vgic-its.c 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * GICv3 ITS emulation
 *
 * Copyright (C) 2015,2016 ARM Ltd.
 * Author: Andre Przywara <andre.przywara@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
24
#include <linux/list.h>
25
#include <linux/uaccess.h>
26
#include <linux/list_sort.h>
27 28 29 30 31 32 33 34 35 36

#include <linux/irqchip/arm-gic-v3.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>

#include "vgic.h"
#include "vgic-mmio.h"

37 38 39
static int vgic_its_save_tables_v0(struct vgic_its *its);
static int vgic_its_restore_tables_v0(struct vgic_its *its);
static int vgic_its_commit_v0(struct vgic_its *its);
40
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41
			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
42

43 44 45 46 47 48 49
/*
 * Creates a new (reference to a) struct vgic_irq for a given LPI.
 * If this LPI is already mapped on another ITS, we increase its refcount
 * and return a pointer to the existing structure.
 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
 * This function returns a pointer to the _unlocked_ structure.
 */
50 51
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
				     struct kvm_vcpu *vcpu)
52 53 54
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55
	unsigned long flags;
56
	int ret;
57 58 59 60 61 62 63

	/* In this case there is no put, since we keep the reference. */
	if (irq)
		return irq;

	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
	if (!irq)
64
		return ERR_PTR(-ENOMEM);
65 66 67

	INIT_LIST_HEAD(&irq->lpi_list);
	INIT_LIST_HEAD(&irq->ap_list);
68
	raw_spin_lock_init(&irq->irq_lock);
69 70 71 72

	irq->config = VGIC_CONFIG_EDGE;
	kref_init(&irq->refcount);
	irq->intid = intid;
73
	irq->target_vcpu = vcpu;
74
	irq->group = 1;
75

76
	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

	/*
	 * There could be a race with another vgic_add_lpi(), so we need to
	 * check that we don't add a second list entry with the same LPI.
	 */
	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
		if (oldirq->intid != intid)
			continue;

		/* Someone was faster with adding this LPI, lets use that. */
		kfree(irq);
		irq = oldirq;

		/*
		 * This increases the refcount, the caller is expected to
		 * call vgic_put_irq() on the returned pointer once it's
		 * finished with the IRQ.
		 */
95
		vgic_get_irq_kref(irq);
96 97 98 99 100 101 102 103

		goto out_unlock;
	}

	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
	dist->lpi_list_count++;

out_unlock:
104
	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
105

106 107 108 109 110
	/*
	 * We "cache" the configuration table entries in our struct vgic_irq's.
	 * However we only have those structs for mapped IRQs, so we read in
	 * the respective config data from memory here upon mapping the LPI.
	 */
111
	ret = update_lpi_config(kvm, irq, NULL, false);
112 113 114 115 116 117 118
	if (ret)
		return ERR_PTR(ret);

	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
	if (ret)
		return ERR_PTR(ret);

119 120 121
	return irq;
}

122 123 124 125 126
struct its_device {
	struct list_head dev_list;

	/* the head for the list of ITTEs */
	struct list_head itt_head;
127
	u32 num_eventid_bits;
128
	gpa_t itt_addr;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
	u32 device_id;
};

#define COLLECTION_NOT_MAPPED ((u32)~0)

struct its_collection {
	struct list_head coll_list;

	u32 collection_id;
	u32 target_addr;
};

#define its_is_collection_mapped(coll) ((coll) && \
				((coll)->target_addr != COLLECTION_NOT_MAPPED))

144 145
struct its_ite {
	struct list_head ite_list;
146

147
	struct vgic_irq *irq;
148 149 150 151
	struct its_collection *collection;
	u32 event_id;
};

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/**
 * struct vgic_its_abi - ITS abi ops and settings
 * @cte_esz: collection table entry size
 * @dte_esz: device table entry size
 * @ite_esz: interrupt translation table entry size
 * @save tables: save the ITS tables into guest RAM
 * @restore_tables: restore the ITS internal structs from tables
 *  stored in guest RAM
 * @commit: initialize the registers which expose the ABI settings,
 *  especially the entry sizes
 */
struct vgic_its_abi {
	int cte_esz;
	int dte_esz;
	int ite_esz;
	int (*save_tables)(struct vgic_its *its);
	int (*restore_tables)(struct vgic_its *its);
	int (*commit)(struct vgic_its *its);
};

172 173 174
#define ABI_0_ESZ	8
#define ESZ_MAX		ABI_0_ESZ

175
static const struct vgic_its_abi its_table_abi_versions[] = {
176 177 178 179
	[0] = {
	 .cte_esz = ABI_0_ESZ,
	 .dte_esz = ABI_0_ESZ,
	 .ite_esz = ABI_0_ESZ,
180 181 182 183 184 185 186 187 188 189 190 191 192
	 .save_tables = vgic_its_save_tables_v0,
	 .restore_tables = vgic_its_restore_tables_v0,
	 .commit = vgic_its_commit_v0,
	},
};

#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)

inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
{
	return &its_table_abi_versions[its->abi_rev];
}

193
static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 195 196 197 198 199 200 201
{
	const struct vgic_its_abi *abi;

	its->abi_rev = rev;
	abi = vgic_its_get_abi(its);
	return abi->commit(its);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Find and returns a device in the device table for an ITS.
 * Must be called with the its_lock mutex held.
 */
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
{
	struct its_device *device;

	list_for_each_entry(device, &its->device_list, dev_list)
		if (device_id == device->device_id)
			return device;

	return NULL;
}

/*
 * Find and returns an interrupt translation table entry (ITTE) for a given
 * Device ID/Event ID pair on an ITS.
 * Must be called with the its_lock mutex held.
 */
222
static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 224 225
				  u32 event_id)
{
	struct its_device *device;
226
	struct its_ite *ite;
227 228 229 230 231

	device = find_its_device(its, device_id);
	if (device == NULL)
		return NULL;

232 233 234
	list_for_each_entry(ite, &device->itt_head, ite_list)
		if (ite->event_id == event_id)
			return ite;
235 236 237 238 239

	return NULL;
}

/* To be used as an iterator this macro misses the enclosing parentheses */
240
#define for_each_lpi_its(dev, ite, its) \
241
	list_for_each_entry(dev, &(its)->device_list, dev_list) \
242
		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243

244 245
#define GIC_LPI_OFFSET 8192

246
#define VITS_TYPER_IDBITS 16
247
#define VITS_TYPER_DEVBITS 16
248 249
#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Finds and returns a collection in the ITS collection table.
 * Must be called with the its_lock mutex held.
 */
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
{
	struct its_collection *collection;

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		if (coll_id == collection->collection_id)
			return collection;
	}

	return NULL;
}

267 268 269 270 271 272 273 274 275 276
#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)

/*
 * Reads the configuration data for a given LPI from guest memory and
 * updates the fields in struct vgic_irq.
 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 */
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
277
			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
278
{
279
	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
280 281
	u8 prop;
	int ret;
282
	unsigned long flags;
283

284 285
	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
				  &prop, 1);
286 287 288 289

	if (ret)
		return ret;

290
	raw_spin_lock_irqsave(&irq->irq_lock, flags);
291 292 293 294 295

	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
		irq->priority = LPI_PROP_PRIORITY(prop);
		irq->enabled = LPI_PROP_ENABLE_BIT(prop);

296 297 298 299
		if (!irq->hw) {
			vgic_queue_irq_unlock(kvm, irq, flags);
			return 0;
		}
300 301
	}

