/* detected Tx unit hang */
6389
			dev_err(tx_ring->dev,
6390
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6391
				"  Tx Queue             <%d>\n"
6392 6393 6394 6395 6396 6397
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6398
				"  next_to_watch        <%p>\n"
6399 6400
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6401
				tx_ring->queue_index,
6402
				rd32(E1000_TDH(tx_ring->reg_idx)),
6403
				readl(tx_ring->tail),
6404 6405
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6406
				tx_buffer->time_stamp,
6407
				tx_buffer->next_to_watch,
6408
				jiffies,
6409
				tx_buffer->next_to_watch->wb.status);
6410 6411 6412 6413 6414
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6415 6416
		}
	}
6417

6418
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6419
	if (unlikely(total_packets &&
6420 6421
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6439 6440
}

6441
/**
6442 6443 6444
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
6445
 *
6446
 *  Synchronizes page for reuse by the adapter
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6466
					 IGB_RX_BUFSZ,
6467 6468 6469
					 DMA_FROM_DEVICE);
}

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6505
/**
6506 6507 6508 6509 6510
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @rx_desc: descriptor containing length of buffer written by hardware
 *  @skb: sk_buff to place the data into
6511
 *
6512 6513 6514 6515
 *  This function will add the data contained in rx_buffer->page to the skb.
 *  This is done either through a direct copy if the data in the buffer is
 *  less than the skb header size, otherwise it will just attach the page as
 *  a frag to the skb.
6516
 *
6517 6518
 *  The function will then update the page offset if necessary and return
 *  true if the buffer can be reused by the adapter.
6519 6520 6521 6522 6523 6524 6525 6526
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6527 6528 6529 6530 6531
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6554
			rx_buffer->page_offset, size, truesize);
6555

6556 6557
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6558

6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

6589
		/* we will be copying header into skb->data in
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6600
				      IGB_RX_BUFSZ,
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6619
static inline void igb_rx_checksum(struct igb_ring *ring,
6620 6621
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6622
{
6623
	skb_checksum_none_assert(skb);
6624

6625
	/* Ignore Checksum bit is set */
6626
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6627 6628 6629 6630
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6631
		return;
6632

6633
	/* TCP/UDP checksum error bit is set */
6634 6635 6636
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6637
		/* work around errata with sctp packets where the TCPE aka
6638 6639 6640
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6641 6642
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6643
			u64_stats_update_begin(&ring->rx_syncp);
6644
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6645 6646
			u64_stats_update_end(&ring->rx_syncp);
		}
6647 6648 6649 6650
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6651 6652
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6653 6654
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6655 6656
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6657 6658
}

6659 6660 6661 6662 6663
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
T
Tom Herbert 已提交
6664 6665 6666
		skb_set_hash(skb,
			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
			     PKT_HASH_TYPE_L3);
6667 6668
}

6669
/**
6670 6671 6672 6673
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *  @skb: current socket buffer containing buffer in progress
6674
 *
6675 6676 6677 6678
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6697
/**
6698 6699 6700
 *  igb_get_headlen - determine size of header for LRO/GRO
 *  @data: pointer to the start of the headers
 *  @max_len: total length of section to find headers in
6701
 *
6702 6703 6704 6705 6706
 *  This function is meant to determine the length of headers that will
 *  be recognized by hardware for LRO, and GRO offloads.  The main
 *  motivation of doing this is to only perform one pull for IPv4 TCP
 *  packets so that we can do basic things like calculating the gso_size
 *  based on the average data per packet.
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6756
		/* record next protocol if header is present */
6757
		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6758
			nexthdr = hdr.ipv4->protocol;
6759 6760 6761 6762 6763 6764
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6765
		hlen = sizeof(struct ipv6hdr);
6766 6767 6768 6769
	} else {
		return hdr.network - data;
	}

6770 6771 6772
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

6793
	/* If everything has gone correctly hdr.network should be the
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
6805 6806 6807 6808
 *  igb_pull_tail - igb specific version of skb_pull_tail
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being adjusted
6809
 *
6810 6811 6812 6813 6814 6815
 *  This function is an igb specific version of __pskb_pull_tail.  The
 *  main difference between this version and the original function is that
 *  this function can make several assumptions about the state of things
 *  that allow for significant optimizations versus the standard function.
 *  As a result we can do things like drop a frag and maintain an accurate
 *  truesize for the skb.
6816 6817 6818 6819
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6820
{
6821 6822 6823 6824
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

6825
	/* it is valid to use page_address instead of kmap since we are
6826 6827
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6828
	 */
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

6845
	/* we need the header to contain the greater of either ETH_HLEN or
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
6861 6862 6863 6864
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
6865
 *
6866 6867
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
6868
 *
6869 6870
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
6871
 *
6872
 *  Returns true if an error was encountered and skb was freed.
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6901 6902
}

