vgic-its.c 64.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * GICv3 ITS emulation
 *
 * Copyright (C) 2015,2016 ARM Ltd.
 * Author: Andre Przywara <andre.przywara@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
24
#include <linux/list.h>
25
#include <linux/uaccess.h>
26
#include <linux/list_sort.h>
27 28 29 30 31 32 33 34 35 36

#include <linux/irqchip/arm-gic-v3.h>

#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>

#include "vgic.h"
#include "vgic-mmio.h"

37 38 39
static int vgic_its_save_tables_v0(struct vgic_its *its);
static int vgic_its_restore_tables_v0(struct vgic_its *its);
static int vgic_its_commit_v0(struct vgic_its *its);
40
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41
			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
42

43 44 45 46 47 48 49
/*
 * Creates a new (reference to a) struct vgic_irq for a given LPI.
 * If this LPI is already mapped on another ITS, we increase its refcount
 * and return a pointer to the existing structure.
 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
 * This function returns a pointer to the _unlocked_ structure.
 */
50 51
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
				     struct kvm_vcpu *vcpu)
52 53 54
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55
	unsigned long flags;
56
	int ret;
57 58 59 60 61 62 63

	/* In this case there is no put, since we keep the reference. */
	if (irq)
		return irq;

	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
	if (!irq)
64
		return ERR_PTR(-ENOMEM);
65 66 67 68 69 70 71 72

	INIT_LIST_HEAD(&irq->lpi_list);
	INIT_LIST_HEAD(&irq->ap_list);
	spin_lock_init(&irq->irq_lock);

	irq->config = VGIC_CONFIG_EDGE;
	kref_init(&irq->refcount);
	irq->intid = intid;
73
	irq->target_vcpu = vcpu;
74

75
	spin_lock_irqsave(&dist->lpi_list_lock, flags);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

	/*
	 * There could be a race with another vgic_add_lpi(), so we need to
	 * check that we don't add a second list entry with the same LPI.
	 */
	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
		if (oldirq->intid != intid)
			continue;

		/* Someone was faster with adding this LPI, lets use that. */
		kfree(irq);
		irq = oldirq;

		/*
		 * This increases the refcount, the caller is expected to
		 * call vgic_put_irq() on the returned pointer once it's
		 * finished with the IRQ.
		 */
94
		vgic_get_irq_kref(irq);
95 96 97 98 99 100 101 102

		goto out_unlock;
	}

	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
	dist->lpi_list_count++;

out_unlock:
103
	spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
104

105 106 107 108 109
	/*
	 * We "cache" the configuration table entries in our struct vgic_irq's.
	 * However we only have those structs for mapped IRQs, so we read in
	 * the respective config data from memory here upon mapping the LPI.
	 */
110
	ret = update_lpi_config(kvm, irq, NULL, false);
111 112 113 114 115 116 117
	if (ret)
		return ERR_PTR(ret);

	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
	if (ret)
		return ERR_PTR(ret);

118 119 120
	return irq;
}

121 122 123 124 125
struct its_device {
	struct list_head dev_list;

	/* the head for the list of ITTEs */
	struct list_head itt_head;
126
	u32 num_eventid_bits;
127
	gpa_t itt_addr;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	u32 device_id;
};

#define COLLECTION_NOT_MAPPED ((u32)~0)

struct its_collection {
	struct list_head coll_list;

	u32 collection_id;
	u32 target_addr;
};

#define its_is_collection_mapped(coll) ((coll) && \
				((coll)->target_addr != COLLECTION_NOT_MAPPED))

143 144
struct its_ite {
	struct list_head ite_list;
145

146
	struct vgic_irq *irq;
147 148 149 150
	struct its_collection *collection;
	u32 event_id;
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/**
 * struct vgic_its_abi - ITS abi ops and settings
 * @cte_esz: collection table entry size
 * @dte_esz: device table entry size
 * @ite_esz: interrupt translation table entry size
 * @save tables: save the ITS tables into guest RAM
 * @restore_tables: restore the ITS internal structs from tables
 *  stored in guest RAM
 * @commit: initialize the registers which expose the ABI settings,
 *  especially the entry sizes
 */
struct vgic_its_abi {
	int cte_esz;
	int dte_esz;
	int ite_esz;
	int (*save_tables)(struct vgic_its *its);
	int (*restore_tables)(struct vgic_its *its);
	int (*commit)(struct vgic_its *its);
};

static const struct vgic_its_abi its_table_abi_versions[] = {
	[0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
	 .save_tables = vgic_its_save_tables_v0,
	 .restore_tables = vgic_its_restore_tables_v0,
	 .commit = vgic_its_commit_v0,
	},
};