302
	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
303

304
	if (irq->hw)
305
		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
306

307 308
	return 0;
}
309 310

/*
311 312 313
 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 * enumerate those LPIs without holding any lock.
 * Returns their number and puts the kmalloc'ed array into intid_ptr.
314
 */
315
int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
316
{
317
	struct vgic_dist *dist = &kvm->arch.vgic;
318
	struct vgic_irq *irq;
319
	unsigned long flags;
320
	u32 *intids;
321
	int irq_count, i = 0;
322 323

	/*
324 325 326 327 328
	 * There is an obvious race between allocating the array and LPIs
	 * being mapped/unmapped. If we ended up here as a result of a
	 * command, we're safe (locks are held, preventing another
	 * command). If coming from another path (such as enabling LPIs),
	 * we must be careful not to overrun the array.
329
	 */
330
	irq_count = READ_ONCE(dist->lpi_list_count);
331 332 333 334
	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
	if (!intids)
		return -ENOMEM;

335
	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
336
	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
337 338
		if (i == irq_count)
			break;
339
		/* We don't need to "get" the IRQ, as we hold the list lock. */
340
		if (vcpu && irq->target_vcpu != vcpu)
341 342
			continue;
		intids[i++] = irq->intid;
343
	}
344
	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
345 346

	*intid_ptr = intids;
347
	return i;
348 349
}

350 351
static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
{
352
	int ret = 0;
353
	unsigned long flags;
354

355
	raw_spin_lock_irqsave(&irq->irq_lock, flags);
356
	irq->target_vcpu = vcpu;
357
	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
358

359 360 361 362 363 364 365 366 367 368 369 370 371
	if (irq->hw) {
		struct its_vlpi_map map;

		ret = its_get_vlpi(irq->host_irq, &map);
		if (ret)
			return ret;

		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;

		ret = its_map_vlpi(irq->host_irq, &map);
	}

	return ret;
372 373
}

374 375 376 377 378 379
/*
 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 * is targeting) to the VGIC's view, which deals with target VCPUs.
 * Needs to be called whenever either the collection for a LPIs has
 * changed or the collection itself got retargeted.
 */
380
static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
381 382 383
{
	struct kvm_vcpu *vcpu;

384
	if (!its_is_collection_mapped(ite->collection))
385 386
		return;

387
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
388
	update_affinity(ite->irq, vcpu);
389 390 391 392 393 394 395 396 397 398
}

/*
 * Updates the target VCPU for every LPI targeting this collection.
 * Must be called with the its_lock mutex held.
 */
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
				       struct its_collection *coll)
{
	struct its_device *device;
399
	struct its_ite *ite;
400

401 402
	for_each_lpi_its(device, ite, its) {
		if (!ite->collection || coll != ite->collection)
403 404
			continue;

405
		update_affinity_ite(kvm, ite);
406 407 408 409 410 411 412 413 414 415
	}
}

static u32 max_lpis_propbaser(u64 propbaser)
{
	int nr_idbits = (propbaser & 0x1f) + 1;

	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
}

416
/*
417
 * Sync the pending table pending bit of LPIs targeting @vcpu
418 419 420 421 422
 * with our own data structures. This relies on the LPI being
 * mapped before.
 */
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
{
423
	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
424 425 426 427 428
	struct vgic_irq *irq;
	int last_byte_offset = -1;
	int ret = 0;
	u32 *intids;
	int nr_irqs, i;
429
	unsigned long flags;
430
	u8 pendmask;
431

432
	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
433 434 435 436 437 438 439 440 441 442 443 444 445 446
	if (nr_irqs < 0)
		return nr_irqs;

	for (i = 0; i < nr_irqs; i++) {
		int byte_offset, bit_nr;

		byte_offset = intids[i] / BITS_PER_BYTE;
		bit_nr = intids[i] % BITS_PER_BYTE;

		/*
		 * For contiguously allocated LPIs chances are we just read
		 * this very same byte in the last iteration. Reuse that.
		 */
		if (byte_offset != last_byte_offset) {
447 448 449
			ret = kvm_read_guest_lock(vcpu->kvm,
						  pendbase + byte_offset,
						  &pendmask, 1);
450 451 452 453 454 455 456 457
			if (ret) {
				kfree(intids);
				return ret;
			}
			last_byte_offset = byte_offset;
		}

		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
458
		raw_spin_lock_irqsave(&irq->irq_lock, flags);
459
		irq->pending_latch = pendmask & (1U << bit_nr);
460
		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
461 462 463 464 465 466 467
		vgic_put_irq(vcpu->kvm, irq);
	}

	kfree(intids);

	return ret;
}
468 469 470 471 472

static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
473
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
474 475 476 477 478 479 480 481 482 483
	u64 reg = GITS_TYPER_PLPIS;

	/*
	 * We use linear CPU numbers for redistributor addressing,
	 * so GITS_TYPER.PTA is 0.
	 * Also we force all PROPBASER registers to be the same, so
	 * CommonLPIAff is 0 as well.
	 * To avoid memory waste in the guest, we keep the number of IDBits and
	 * DevBits low - as least for the time being.
	 */
484
	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
485
	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
486
	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
487 488 489 490 491 492 493 494

	return extract_bytes(reg, addr & 7, len);
}

static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	u32 val;

	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
	return val;
}

static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
					    struct vgic_its *its,
					    gpa_t addr, unsigned int len,
					    unsigned long val)
{
	u32 rev = GITS_IIDR_REV(val);

	if (rev >= NR_ITS_ABIS)
		return -EINVAL;
	return vgic_its_set_abi(its, rev);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
}

static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	switch (addr & 0xffff) {
	case GITS_PIDR0:
		return 0x92;	/* part number, bits[7:0] */
	case GITS_PIDR1:
		return 0xb4;	/* part number, bits[11:8] */
	case GITS_PIDR2:
		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
	case GITS_PIDR4:
		return 0x40;	/* This is a 64K software visible page */
	/* The following are the ID registers for (any) GIC. */
	case GITS_CIDR0:
		return 0x0d;
	case GITS_CIDR1:
		return 0xf0;
	case GITS_CIDR2:
		return 0x05;
	case GITS_CIDR3:
		return 0xb1;
	}

	return 0;
}

541 542
int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
			 u32 devid, u32 eventid, struct vgic_irq **irq)
543
{
544
	struct kvm_vcpu *vcpu;
545
	struct its_ite *ite;
546 547

	if (!its->enabled)
548
		return -EBUSY;
549

550 551
	ite = find_ite(its, devid, eventid);
	if (!ite || !its_is_collection_mapped(ite->collection))
552 553
		return E_ITS_INT_UNMAPPED_INTERRUPT;

554
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
555 556 557 558 559 560
	if (!vcpu)
		return E_ITS_INT_UNMAPPED_INTERRUPT;

	if (!vcpu->arch.vgic_cpu.lpis_enabled)
		return -EBUSY;

561
	*irq = ite->irq;
562
	return 0;
563 564
}

565
struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
566
{
567 568
	u64 address;
	struct kvm_io_device *kvm_io_dev;
569 570
	struct vgic_io_device *iodev;

571 572 573 574 575
	if (!vgic_has_its(kvm))
		return ERR_PTR(-ENODEV);

	if (!(msi->flags & KVM_MSI_VALID_DEVID))
		return ERR_PTR(-EINVAL);
576

577 578 579 580 581
	address = (u64)msi->address_hi << 32 | msi->address_lo;