6903
/**
6904 6905 6906 6907
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
6908
 *
6909 6910 6911
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

6923
	igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6924

6925
	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6926 6927 6928 6929 6930 6931 6932 6933
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

6934
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6935 6936 6937 6938 6939 6940 6941
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6942
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6943
{
6944
	struct igb_ring *rx_ring = q_vector->rx.ring;
6945
	struct sk_buff *skb = rx_ring->skb;
6946
	unsigned int total_bytes = 0, total_packets = 0;
6947
	u16 cleaned_count = igb_desc_unused(rx_ring);
6948

6949 6950
	do {
		union e1000_adv_rx_desc *rx_desc;
6951

6952 6953 6954 6955 6956
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6957

6958
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6959

6960 6961
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6962

6963 6964 6965 6966 6967 6968
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6969
		/* retrieve a buffer from the ring */
6970
		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6971

6972 6973 6974
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6975

6976
		cleaned_count++;
6977

6978 6979 6980
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6981 6982 6983 6984 6985

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6986 6987
		}

6988
		/* probably a little skewed due to removing CRC */
6989 6990
		total_bytes += skb->len;

6991 6992
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6993

J
Jiri Pirko 已提交
6994
		napi_gro_receive(&q_vector->napi, skb);
6995

6996 6997 6998
		/* reset skb pointer */
		skb = NULL;

6999 7000 7001
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
7002

7003 7004 7005
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
7006
	u64_stats_update_begin(&rx_ring->rx_syncp);
7007 7008
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
7009
	u64_stats_update_end(&rx_ring->rx_syncp);
7010 7011
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
7012 7013

	if (cleaned_count)
7014
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7015

7016
	return (total_packets < budget);
7017 7018
}

7019
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7020
				  struct igb_rx_buffer *bi)
7021 7022
{
	struct page *page = bi->page;
7023
	dma_addr_t dma;
7024

7025 7026
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
7027 7028
		return true;

7029 7030 7031 7032 7033
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
7034 7035
	}

7036 7037
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7038

7039
	/* if mapping failed free memory back to system since
7040 7041
	 * there isn't much point in holding memory we can't use
	 */
7042
	if (dma_mapping_error(rx_ring->dev, dma)) {
7043 7044
		__free_page(page);

7045 7046 7047 7048
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

7049
	bi->dma = dma;
7050 7051
	bi->page = page;
	bi->page_offset = 0;
7052

7053 7054 7055
	return true;
}

7056
/**
7057 7058
 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
 *  @adapter: address of board private structure
7059
 **/
7060
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7061 7062
{
	union e1000_adv_rx_desc *rx_desc;
7063
	struct igb_rx_buffer *bi;
7064
	u16 i = rx_ring->next_to_use;
7065

7066 7067 7068 7069
	/* nothing to do */
	if (!cleaned_count)
		return;

7070
	rx_desc = IGB_RX_DESC(rx_ring, i);
7071
	bi = &rx_ring->rx_buffer_info[i];
7072
	i -= rx_ring->count;
7073

7074
	do {
7075
		if (!igb_alloc_mapped_page(rx_ring, bi))
7076
			break;
7077

7078
		/* Refresh the desc even if buffer_addrs didn't change
7079 7080
		 * because each write-back erases this info.
		 */
7081
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7082

7083 7084
		rx_desc++;
		bi++;
7085
		i++;
7086
		if (unlikely(!i)) {
7087
			rx_desc = IGB_RX_DESC(rx_ring, 0);
7088
			bi = rx_ring->rx_buffer_info;
7089 7090 7091 7092 7093
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
7094 7095 7096

		cleaned_count--;
	} while (cleaned_count);
7097

7098 7099
	i += rx_ring->count;

7100
	if (rx_ring->next_to_use != i) {
7101
		/* record the next descriptor to use */
7102 7103
		rx_ring->next_to_use = i;

7104 7105 7106
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

7107
		/* Force memory writes to complete before letting h/w
7108 7109
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
7110 7111
		 * such as IA-64).
		 */
7112
		wmb();
7113
		writel(i, rx_ring->tail);
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
7136 7137
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
7160
	case SIOCSHWTSTAMP:
7161
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
7162 7163 7164 7165 7166
	default:
		return -EOPNOTSUPP;
	}
}

7167 7168 7169 7170
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

7171
	if (pcie_capability_read_word(adapter->pdev, reg, value))
7172 7173 7174 7175 7176 7177 7178 7179 7180
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

7181
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7182 7183 7184 7185 7186
		return -E1000_ERR_CONFIG;

	return 0;
}

7187
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7188 7189 7190 7191
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
7192
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7193