#define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)

inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
{
	return &its_table_abi_versions[its->abi_rev];
}

int vgic_its_set_abi(struct vgic_its *its, int rev)
{
	const struct vgic_its_abi *abi;

	its->abi_rev = rev;
	abi = vgic_its_get_abi(its);
	return abi->commit(its);
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Find and returns a device in the device table for an ITS.
 * Must be called with the its_lock mutex held.
 */
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
{
	struct its_device *device;

	list_for_each_entry(device, &its->device_list, dev_list)
		if (device_id == device->device_id)
			return device;

	return NULL;
}

/*
 * Find and returns an interrupt translation table entry (ITTE) for a given
 * Device ID/Event ID pair on an ITS.
 * Must be called with the its_lock mutex held.
 */
215
static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
216 217 218
				  u32 event_id)
{
	struct its_device *device;
219
	struct its_ite *ite;
220 221 222 223 224

	device = find_its_device(its, device_id);
	if (device == NULL)
		return NULL;

225 226 227
	list_for_each_entry(ite, &device->itt_head, ite_list)
		if (ite->event_id == event_id)
			return ite;
228 229 230 231 232

	return NULL;
}

/* To be used as an iterator this macro misses the enclosing parentheses */
233
#define for_each_lpi_its(dev, ite, its) \
234
	list_for_each_entry(dev, &(its)->device_list, dev_list) \
235
		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
236

237 238 239 240
/*
 * We only implement 48 bits of PA at the moment, although the ITS
 * supports more. Let's be restrictive here.
 */
241
#define BASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
242
#define CBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
243 244 245

#define GIC_LPI_OFFSET 8192

246
#define VITS_TYPER_IDBITS 16
247
#define VITS_TYPER_DEVBITS 16
248 249
#define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
#define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Finds and returns a collection in the ITS collection table.
 * Must be called with the its_lock mutex held.
 */
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
{
	struct its_collection *collection;

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		if (coll_id == collection->collection_id)
			return collection;
	}

	return NULL;
}

267 268 269 270 271 272 273 274 275 276
#define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
#define LPI_PROP_PRIORITY(p)	((p) & 0xfc)

/*
 * Reads the configuration data for a given LPI from guest memory and
 * updates the fields in struct vgic_irq.
 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 */
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
277
			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
278
{
279
	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
280 281
	u8 prop;
	int ret;
282
	unsigned long flags;
283

284 285
	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
				  &prop, 1);
286 287 288 289

	if (ret)
		return ret;

290
	spin_lock_irqsave(&irq->irq_lock, flags);
291 292 293 294 295

	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
		irq->priority = LPI_PROP_PRIORITY(prop);
		irq->enabled = LPI_PROP_ENABLE_BIT(prop);

296 297 298 299
		if (!irq->hw) {
			vgic_queue_irq_unlock(kvm, irq, flags);
			return 0;
		}
300 301
	}

302 303
	spin_unlock_irqrestore(&irq->irq_lock, flags);

304
	if (irq->hw)
305
		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
306

307 308
	return 0;
}
309 310

/*
311 312 313
 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 * enumerate those LPIs without holding any lock.
 * Returns their number and puts the kmalloc'ed array into intid_ptr.
314
 */
315
static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
316
{
317
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
318
	struct vgic_irq *irq;
319
	unsigned long flags;
320
	u32 *intids;
321
	int irq_count, i = 0;
322 323

	/*
324 325 326 327 328
	 * There is an obvious race between allocating the array and LPIs
	 * being mapped/unmapped. If we ended up here as a result of a
	 * command, we're safe (locks are held, preventing another
	 * command). If coming from another path (such as enabling LPIs),
	 * we must be careful not to overrun the array.
329
	 */
330
	irq_count = READ_ONCE(dist->lpi_list_count);
331 332 333 334
	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
	if (!intids)
		return -ENOMEM;

335
	spin_lock_irqsave(&dist->lpi_list_lock, flags);
336
	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
337 338
		if (i == irq_count)
			break;
339
		/* We don't need to "get" the IRQ, as we hold the list lock. */
340 341 342
		if (irq->target_vcpu != vcpu)
			continue;
		intids[i++] = irq->intid;
343
	}
344
	spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
345 346