	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
	if (!kvm_io_dev)
		return ERR_PTR(-EINVAL);
582

583 584
	if (kvm_io_dev->ops != &kvm_io_gic_ops)
		return ERR_PTR(-EINVAL);
585

586
	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
587
	if (iodev->iodev_type != IODEV_ITS)
588
		return ERR_PTR(-EINVAL);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	return iodev->its;
}

/*
 * Find the target VCPU and the LPI number for a given devid/eventid pair
 * and make this IRQ pending, possibly injecting it.
 * Must be called with the its_lock mutex held.
 * Returns 0 on success, a positive error value for any ITS mapping
 * related errors and negative error values for generic errors.
 */
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
				u32 devid, u32 eventid)
{
	struct vgic_irq *irq = NULL;
	unsigned long flags;
	int err;
606

607 608 609 610
	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
	if (err)
		return err;

611 612 613 614
	if (irq->hw)
		return irq_set_irqchip_state(irq->host_irq,
					     IRQCHIP_STATE_PENDING, true);

615
	raw_spin_lock_irqsave(&irq->irq_lock, flags);
616 617 618 619
	irq->pending_latch = true;
	vgic_queue_irq_unlock(kvm, irq, flags);

	return 0;
620 621
}

622 623 624 625
/*
 * Queries the KVM IO bus framework to get the ITS pointer from the given
 * doorbell address.
 * We then call vgic_its_trigger_msi() with the decoded data.
626
 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
627 628 629
 */
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
630
	struct vgic_its *its;
631
	int ret;
632

633 634 635
	its = vgic_msi_to_its(kvm, msi);
	if (IS_ERR(its))
		return PTR_ERR(its);
636

637 638 639
	mutex_lock(&its->its_lock);
	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
	mutex_unlock(&its->its_lock);
640

641 642 643 644 645 646 647 648 649 650 651 652
	if (ret < 0)
		return ret;

	/*
	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
	 * if the guest has blocked the MSI. So we map any LPI mapping
	 * related error to that.
	 */
	if (ret)
		return 0;
	else
		return 1;
653 654
}

655
/* Requires the its_lock to be held. */
656
static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
657
{
658
	list_del(&ite->ite_list);
659 660

	/* This put matches the get in vgic_add_lpi. */
661 662 663 664
	if (ite->irq) {
		if (ite->irq->hw)
			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));

665
		vgic_put_irq(kvm, ite->irq);
666
	}
667

668
	kfree(ite);
669 670
}

671 672 673 674 675 676 677
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
{
	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
}

#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
678
#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
679 680 681
#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
682
#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
683 684 685 686 687 688 689 690 691 692 693 694
#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)

/*
 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
				       u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
695
	struct its_ite *ite;
696 697


698 699
	ite = find_ite(its, device_id, event_id);
	if (ite && ite->collection) {
700 701 702 703 704
		/*
		 * Though the spec talks about removing the pending state, we
		 * don't bother here since we clear the ITTE anyway and the
		 * pending state is a property of the ITTE struct.
		 */
705
		its_free_ite(kvm, ite);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		return 0;
	}

	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
}

/*
 * The MOVI command moves an ITTE to a different collection.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct kvm_vcpu *vcpu;
723
	struct its_ite *ite;
724 725
	struct its_collection *collection;

726 727
	ite = find_ite(its, device_id, event_id);
	if (!ite)
728 729
		return E_ITS_MOVI_UNMAPPED_INTERRUPT;

730
	if (!its_is_collection_mapped(ite->collection))
731 732 733 734 735 736
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

737
	ite->collection = collection;
738 739
	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

740
	return update_affinity(ite->irq, vcpu);
741 742
}

743 744 745 746
/*
 * Check whether an ID can be stored into the corresponding guest table.
 * For a direct table this is pretty easy, but gets a bit nasty for
 * indirect tables. We check whether the resulting guest physical address
747
 * is actually valid (covered by a memslot and guest accessible).
748 749
 * For this we have to read the respective first level entry.
 */
750 751
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
			      gpa_t *eaddr)
752 753
{
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
754
	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
755
	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
756
	int esz = GITS_BASER_ENTRY_SIZE(baser);
757 758
	int index;
	gfn_t gfn;
759 760 761 762 763 764 765 766 767 768 769 770 771 772

	switch (type) {
	case GITS_BASER_TYPE_DEVICE:
		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
			return false;
		break;
	case GITS_BASER_TYPE_COLLECTION:
		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
		if (id >= BIT_ULL(16))
			return false;
		break;
	default:
		return false;
	}
773 774 775 776

	if (!(baser & GITS_BASER_INDIRECT)) {
		phys_addr_t addr;

777
		if (id >= (l1_tbl_size / esz))
778 779
			return false;

780
		addr = base + id * esz;
781 782
		gfn = addr >> PAGE_SHIFT;

783 784
		if (eaddr)
			*eaddr = addr;
785 786 787 788
		return kvm_is_visible_gfn(its->dev->kvm, gfn);
	}

	/* calculate and check the index into the 1st level */
789
	index = id / (SZ_64K / esz);
790 791 792 793
	if (index >= (l1_tbl_size / sizeof(u64)))
		return false;

	/* Each 1st level entry is represented by a 64-bit value. */
794
	if (kvm_read_guest_lock(its->dev->kvm,
795
			   base + index * sizeof(indirect_ptr),
796 797 798 799 800 801 802 803 804
			   &indirect_ptr, sizeof(indirect_ptr)))
		return false;

	indirect_ptr = le64_to_cpu(indirect_ptr);

	/* check the valid bit of the first level entry */
	if (!(indirect_ptr & BIT_ULL(63)))
		return false;

805
	/* Mask the guest physical address and calculate the frame number. */
806 807 808
	indirect_ptr &= GENMASK_ULL(51, 16);

	/* Find the address of the actual entry */
809 810
	index = id % (SZ_64K / esz);
	indirect_ptr += index * esz;
811 812
	gfn = indirect_ptr >> PAGE_SHIFT;

813 814
	if (eaddr)
		*eaddr = indirect_ptr;
815 816 817
	return kvm_is_visible_gfn(its->dev->kvm, gfn);
}

818 819
static int vgic_its_alloc_collection(struct vgic_its *its,
				     struct its_collection **colp,
820 821
				     u32 coll_id)
{
822 823
	struct its_collection *collection;

824
	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
825 826
		return E_ITS_MAPC_COLLECTION_OOR;

827
	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
828 829
	if (!collection)
		return -ENOMEM;
830

831 832 833 834
	collection->collection_id = coll_id;
	collection->target_addr = COLLECTION_NOT_MAPPED;

	list_add_tail(&collection->coll_list, &its->collection_list);
835 836 837 838 839 840 841 842 843
	*colp = collection;

	return 0;
}

static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
{
	struct its_collection *collection;
	struct its_device *device;
844
	struct its_ite *ite;
845 846 847 848 849 850 851 852 853 854

	/*
	 * Clearing the mapping for that collection ID removes the
	 * entry from the list. If there wasn't any before, we can
	 * go home early.
	 */
	collection = find_collection(its, coll_id);
	if (!collection)
		return;