7194
	if (enable) {
7195 7196 7197 7198 7199
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

7200
		/* Disable CFI check */
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

7211
	igb_rlpml_set(adapter);
7212 7213
}

7214 7215
static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
7216 7217 7218
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7219
	int pf_id = adapter->vfs_allocated_count;
7220

7221 7222
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
7223

7224 7225
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
7226 7227

	set_bit(vid, adapter->active_vlans);
7228 7229

	return 0;
7230 7231
}

7232 7233
static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
7234 7235 7236
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7237
	int pf_id = adapter->vfs_allocated_count;
7238
	s32 err;
7239

7240 7241
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
7242

7243 7244
	/* if vid was not present in VLVF just remove it from table */
	if (err)
7245
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
7246 7247

	clear_bit(vid, adapter->active_vlans);
7248 7249

	return 0;
7250 7251 7252 7253
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
7254
	u16 vid;
7255

7256 7257
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
7258
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7259
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7260 7261
}

7262
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7263
{
7264
	struct pci_dev *pdev = adapter->pdev;
7265 7266 7267 7268
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7269
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7270 7271
	 * for the switch() below to work
	 */
7272 7273 7274
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}
7288

7289
	switch (spd + dplx) {
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7308
		goto err_inval;
7309
	}
7310 7311 7312 7313

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7314
	return 0;
7315 7316 7317 7318

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7319 7320
}

Y
Yan, Zheng 已提交
7321 7322
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7323 7324 7325 7326
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7327
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7328
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7329 7330 7331 7332 7333 7334
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7335
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7336
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7337

7338
	igb_clear_interrupt_scheme(adapter);
7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7352
		igb_set_rx_mode(netdev);
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7370
		igb_disable_pcie_master(hw);
7371 7372 7373 7374 7375 7376 7377 7378

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7379 7380
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7381 7382 7383
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7384 7385

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7386 7387
	 * would have already happened in close and is redundant.
	 */
7388 7389 7390 7391 7392 7393 7394 7395
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7396
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7397
static int igb_suspend(struct device *dev)
7398 7399 7400
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7401
	struct pci_dev *pdev = to_pci_dev(dev);
7402

Y
Yan, Zheng 已提交
7403
	retval = __igb_shutdown(pdev, &wake, 0);
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7416
#endif /* CONFIG_PM_SLEEP */
7417

Y
Yan, Zheng 已提交
7418
static int igb_resume(struct device *dev)
7419
{
Y
Yan, Zheng 已提交
7420
	struct pci_dev *pdev = to_pci_dev(dev);
7421 7422 7423 7424 7425 7426 7427
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7428
	pci_save_state(pdev);
T
Taku Izumi 已提交
7429

7430
	err = pci_enable_device_mem(pdev);
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7441
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7442 7443
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7444 7445 7446
	}

	igb_reset(adapter);
7447 7448

	/* let the f/w know that the h/w is now under the control of the
7449 7450
	 * driver.
	 */
7451 7452
	igb_get_hw_control(adapter);

7453 7454
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7455
	if (netdev->flags & IFF_UP) {
7456
		rtnl_lock();
Y
Yan, Zheng 已提交
7457
		err = __igb_open(netdev, true);
7458
		rtnl_unlock();
A
Alexander Duyck 已提交
7459 7460 7461
		if (err)
			return err;
	}
7462 7463

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7496 7497 7498

	return 0;
}
Y
Yan, Zheng 已提交
7499 7500 7501 7502 7503 7504

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7505 7506 7507 7508
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7509 7510
	bool wake;

Y
Yan, Zheng 已提交
7511
	__igb_shutdown(pdev, &wake, 0);
7512 7513 7514 7515 7516

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7517 7518
}

7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7585
#ifdef CONFIG_NET_POLL_CONTROLLER
7586
/* Polling 'interrupt' - used by things like netconsole to send skbs
7587 7588 7589 7590 7591 7592
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7593
	struct e1000_hw *hw = &adapter->hw;
7594
	struct igb_q_vector *q_vector;
7595 7596
	int i;

7597
	for (i = 0; i < adapter->num_q_vectors; i++) {
7598
		q_vector = adapter->q_vector[i];
7599
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7600 7601 7602
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7603
		napi_schedule(&q_vector->napi);
7604
	}
7605 7606 7607 7608
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
7609 7610 7611
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
7612
 *
7613 7614 7615
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
7616 7617 7618 7619 7620 7621 7622 7623
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7624 7625 7626
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7627 7628 7629 7630 7631 7632 7633 7634 7635
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
7636 7637
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
7638
 *
7639 7640 7641
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the igb_resume routine.
 **/
7642 7643 7644 7645 7646
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7647
	pci_ers_result_t result;
T
Taku Izumi 已提交
7648
	int err;
7649