	*intid_ptr = intids;
347
	return i;
348 349
}

350 351
static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
{
352
	int ret = 0;
353
	unsigned long flags;
354

355
	spin_lock_irqsave(&irq->irq_lock, flags);
356
	irq->target_vcpu = vcpu;
357
	spin_unlock_irqrestore(&irq->irq_lock, flags);
358

359 360 361 362 363 364 365 366 367 368 369 370 371
	if (irq->hw) {
		struct its_vlpi_map map;

		ret = its_get_vlpi(irq->host_irq, &map);
		if (ret)
			return ret;

		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;

		ret = its_map_vlpi(irq->host_irq, &map);
	}

	return ret;
372 373
}

374 375 376 377 378 379
/*
 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 * is targeting) to the VGIC's view, which deals with target VCPUs.
 * Needs to be called whenever either the collection for a LPIs has
 * changed or the collection itself got retargeted.
 */
380
static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
381 382 383
{
	struct kvm_vcpu *vcpu;

384
	if (!its_is_collection_mapped(ite->collection))
385 386
		return;

387
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
388
	update_affinity(ite->irq, vcpu);
389 390 391 392 393 394 395 396 397 398
}

/*
 * Updates the target VCPU for every LPI targeting this collection.
 * Must be called with the its_lock mutex held.
 */
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
				       struct its_collection *coll)
{
	struct its_device *device;
399
	struct its_ite *ite;
400

401 402
	for_each_lpi_its(device, ite, its) {
		if (!ite->collection || coll != ite->collection)
403 404
			continue;

405
		update_affinity_ite(kvm, ite);
406 407 408 409 410 411 412 413 414 415
	}
}

static u32 max_lpis_propbaser(u64 propbaser)
{
	int nr_idbits = (propbaser & 0x1f) + 1;

	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
}

416
/*
417
 * Sync the pending table pending bit of LPIs targeting @vcpu
418 419 420 421 422
 * with our own data structures. This relies on the LPI being
 * mapped before.
 */
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
{
423
	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
424 425 426 427 428
	struct vgic_irq *irq;
	int last_byte_offset = -1;
	int ret = 0;
	u32 *intids;
	int nr_irqs, i;
429
	unsigned long flags;
430
	u8 pendmask;
431

432
	nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
433 434 435 436 437 438 439 440 441 442 443 444 445 446
	if (nr_irqs < 0)
		return nr_irqs;

	for (i = 0; i < nr_irqs; i++) {
		int byte_offset, bit_nr;

		byte_offset = intids[i] / BITS_PER_BYTE;
		bit_nr = intids[i] % BITS_PER_BYTE;

		/*
		 * For contiguously allocated LPIs chances are we just read
		 * this very same byte in the last iteration. Reuse that.
		 */
		if (byte_offset != last_byte_offset) {
447 448 449
			ret = kvm_read_guest_lock(vcpu->kvm,
						  pendbase + byte_offset,
						  &pendmask, 1);
450 451 452 453 454 455 456 457
			if (ret) {
				kfree(intids);
				return ret;
			}
			last_byte_offset = byte_offset;
		}

		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
458
		spin_lock_irqsave(&irq->irq_lock, flags);
459
		irq->pending_latch = pendmask & (1U << bit_nr);
460
		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
461 462 463 464 465 466 467
		vgic_put_irq(vcpu->kvm, irq);
	}

	kfree(intids);

	return ret;
}
468 469 470 471 472

static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
473
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
474 475 476 477 478 479 480 481 482 483
	u64 reg = GITS_TYPER_PLPIS;

	/*
	 * We use linear CPU numbers for redistributor addressing,
	 * so GITS_TYPER.PTA is 0.
	 * Also we force all PROPBASER registers to be the same, so
	 * CommonLPIAff is 0 as well.
	 * To avoid memory waste in the guest, we keep the number of IDBits and
	 * DevBits low - as least for the time being.
	 */
484
	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
485
	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
486
	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
487 488 489 490 491 492 493 494

	return extract_bytes(reg, addr & 7, len);
}

static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	u32 val;