855 856 857 858
	for_each_lpi_its(device, ite, its)
		if (ite->collection &&
		    ite->collection->collection_id == coll_id)
			ite->collection = NULL;
859 860 861

	list_del(&collection->coll_list);
	kfree(collection);
862 863
}

864 865 866
/* Must be called with its_lock mutex held */
static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
					  struct its_collection *collection,
867
					  u32 event_id)
868 869 870 871 872 873 874 875 876 877 878 879 880 881
{
	struct its_ite *ite;

	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
	if (!ite)
		return ERR_PTR(-ENOMEM);

	ite->event_id	= event_id;
	ite->collection = collection;

	list_add_tail(&ite->ite_list, &device->itt_head);
	return ite;
}

882 883 884 885 886
/*
 * The MAPTI and MAPI commands map LPIs to ITTEs.
 * Must be called with its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
887
				    u64 *its_cmd)
888 889 890 891
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
892
	struct its_ite *ite;
893
	struct kvm_vcpu *vcpu = NULL;
894 895
	struct its_device *device;
	struct its_collection *collection, *new_coll = NULL;
896
	struct vgic_irq *irq;
897
	int lpi_nr;
898 899 900 901 902

	device = find_its_device(its, device_id);
	if (!device)
		return E_ITS_MAPTI_UNMAPPED_DEVICE;

903 904 905
	if (event_id >= BIT_ULL(device->num_eventid_bits))
		return E_ITS_MAPTI_ID_OOR;

906
	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
907 908 909 910
		lpi_nr = its_cmd_get_physical_id(its_cmd);
	else
		lpi_nr = event_id;
	if (lpi_nr < GIC_LPI_OFFSET ||
911 912 913
	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
		return E_ITS_MAPTI_PHYSICALID_OOR;

914
	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
915
	if (find_ite(its, device_id, event_id))
916 917
		return 0;

918 919 920 921 922 923
	collection = find_collection(its, coll_id);
	if (!collection) {
		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
		if (ret)
			return ret;
		new_coll = collection;
924 925
	}

926
	ite = vgic_its_alloc_ite(device, collection, event_id);
927
	if (IS_ERR(ite)) {
928 929
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
930
		return PTR_ERR(ite);
931 932
	}

933 934 935 936
	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
937 938 939
	if (IS_ERR(irq)) {
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
940
		its_free_ite(kvm, ite);
941 942
		return PTR_ERR(irq);
	}
943
	ite->irq = irq;
944

945 946 947 948
	return 0;
}

/* Requires the its_lock to be held. */
949
static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
950
{
951
	struct its_ite *ite, *temp;
952 953 954 955 956 957

	/*
	 * The spec says that unmapping a device with still valid
	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
	 * since we cannot leave the memory unreferenced.
	 */
958 959
	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
		its_free_ite(kvm, ite);
960 961 962 963 964

	list_del(&device->dev_list);
	kfree(device);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/* its lock must be held */
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_device *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
		vgic_its_free_device(kvm, cur);
}

/* its lock must be held */
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_collection *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
		vgic_its_free_collection(its, cur->collection_id);
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/* Must be called with its_lock mutex held */
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
						u32 device_id, gpa_t itt_addr,
						u8 num_eventid_bits)
{
	struct its_device *device;

	device = kzalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return ERR_PTR(-ENOMEM);

	device->device_id = device_id;
	device->itt_addr = itt_addr;
	device->num_eventid_bits = num_eventid_bits;
	INIT_LIST_HEAD(&device->itt_head);

	list_add_tail(&device->dev_list, &its->device_list);
	return device;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011
/*
 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	bool valid = its_cmd_get_validbit(its_cmd);
1012
	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1013
	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1014 1015
	struct its_device *device;

1016
	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1017 1018
		return E_ITS_MAPD_DEVICE_OOR;

1019 1020 1021
	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
		return E_ITS_MAPD_ITTSIZE_OOR;

1022 1023 1024 1025 1026 1027 1028 1029
	device = find_its_device(its, device_id);

	/*
	 * The spec says that calling MAPD on an already mapped device
	 * invalidates all cached data for this device. We implement this
	 * by removing the mapping and re-establishing it.
	 */
	if (device)
1030
		vgic_its_free_device(kvm, device);
1031 1032 1033 1034 1035 1036 1037 1038

	/*
	 * The spec does not say whether unmapping a not-mapped device
	 * is an error, so we are done in any case.
	 */
	if (!valid)
		return 0;

1039 1040
	device = vgic_its_alloc_device(its, device_id, itt_addr,
				       num_eventid_bits);
1041

1042
	return PTR_ERR_OR_ZERO(device);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
}

/*
 * The MAPC command maps collection IDs to redistributors.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u16 coll_id;
	u32 target_addr;
	struct its_collection *collection;
	bool valid;

	valid = its_cmd_get_validbit(its_cmd);
	coll_id = its_cmd_get_collection(its_cmd);
	target_addr = its_cmd_get_target_addr(its_cmd);

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MAPC_PROCNUM_OOR;

	if (!valid) {
1065
		vgic_its_free_collection(its, coll_id);
1066
	} else {
1067 1068
		collection = find_collection(its, coll_id);

1069
		if (!collection) {
1070
			int ret;
1071

1072 1073 1074 1075
			ret = vgic_its_alloc_collection(its, &collection,
							coll_id);
			if (ret)
				return ret;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
			collection->target_addr = target_addr;
		} else {
			collection->target_addr = target_addr;
			update_affinity_collection(kvm, its, collection);
		}
	}

	return 0;
}

/*
 * The CLEAR command removes the pending state for a particular LPI.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
				     u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1095
	struct its_ite *ite;
1096 1097


1098 1099
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1100 1101
		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;

1102
	ite->irq->pending_latch = false;
1103

1104 1105 1106 1107
	if (ite->irq->hw)
		return irq_set_irqchip_state(ite->irq->host_irq,
					     IRQCHIP_STATE_PENDING, false);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	return 0;
}

/*
 * The INV command syncs the configuration bits from the memory table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1120
	struct its_ite *ite;
1121 1122


1123 1124
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1125 1126
		return E_ITS_INV_UNMAPPED_INTERRUPT;

1127
	return update_lpi_config(kvm, ite->irq, NULL, true);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

/*
 * The INVALL command requests flushing of all IRQ data in this collection.
 * Find the VCPU mapped to that collection, then iterate over the VM's list
 * of mapped LPIs and update the configuration for each IRQ which targets
 * the specified vcpu. The configuration will be read from the in-memory
 * configuration table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct its_collection *collection;
	struct kvm_vcpu *vcpu;
	struct vgic_irq *irq;
	u32 *intids;
	int irq_count, i;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_INVALL_UNMAPPED_COLLECTION;

	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

1154
	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1155 1156 1157 1158 1159 1160 1161
	if (irq_count < 0)
		return irq_count;

	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
		if (!irq)
			continue;
1162
		update_lpi_config(kvm, irq, vcpu, false);
1163 1164 1165 1166 1167
		vgic_put_irq(kvm, irq);
	}

	kfree(intids);

1168 1169 1170
	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	return 0;
}

/*
 * The MOVALL command moves the pending state of all IRQs targeting one
 * redistributor to another. We don't hold the pending state in the VCPUs,
 * but in the IRQs instead, so there is really not much to do for us here.
 * However the spec says that no IRQ must target the old redistributor
 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
 * This command affects all LPIs in the system that target that redistributor.
 */
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
	struct kvm_vcpu *vcpu1, *vcpu2;
	struct vgic_irq *irq;
1189 1190
	u32 *intids;
	int irq_count, i;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
	    target2_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MOVALL_PROCNUM_OOR;

	if (target1_addr == target2_addr)
		return 0;