7650
	if (pci_enable_device_mem(pdev)) {
7651 7652
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7653 7654 7655 7656
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7657
		pci_save_state(pdev);
7658

7659 7660
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7661

7662 7663 7664 7665
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7666

7667 7668
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
7669 7670 7671
		dev_err(&pdev->dev,
			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
			err);
7672 7673
		/* non-fatal, continue */
	}
7674 7675

	return result;
7676 7677 7678
}

/**
7679 7680
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
7681
 *
7682 7683 7684
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the igb_resume routine.
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
7701 7702
	 * driver.
	 */
7703 7704 7705
	igb_get_hw_control(adapter);
}

7706
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7707
			     u8 qsel)
7708 7709 7710 7711 7712 7713 7714 7715
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7716
		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7733
static int igb_set_vf_mac(struct igb_adapter *adapter,
7734
			  int vf, unsigned char *mac_addr)
7735 7736
{
	struct e1000_hw *hw = &adapter->hw;
7737
	/* VF MAC addresses start at end of receive addresses and moves
7738 7739
	 * towards the first, as a result a collision should not be possible
	 */
7740
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7741

7742
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7743

7744
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7745 7746 7747 7748

	return 0;
}

7749 7750 7751 7752 7753 7754 7755
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7756 7757
	dev_info(&adapter->pdev->dev,
		 "Reload the VF driver to make this change effective.");
7758
	if (test_bit(__IGB_DOWN, &adapter->state)) {
7759 7760 7761 7762
		dev_warn(&adapter->pdev->dev,
			 "The VF MAC address has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
7763 7764 7765 7766
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
7789 7790
		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;
7791 7792

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7793 7794
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
7795 7796 7797 7798 7799 7800
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7801
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
L
Lior Levy 已提交
7802 7803 7804
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
7823
			 "Link speed has been changed. VF Transmit rate is disabled\n");
7824 7825 7826 7827 7828 7829 7830
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
7831 7832
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
7833 7834 7835
	}
}

7836 7837
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7856 7857
}

L
Lior Levy 已提交
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= ((1 << vf) |
			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	else
		reg_val &= ~((1 << vf) |
			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return E1000_SUCCESS;
}

7885 7886 7887 7888 7889 7890 7891 7892
static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7893
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7894 7895
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
L
Lior Levy 已提交
7896
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7897 7898 7899
	return 0;
}

7900 7901 7902
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7903
	u32 reg;
7904

7905 7906
	switch (hw->mac.type) {
	case e1000_82575:
7907 7908
	case e1000_i210:
	case e1000_i211:
7909
	case e1000_i354:
7910 7911
	default:
		/* replication is not supported for 82575 */
7912
		return;
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7923 7924
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7925 7926
		break;
	}
7927

7928 7929 7930
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7931
		igb_vmdq_set_anti_spoofing_pf(hw, true,
7932
					      adapter->vfs_allocated_count);
7933 7934 7935 7936
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7937 7938
}

7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

7952
			/* DMA Coalescing high water mark needs to be greater
7953 7954
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7955
			 */
7956 7957 7958 7959 7960 7961 7962 7963 7964
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

7965
			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7966 7967 7968 7969 7970
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7981 7982

			/* Disable BMC-to-OS Watchdog Enable */
7983 7984 7985
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

7986 7987
			wr32(E1000_DMACR, reg);

7988
			/* no lower threshold to disable
7989 7990 7991 7992 7993 7994 7995 7996
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

7997
			/* free space in tx packet buffer to wake from
7998 7999 8000 8001 8002
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

8003
			/* make low power state decision controlled
8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

8017 8018
/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
C
Carolyn Wyborny 已提交
8019 8020 8021 8022 8023 8024 8025
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
8026
 **/
C
Carolyn Wyborny 已提交
8027
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8028
		      u8 dev_addr, u8 *data)
C
Carolyn Wyborny 已提交
8029 8030
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8031
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

8055 8056
/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
C
Carolyn Wyborny 已提交
8057 8058 8059 8060 8061 8062 8063
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
8064
 **/
C
Carolyn Wyborny 已提交
8065
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8066
		       u8 dev_addr, u8 data)
C
Carolyn Wyborny 已提交
8067 8068
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8069
	struct i2c_client *this_client = adapter->i2c_client;
C
Carolyn Wyborny 已提交
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096

int igb_reinit_queues(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (netif_running(netdev))
		igb_close(netdev);

8097
	igb_reset_interrupt_capability(adapter);
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		err = igb_open(netdev);

	return err;
}
8109
/* igb_main.c */