	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
	return val;
}

static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
					    struct vgic_its *its,
					    gpa_t addr, unsigned int len,
					    unsigned long val)
{
	u32 rev = GITS_IIDR_REV(val);

	if (rev >= NR_ITS_ABIS)
		return -EINVAL;
	return vgic_its_set_abi(its, rev);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
}

static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	switch (addr & 0xffff) {
	case GITS_PIDR0:
		return 0x92;	/* part number, bits[7:0] */
	case GITS_PIDR1:
		return 0xb4;	/* part number, bits[11:8] */
	case GITS_PIDR2:
		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
	case GITS_PIDR4:
		return 0x40;	/* This is a 64K software visible page */
	/* The following are the ID registers for (any) GIC. */
	case GITS_CIDR0:
		return 0x0d;
	case GITS_CIDR1:
		return 0xf0;
	case GITS_CIDR2:
		return 0x05;
	case GITS_CIDR3:
		return 0xb1;
	}

	return 0;
}

541 542
int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
			 u32 devid, u32 eventid, struct vgic_irq **irq)
543
{
544
	struct kvm_vcpu *vcpu;
545
	struct its_ite *ite;
546 547

	if (!its->enabled)
548
		return -EBUSY;
549

550 551
	ite = find_ite(its, devid, eventid);
	if (!ite || !its_is_collection_mapped(ite->collection))
552 553
		return E_ITS_INT_UNMAPPED_INTERRUPT;

554
	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
555 556 557 558 559 560
	if (!vcpu)
		return E_ITS_INT_UNMAPPED_INTERRUPT;

	if (!vcpu->arch.vgic_cpu.lpis_enabled)
		return -EBUSY;

561
	*irq = ite->irq;
562
	return 0;
563 564
}

565
struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
566
{
567 568
	u64 address;
	struct kvm_io_device *kvm_io_dev;
569 570
	struct vgic_io_device *iodev;

571 572 573 574 575
	if (!vgic_has_its(kvm))
		return ERR_PTR(-ENODEV);

	if (!(msi->flags & KVM_MSI_VALID_DEVID))
		return ERR_PTR(-EINVAL);
576

577 578 579 580 581
	address = (u64)msi->address_hi << 32 | msi->address_lo;

	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
	if (!kvm_io_dev)
		return ERR_PTR(-EINVAL);
582

583 584
	if (kvm_io_dev->ops != &kvm_io_gic_ops)
		return ERR_PTR(-EINVAL);
585

586
	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
587
	if (iodev->iodev_type != IODEV_ITS)
588
		return ERR_PTR(-EINVAL);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	return iodev->its;
}

/*
 * Find the target VCPU and the LPI number for a given devid/eventid pair
 * and make this IRQ pending, possibly injecting it.
 * Must be called with the its_lock mutex held.
 * Returns 0 on success, a positive error value for any ITS mapping
 * related errors and negative error values for generic errors.
 */
static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
				u32 devid, u32 eventid)
{
	struct vgic_irq *irq = NULL;
	unsigned long flags;
	int err;
606

607 608 609 610
	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
	if (err)
		return err;

611 612 613 614
	if (irq->hw)
		return irq_set_irqchip_state(irq->host_irq,
					     IRQCHIP_STATE_PENDING, true);

615 616 617 618 619
	spin_lock_irqsave(&irq->irq_lock, flags);
	irq->pending_latch = true;
	vgic_queue_irq_unlock(kvm, irq, flags);

	return 0;
620 621
}

622 623 624 625
/*
 * Queries the KVM IO bus framework to get the ITS pointer from the given
 * doorbell address.
 * We then call vgic_its_trigger_msi() with the decoded data.
626
 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
627 628 629
 */
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
630
	struct vgic_its *its;
631
	int ret;
632

633 634 635
	its = vgic_msi_to_its(kvm, msi);
	if (IS_ERR(its))
		return PTR_ERR(its);
636

637 638 639
	mutex_lock(&its->its_lock);
	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
	mutex_unlock(&its->its_lock);
640

641 642 643 644 645 646 647 648 649 650 651 652
	if (ret < 0)
		return ret;

	/*
	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
	 * if the guest has blocked the MSI. So we map any LPI mapping
	 * related error to that.
	 */
	if (ret)
		return 0;
	else
		return 1;
653 654
}

655
/* Requires the its_lock to be held. */
656
static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
657
{
658
	list_del(&ite->ite_list);
659 660

	/* This put matches the get in vgic_add_lpi. */
661 662 663 664
	if (ite->irq) {
		if (ite->irq->hw)
			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));

665
		vgic_put_irq(kvm, ite->irq);
666
	}
667

668
	kfree(ite);
669 670
}

671 672 673 674 675 676 677
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
{
	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
}