	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
	vcpu2 = kvm_get_vcpu(kvm, target2_addr);

1202
	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1203 1204
	if (irq_count < 0)
		return irq_count;
1205

1206 1207
	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
1208

1209
		update_affinity(irq, vcpu2);
1210

1211
		vgic_put_irq(kvm, irq);
1212 1213
	}

1214
	kfree(intids);
1215 1216 1217
	return 0;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
/*
 * The INT command injects the LPI associated with that DevID/EvID pair.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 msi_data = its_cmd_get_id(its_cmd);
	u64 msi_devid = its_cmd_get_deviceid(its_cmd);

1228
	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1229 1230
}

1231 1232 1233 1234
/*
 * This function is called with the its_cmd lock held, but the ITS data
 * structure lock dropped.
 */
1235 1236 1237
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
1238 1239 1240
	int ret = -ENODEV;

	mutex_lock(&its->its_lock);
1241
	switch (its_cmd_get_command(its_cmd)) {
1242 1243 1244 1245 1246 1247 1248
	case GITS_CMD_MAPD:
		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPC:
		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPI:
1249
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1250 1251
		break;
	case GITS_CMD_MAPTI:
1252
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		break;
	case GITS_CMD_MOVI:
		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
		break;
	case GITS_CMD_DISCARD:
		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
		break;
	case GITS_CMD_CLEAR:
		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
		break;
	case GITS_CMD_MOVALL:
		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
		break;
1266 1267 1268
	case GITS_CMD_INT:
		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
		break;
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	case GITS_CMD_INV:
		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
		break;
	case GITS_CMD_INVALL:
		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
		break;
	case GITS_CMD_SYNC:
		/* we ignore this command: we are in sync all of the time */
		ret = 0;
		break;
	}
	mutex_unlock(&its->its_lock);

	return ret;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
}

static u64 vgic_sanitise_its_baser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
				  GITS_BASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	/* We support only one (ITS) page size: 64K */
	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;

	return reg;
}

static u64 vgic_sanitise_its_cbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
				  GITS_CBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

1315 1316
	/* Sanitise the physical address to be 64k aligned. */
	reg &= ~GENMASK_ULL(15, 12);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	return reg;
}

static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cbaser, addr & 7, len);
}

static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
				       gpa_t addr, unsigned int len,
				       unsigned long val)
{
	/* When GITS_CTLR.Enable is 1, this register is RO. */
	if (its->enabled)
		return;

	mutex_lock(&its->cmd_lock);
	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
	its->creadr = 0;
	/*
	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
	 * it to CREADR to make sure we start with an empty command buffer.
	 */
	its->cwriter = its->creadr;
	mutex_unlock(&its->cmd_lock);
}

#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
#define ITS_CMD_SIZE			32
#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))

1352 1353
/* Must be called with the cmd_lock held. */
static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1354 1355 1356 1357
{
	gpa_t cbaser;
	u64 cmd_buf[4];

1358 1359
	/* Commands are only processed when the ITS is enabled. */
	if (!its->enabled)
1360 1361
		return;

1362
	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1363 1364

	while (its->cwriter != its->creadr) {
1365 1366
		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
					      cmd_buf, ITS_CMD_SIZE);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		/*
		 * If kvm_read_guest() fails, this could be due to the guest
		 * programming a bogus value in CBASER or something else going
		 * wrong from which we cannot easily recover.
		 * According to section 6.3.2 in the GICv3 spec we can just
		 * ignore that command then.
		 */
		if (!ret)
			vgic_its_handle_command(kvm, its, cmd_buf);

		its->creadr += ITS_CMD_SIZE;
		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
			its->creadr = 0;
	}
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
}

/*
 * By writing to CWRITER the guest announces new commands to be processed.
 * To avoid any races in the first place, we take the its_cmd lock, which
 * protects our ring buffer variables, so that there is only one user
 * per ITS handling commands at a given time.
 */
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
					gpa_t addr, unsigned int len,
					unsigned long val)
{
	u64 reg;

	if (!its)
		return;

	mutex_lock(&its->cmd_lock);

	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
	reg = ITS_CMD_OFFSET(reg);
	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		mutex_unlock(&its->cmd_lock);
		return;
	}
	its->cwriter = reg;

	vgic_its_process_commands(kvm, its);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	mutex_unlock(&its->cmd_lock);
}

static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
						struct vgic_its *its,
						gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cwriter, addr & 0x7, len);
}

static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->creadr, addr & 0x7, len);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len,
					      unsigned long val)
{
	u32 cmd_offset;
	int ret = 0;

	mutex_lock(&its->cmd_lock);

	if (its->enabled) {
		ret = -EBUSY;
		goto out;
	}

	cmd_offset = ITS_CMD_OFFSET(val);
	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		ret = -EINVAL;
		goto out;
	}

	its->creadr = cmd_offset;
out:
	mutex_unlock(&its->cmd_lock);
	return ret;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
	u64 reg;

	switch (BASER_INDEX(addr)) {
	case 0:
		reg = its->baser_device_table;
		break;
	case 1:
		reg = its->baser_coll_table;
		break;
	default:
		reg = 0;
		break;
	}

	return extract_bytes(reg, addr & 7, len);
}

#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
static void vgic_mmio_write_its_baser(struct kvm *kvm,
				      struct vgic_its *its,
				      gpa_t addr, unsigned int len,
				      unsigned long val)
{
1482
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1483
	u64 entry_size, table_type;
1484 1485 1486 1487 1488 1489 1490 1491 1492
	u64 reg, *regptr, clearbits = 0;

	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
	if (its->enabled)
		return;

	switch (BASER_INDEX(addr)) {
	case 0:
		regptr = &its->baser_device_table;
1493
		entry_size = abi->dte_esz;
1494
		table_type = GITS_BASER_TYPE_DEVICE;
1495 1496 1497
		break;
	case 1:
		regptr = &its->baser_coll_table;
1498
		entry_size = abi->cte_esz;
1499
		table_type = GITS_BASER_TYPE_COLLECTION;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		clearbits = GITS_BASER_INDIRECT;
		break;
	default:
		return;
	}

	reg = update_64bit_reg(*regptr, addr & 7, len, val);
	reg &= ~GITS_BASER_RO_MASK;
	reg &= ~clearbits;

	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1511
	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1512 1513 1514
	reg = vgic_sanitise_its_baser(reg);

	*regptr = reg;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!(reg & GITS_BASER_VALID)) {
		/* Take the its_lock to prevent a race with a save/restore */
		mutex_lock(&its->its_lock);
		switch (table_type) {
		case GITS_BASER_TYPE_DEVICE:
			vgic_its_free_device_list(kvm, its);
			break;
		case GITS_BASER_TYPE_COLLECTION:
			vgic_its_free_collection_list(kvm, its);
			break;
		}
		mutex_unlock(&its->its_lock);
	}
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
	u32 reg = 0;

	mutex_lock(&its->cmd_lock);
	if (its->creadr == its->cwriter)
		reg |= GITS_CTLR_QUIESCENT;
	if (its->enabled)
		reg |= GITS_CTLR_ENABLE;
	mutex_unlock(&its->cmd_lock);

	return reg;
}

static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	mutex_lock(&its->cmd_lock);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
	 * device/collection BASER are invalid
	 */
	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
		(!(its->baser_device_table & GITS_BASER_VALID) ||
		 !(its->baser_coll_table & GITS_BASER_VALID) ||
		 !(its->cbaser & GITS_CBASER_VALID)))
		goto out;

1563 1564 1565 1566 1567 1568 1569 1570
	its->enabled = !!(val & GITS_CTLR_ENABLE);

	/*
	 * Try to process any pending commands. This function bails out early
	 * if the ITS is disabled or no commands have been queued.
	 */
	vgic_its_process_commands(kvm, its);

1571
out:
1572 1573 1574
	mutex_unlock(&its->cmd_lock);
}

1575 1576 1577 1578 1579 1580 1581 1582 1583
#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
	.uaccess_its_write = uwr,				\
}

1594 1595 1596 1597 1598 1599 1600 1601
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
			      gpa_t addr, unsigned int len, unsigned long val)
{
	/* Ignore */
}

static struct vgic_register_region its_registers[] = {
	REGISTER_ITS_DESC(GITS_CTLR,
1602
		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1603
		VGIC_ACCESS_32bit),
1604 1605 1606
	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
		vgic_mmio_read_its_iidr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_iidr, 4,
1607 1608
		VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_TYPER,
1609
		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1610 1611
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CBASER,
1612
		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1613 1614
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CWRITER,
1615
		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1616
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1617 1618 1619
	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
		vgic_mmio_read_its_creadr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_creadr, 8,
1620 1621
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_BASER,
1622
		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1623 1624
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1625
		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1626 1627 1628
		VGIC_ACCESS_32bit),
};

1629 1630 1631 1632 1633 1634 1635
/* This is called on setting the LPI enable bit in the redistributor. */
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
		its_sync_lpi_pending_table(vcpu);
}

1636 1637
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
				   u64 addr)
1638 1639 1640 1641
{
	struct vgic_io_device *iodev = &its->iodev;
	int ret;

1642 1643 1644 1645 1646
	mutex_lock(&kvm->slots_lock);
	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -EBUSY;
		goto out;
	}
1647

1648
	its->vgic_its_base = addr;
1649 1650 1651 1652 1653 1654 1655 1656 1657
	iodev->regions = its_registers;
	iodev->nr_regions = ARRAY_SIZE(its_registers);
	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);

	iodev->base_addr = its->vgic_its_base;
	iodev->iodev_type = IODEV_ITS;
	iodev->its = its;
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1658
out:
1659 1660 1661 1662
	mutex_unlock(&kvm->slots_lock);

	return ret;
}
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#define INITIAL_BASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
	 GITS_BASER_PAGE_SIZE_64K)

#define INITIAL_PROPBASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static int vgic_its_create(struct kvm_device *dev, u32 type)
{
	struct vgic_its *its;

	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
		return -ENODEV;

	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
	if (!its)
		return -ENOMEM;

1686 1687
	if (vgic_initialized(dev->kvm)) {
		int ret = vgic_v4_init(dev->kvm);
1688
		if (ret < 0) {
1689 1690 1691 1692 1693
			kfree(its);
			return ret;
		}
	}

1694 1695 1696
	mutex_init(&its->its_lock);
	mutex_init(&its->cmd_lock);

1697 1698
	its->vgic_its_base = VGIC_ADDR_UNDEF;

1699 1700 1701
	INIT_LIST_HEAD(&its->device_list);
	INIT_LIST_HEAD(&its->collection_list);

1702
	dev->kvm->arch.vgic.msis_require_devid = true;
1703 1704
	dev->kvm->arch.vgic.has_its = true;
	its->enabled = false;
1705
	its->dev = dev;
1706

1707 1708 1709 1710 1711 1712
	its->baser_device_table = INITIAL_BASER_VALUE			|
		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
	its->baser_coll_table = INITIAL_BASER_VALUE |
		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;

1713 1714
	dev->private = its;

1715
	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1716 1717 1718 1719
}

static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
1720
	struct kvm *kvm = kvm_dev->kvm;
1721
	struct vgic_its *its = kvm_dev->private;
1722 1723

	mutex_lock(&its->its_lock);
1724

1725 1726
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
1727 1728

	mutex_unlock(&its->its_lock);
1729 1730 1731
	kfree(its);
}

1732 1733 1734
int vgic_its_has_attr_regs(struct kvm_device *dev,
			   struct kvm_device_attr *attr)
{
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	const struct vgic_register_region *region;
	gpa_t offset = attr->attr;
	int align;

	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;

	if (offset & align)
		return -EINVAL;

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region)
		return -ENXIO;

	return 0;
1751 1752 1753 1754 1755 1756
}

int vgic_its_attr_regs_access(struct kvm_device *dev,
			      struct kvm_device_attr *attr,
			      u64 *reg, bool is_write)
{
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	const struct vgic_register_region *region;
	struct vgic_its *its;
	gpa_t addr, offset;
	unsigned int len;
	int align, ret = 0;

	its = dev->private;
	offset = attr->attr;

	/*
	 * Although the spec supports upper/lower 32-bit accesses to
	 * 64-bit ITS registers, the userspace ABI requires 64-bit
	 * accesses to all 64-bit wide registers. We therefore only
	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
	 * registers
	 */
	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
		align = 0x3;
	else
		align = 0x7;

	if (offset & align)
		return -EINVAL;

	mutex_lock(&dev->kvm->lock);

	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -ENXIO;
		goto out;
	}

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region) {
		ret = -ENXIO;
		goto out;
	}

	if (!lock_all_vcpus(dev->kvm)) {
		ret = -EBUSY;
		goto out;
	}

	addr = its->vgic_its_base + offset;

	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;

	if (is_write) {
		if (region->uaccess_its_write)
			ret = region->uaccess_its_write(dev->kvm, its, addr,
							len, *reg);
		else
			region->its_write(dev->kvm, its, addr, len, *reg);
	} else {
		*reg = region->its_read(dev->kvm, its, addr, len);
	}
	unlock_all_vcpus(dev->kvm);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
1818 1819
}

1820 1821
static u32 compute_next_devid_offset(struct list_head *h,
				     struct its_device *dev)
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
{
	struct its_device *next;
	u32 next_offset;

	if (list_is_last(&dev->dev_list, h))
		return 0;
	next = list_next_entry(dev, dev_list);
	next_offset = next->device_id - dev->device_id;

	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
}

1834
static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
{
	struct its_ite *next;
	u32 next_offset;

	if (list_is_last(&ite->ite_list, h))
		return 0;
	next = list_next_entry(ite, ite_list);
	next_offset = next->event_id - ite->event_id;

	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
}

/**
 * entry_fn_t - Callback called on a table entry restore path
 * @its: its handle
 * @id: id of the entry
 * @entry: pointer to the entry
 * @opaque: pointer to an opaque data
 *
 * Return: < 0 on error, 0 if last element was identified, id offset to next
 * element otherwise
 */
typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
			  void *opaque);

/**
 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
 * to each entry
 *
 * @its: its handle
 * @base: base gpa of the table
 * @size: size of the table in bytes
 * @esz: entry size in bytes
 * @start_id: the ID of the first entry in the table
 * (non zero for 2d level tables)
 * @fn: function to apply on each entry
 *
 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
 * (the last element may not be found on second level tables)
 */
1875
static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1876
			  int start_id, entry_fn_t fn, void *opaque)
1877 1878 1879 1880 1881
{
	struct kvm *kvm = its->dev->kvm;
	unsigned long len = size;
	int id = start_id;
	gpa_t gpa = base;
1882
	char entry[ESZ_MAX];
1883 1884
	int ret;

1885 1886
	memset(entry, 0, esz);

1887 1888 1889 1890
	while (len > 0) {
		int next_offset;
		size_t byte_offset;

1891
		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1892
		if (ret)
1893
			return ret;
1894 1895

		next_offset = fn(its, id, entry, opaque);
1896 1897
		if (next_offset <= 0)
			return next_offset;
1898 1899 1900 1901 1902 1903

		byte_offset = next_offset * esz;
		id += next_offset;
		gpa += byte_offset;
		len -= byte_offset;
	}
1904
	return 1;
1905 1906
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/**
 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
 */
static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
			      struct its_ite *ite, gpa_t gpa, int ite_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u32 next_offset;
	u64 val;

	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1919
	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		ite->collection->collection_id;
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, gpa, &val, ite_esz);
}

/**
 * vgic_its_restore_ite - restore an interrupt translation entry
 * @event_id: id used for indexing
 * @ptr: pointer to the ITE entry
 * @opaque: pointer to the its_device
 */
static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
				void *ptr, void *opaque)
{
	struct its_device *dev = (struct its_device *)opaque;
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	struct kvm_vcpu *vcpu = NULL;
	u64 val;
	u64 *p = (u64 *)ptr;
	struct vgic_irq *irq;
	u32 coll_id, lpi_id;
	struct its_ite *ite;
	u32 offset;

	val = *p;

	val = le64_to_cpu(val);

	coll_id = val & KVM_ITS_ITE_ICID_MASK;
	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;

	if (!lpi_id)
		return 1; /* invalid entry, no choice but to scan next entry */

	if (lpi_id < VGIC_MIN_LPI)
		return -EINVAL;

	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (!collection)
		return -EINVAL;

1966
	ite = vgic_its_alloc_ite(dev, collection, event_id);
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (IS_ERR(ite))
		return PTR_ERR(ite);

	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
	if (IS_ERR(irq))
		return PTR_ERR(irq);
	ite->irq = irq;

	return offset;
}

static int vgic_its_ite_cmp(void *priv, struct list_head *a,
			    struct list_head *b)
{
	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);

	if (itea->event_id < iteb->event_id)
		return -1;
	else
		return 1;
}

1993 1994
static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
{
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = device->itt_addr;
	struct its_ite *ite;
	int ret;
	int ite_esz = abi->ite_esz;

	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);

	list_for_each_entry(ite, &device->itt_head, ite_list) {
		gpa_t gpa = base + ite->event_id * ite_esz;

2006 2007 2008 2009 2010 2011 2012 2013 2014
		/*
		 * If an LPI carries the HW bit, this means that this
		 * interrupt is controlled by GICv4, and we do not
		 * have direct access to that state. Let's simply fail
		 * the save operation...
		 */
		if (ite->irq->hw)
			return -EACCES;

2015 2016 2017 2018 2019
		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
		if (ret)
			return ret;
	}
	return 0;
2020 2021
}

2022 2023 2024 2025 2026 2027 2028 2029
/**
 * vgic_its_restore_itt - restore the ITT of a device
 *
 * @its: its handle
 * @dev: device handle
 *
 * Return 0 on success, < 0 on error
 */
2030 2031
static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
{
2032 2033 2034 2035 2036 2037 2038 2039 2040
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = dev->itt_addr;
	int ret;
	int ite_esz = abi->ite_esz;
	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;

	ret = scan_its_table(its, base, max_size, ite_esz, 0,
			     vgic_its_restore_ite, dev);

2041 2042 2043 2044
	/* scan_its_table returns +1 if all ITEs are invalid */
	if (ret > 0)
		ret = 0;

2045
	return ret;
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
}

/**
 * vgic_its_save_dte - Save a device table entry at a given GPA
 *
 * @its: ITS handle
 * @dev: ITS device
 * @ptr: GPA
 */
static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
			     gpa_t ptr, int dte_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u64 val, itt_addr_field;
	u32 next_offset;

	itt_addr_field = dev->itt_addr >> 8;
	next_offset = compute_next_devid_offset(&its->device_list, dev);
	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
		(dev->num_eventid_bits - 1));
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, ptr, &val, dte_esz);
}

/**
 * vgic_its_restore_dte - restore a device table entry
 *
 * @its: its handle
 * @id: device id the DTE corresponds to
 * @ptr: kernel VA where the 8 byte DTE is located
 * @opaque: unused
 *
 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
 * next dte otherwise
 */
static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
				void *ptr, void *opaque)
{
	struct its_device *dev;
	gpa_t itt_addr;
	u8 num_eventid_bits;
	u64 entry = *(u64 *)ptr;
	bool valid;
	u32 offset;
	int ret;

	entry = le64_to_cpu(entry);

	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;

	if (!valid)
		return 1;

	/* dte entry is valid */
	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;

	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
	if (IS_ERR(dev))
		return PTR_ERR(dev);

	ret = vgic_its_restore_itt(its, dev);
2112 2113
	if (ret) {
		vgic_its_free_device(its->dev->kvm, dev);
2114
		return ret;
2115
	}
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

	return offset;
}

static int vgic_its_device_cmp(void *priv, struct list_head *a,
			       struct list_head *b)
{
	struct its_device *deva = container_of(a, struct its_device, dev_list);
	struct its_device *devb = container_of(b, struct its_device, dev_list);

	if (deva->device_id < devb->device_id)
		return -1;
	else
		return 1;
}

2132 2133 2134
/**
 * vgic_its_save_device_tables - Save the device table and all ITT
 * into guest RAM
2135 2136 2137
 *
 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
 * returns the GPA of the device entry
2138 2139 2140
 */
static int vgic_its_save_device_tables(struct vgic_its *its)
{
2141
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2142
	u64 baser = its->baser_device_table;
2143 2144 2145
	struct its_device *dev;
	int dte_esz = abi->dte_esz;

2146 2147
	if (!(baser & GITS_BASER_VALID))
		return 0;
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	list_sort(NULL, &its->device_list, vgic_its_device_cmp);

	list_for_each_entry(dev, &its->device_list, dev_list) {
		int ret;
		gpa_t eaddr;

		if (!vgic_its_check_id(its, baser,
				       dev->device_id, &eaddr))
			return -EINVAL;

		ret = vgic_its_save_itt(its, dev);
		if (ret)
			return ret;

		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
 *
 * @its: its handle
 * @id: index of the entry in the L1 table
 * @addr: kernel VA
 * @opaque: unused
 *
 * L1 table entries are scanned by steps of 1 entry
 * Return < 0 if error, 0 if last dte was found when scanning the L2
 * table, +1 otherwise (meaning next L1 entry must be scanned)
 */
static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
			 void *opaque)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int l2_start_id = id * (SZ_64K / abi->dte_esz);
	u64 entry = *(u64 *)addr;
	int dte_esz = abi->dte_esz;
	gpa_t gpa;
	int ret;

	entry = le64_to_cpu(entry);

	if (!(entry & KVM_ITS_L1E_VALID_MASK))
		return 1;

	gpa = entry & KVM_ITS_L1E_ADDR_MASK;

	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
			     l2_start_id, vgic_its_restore_dte, NULL);

2202
	return ret;
2203 2204 2205 2206 2207 2208 2209 2210
}

/**
 * vgic_its_restore_device_tables - Restore the device table and all ITT
 * from guest RAM to internal data structs
 */
static int vgic_its_restore_device_tables(struct vgic_its *its)
{
2211 2212 2213 2214 2215 2216 2217 2218 2219
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	u64 baser = its->baser_device_table;
	int l1_esz, ret;
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
	gpa_t l1_gpa;

	if (!(baser & GITS_BASER_VALID))
		return 0;

2220
	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

	if (baser & GITS_BASER_INDIRECT) {
		l1_esz = GITS_LVL1_ENTRY_SIZE;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     handle_l1_dte, NULL);
	} else {
		l1_esz = abi->dte_esz;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     vgic_its_restore_dte, NULL);
	}

2232
	/* scan_its_table returns +1 if all entries are invalid */
2233
	if (ret > 0)
2234
		ret = 0;
2235 2236

	return ret;
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static int vgic_its_save_cte(struct vgic_its *its,
			     struct its_collection *collection,
			     gpa_t gpa, int esz)
{
	u64 val;

	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
	       collection->collection_id);
	val = cpu_to_le64(val);
	return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
}

static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
{
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	u32 target_addr, coll_id;
	u64 val;
	int ret;

	BUG_ON(esz > sizeof(val));
2261
	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	if (ret)
		return ret;
	val = le64_to_cpu(val);
	if (!(val & KVM_ITS_CTE_VALID_MASK))
		return 0;

	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
	coll_id = val & KVM_ITS_CTE_ICID_MASK;

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (collection)
		return -EEXIST;
	ret = vgic_its_alloc_collection(its, &collection, coll_id);
	if (ret)
		return ret;
	collection->target_addr = target_addr;
	return 1;
}

2284 2285 2286 2287 2288 2289
/**
 * vgic_its_save_collection_table - Save the collection table into
 * guest RAM
 */
static int vgic_its_save_collection_table(struct vgic_its *its)
{
2290
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2291
	u64 baser = its->baser_coll_table;
2292
	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2293 2294 2295 2296 2297
	struct its_collection *collection;
	u64 val;
	size_t max_size, filled = 0;
	int ret, cte_esz = abi->cte_esz;

2298
	if (!(baser & GITS_BASER_VALID))
2299 2300
		return 0;

2301
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
		if (ret)
			return ret;
		gpa += cte_esz;
		filled += cte_esz;
	}

	if (filled == max_size)
		return 0;

	/*
	 * table is not fully filled, add a last dummy element
	 * with valid bit unset
	 */
	val = 0;
	BUG_ON(cte_esz > sizeof(val));
	ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
	return ret;
2322 2323 2324 2325 2326 2327 2328 2329 2330
}

/**
 * vgic_its_restore_collection_table - reads the collection table
 * in guest memory and restores the ITS internal state. Requires the
 * BASER registers to be restored before.
 */
static int vgic_its_restore_collection_table(struct vgic_its *its)
{
2331
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2332
	u64 baser = its->baser_coll_table;
2333 2334 2335 2336 2337
	int cte_esz = abi->cte_esz;
	size_t max_size, read = 0;
	gpa_t gpa;
	int ret;

2338
	if (!(baser & GITS_BASER_VALID))
2339 2340
		return 0;

2341
	gpa = GITS_BASER_ADDR_48_to_52(baser);
2342

2343
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2344 2345 2346 2347 2348 2349 2350 2351

	while (read < max_size) {
		ret = vgic_its_restore_cte(its, gpa, cte_esz);
		if (ret <= 0)
			break;
		gpa += cte_esz;
		read += cte_esz;
	}
2352 2353 2354 2355

	if (ret > 0)
		return 0;

2356
	return ret;
2357 2358
}

2359 2360 2361 2362 2363 2364
/**
 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
 * according to v0 ABI
 */
static int vgic_its_save_tables_v0(struct vgic_its *its)
{
2365 2366 2367 2368
	int ret;

	ret = vgic_its_save_device_tables(its);
	if (ret)
2369
		return ret;
2370

2371
	return vgic_its_save_collection_table(its);
2372 2373 2374 2375 2376 2377 2378 2379 2380
}

/**
 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
 * to internal data structs according to V0 ABI
 *
 */
static int vgic_its_restore_tables_v0(struct vgic_its *its)
{
2381 2382 2383 2384
	int ret;

	ret = vgic_its_restore_collection_table(its);
	if (ret)
2385
		return ret;
2386

2387
	return vgic_its_restore_device_tables(its);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
}

static int vgic_its_commit_v0(struct vgic_its *its)
{
	const struct vgic_its_abi *abi;

	abi = vgic_its_get_abi(its);
	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;

	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);

	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);
	return 0;
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
{
	/* We need to keep the ABI specific field values */
	its->baser_coll_table &= ~GITS_BASER_VALID;
	its->baser_device_table &= ~GITS_BASER_VALID;
	its->cbaser = 0;
	its->creadr = 0;
	its->cwriter = 0;
	its->enabled = 0;
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static int vgic_its_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_ITS_ADDR_TYPE:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
2433 2434
		case KVM_DEV_ARM_ITS_CTRL_RESET:
			return 0;
2435 2436 2437 2438
		case KVM_DEV_ARM_ITS_SAVE_TABLES:
			return 0;
		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
			return 0;
2439 2440
		}
		break;
2441 2442
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
		return vgic_its_has_attr_regs(dev, attr);
2443 2444 2445 2446
	}
	return -ENXIO;
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int ret = 0;

	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
		return 0;

	mutex_lock(&kvm->lock);
	mutex_lock(&its->its_lock);

	if (!lock_all_vcpus(kvm)) {
		mutex_unlock(&its->its_lock);
		mutex_unlock(&kvm->lock);
		return -EBUSY;
	}

	switch (attr) {
	case KVM_DEV_ARM_ITS_CTRL_RESET:
		vgic_its_reset(kvm, its);
		break;
	case KVM_DEV_ARM_ITS_SAVE_TABLES:
		ret = abi->save_tables(its);
		break;
	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
		ret = abi->restore_tables(its);
		break;
	}

	unlock_all_vcpus(kvm);
	mutex_unlock(&its->its_lock);
	mutex_unlock(&kvm->lock);
	return ret;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static int vgic_its_set_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct vgic_its *its = dev->private;
	int ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;
		u64 addr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
					addr, SZ_64K);
		if (ret)
			return ret;

2505
		return vgic_register_its_iodev(dev->kvm, its, addr);
2506
	}
2507 2508
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2509 2510 2511 2512 2513 2514 2515 2516 2517
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_its_attr_regs_access(dev, attr, &reg, true);
	}
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	}
	return -ENXIO;
}

static int vgic_its_get_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		struct vgic_its *its = dev->private;
		u64 addr = its->vgic_its_base;
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
		break;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	}
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;
		int ret;

		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
		if (ret)
			return ret;
		return put_user(reg, uaddr);
	}
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	default:
		return -ENXIO;
	}

	return 0;
}

static struct kvm_device_ops kvm_arm_vgic_its_ops = {
	.name = "kvm-arm-vgic-its",
	.create = vgic_its_create,
	.destroy = vgic_its_destroy,
	.set_attr = vgic_its_set_attr,
	.get_attr = vgic_its_get_attr,
	.has_attr = vgic_its_has_attr,
};

int kvm_vgic_register_its_device(void)
{
	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
				       KVM_DEV_TYPE_ARM_VGIC_ITS);
}