#define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
#define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
678
#define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
679 680 681
#define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
#define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
#define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
682
#define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
683 684 685 686 687 688 689 690 691 692 693 694
#define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
#define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)

/*
 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
				       u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
695
	struct its_ite *ite;
696 697


698 699
	ite = find_ite(its, device_id, event_id);
	if (ite && ite->collection) {
700 701 702 703 704
		/*
		 * Though the spec talks about removing the pending state, we
		 * don't bother here since we clear the ITTE anyway and the
		 * pending state is a property of the ITTE struct.
		 */
705
		its_free_ite(kvm, ite);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
		return 0;
	}

	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
}

/*
 * The MOVI command moves an ITTE to a different collection.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct kvm_vcpu *vcpu;
723
	struct its_ite *ite;
724 725
	struct its_collection *collection;

726 727
	ite = find_ite(its, device_id, event_id);
	if (!ite)
728 729
		return E_ITS_MOVI_UNMAPPED_INTERRUPT;

730
	if (!its_is_collection_mapped(ite->collection))
731 732 733 734 735 736
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_MOVI_UNMAPPED_COLLECTION;

737
	ite->collection = collection;
738 739
	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

740
	return update_affinity(ite->irq, vcpu);
741 742
}

743 744 745 746
/*
 * Check whether an ID can be stored into the corresponding guest table.
 * For a direct table this is pretty easy, but gets a bit nasty for
 * indirect tables. We check whether the resulting guest physical address
747
 * is actually valid (covered by a memslot and guest accessible).
748 749
 * For this we have to read the respective first level entry.
 */
750 751
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
			      gpa_t *eaddr)
752 753
{
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
754 755
	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
	int esz = GITS_BASER_ENTRY_SIZE(baser);
756 757
	int index;
	gfn_t gfn;
758 759 760 761 762 763 764 765 766 767 768 769 770 771

	switch (type) {
	case GITS_BASER_TYPE_DEVICE:
		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
			return false;
		break;
	case GITS_BASER_TYPE_COLLECTION:
		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
		if (id >= BIT_ULL(16))
			return false;
		break;
	default:
		return false;
	}
772 773 774 775

	if (!(baser & GITS_BASER_INDIRECT)) {
		phys_addr_t addr;

776
		if (id >= (l1_tbl_size / esz))
777 778
			return false;

779
		addr = BASER_ADDRESS(baser) + id * esz;
780 781
		gfn = addr >> PAGE_SHIFT;

782 783
		if (eaddr)
			*eaddr = addr;
784 785 786 787
		return kvm_is_visible_gfn(its->dev->kvm, gfn);
	}

	/* calculate and check the index into the 1st level */
788
	index = id / (SZ_64K / esz);
789 790 791 792
	if (index >= (l1_tbl_size / sizeof(u64)))
		return false;

	/* Each 1st level entry is represented by a 64-bit value. */
793
	if (kvm_read_guest_lock(its->dev->kvm,
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
			   BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
			   &indirect_ptr, sizeof(indirect_ptr)))
		return false;

	indirect_ptr = le64_to_cpu(indirect_ptr);

	/* check the valid bit of the first level entry */
	if (!(indirect_ptr & BIT_ULL(63)))
		return false;

	/*
	 * Mask the guest physical address and calculate the frame number.
	 * Any address beyond our supported 48 bits of PA will be caught
	 * by the actual check in the final step.
	 */
	indirect_ptr &= GENMASK_ULL(51, 16);

	/* Find the address of the actual entry */
812 813
	index = id % (SZ_64K / esz);
	indirect_ptr += index * esz;
814 815
	gfn = indirect_ptr >> PAGE_SHIFT;

816 817
	if (eaddr)
		*eaddr = indirect_ptr;
818 819 820
	return kvm_is_visible_gfn(its->dev->kvm, gfn);
}

821 822
static int vgic_its_alloc_collection(struct vgic_its *its,
				     struct its_collection **colp,
823 824
				     u32 coll_id)
{
825 826
	struct its_collection *collection;

827
	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
828 829
		return E_ITS_MAPC_COLLECTION_OOR;

830
	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
831 832
	if (!collection)
		return -ENOMEM;
833

834 835 836 837
	collection->collection_id = coll_id;
	collection->target_addr = COLLECTION_NOT_MAPPED;

	list_add_tail(&collection->coll_list, &its->collection_list);
838 839 840 841 842 843 844 845 846
	*colp = collection;

	return 0;
}

static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
{
	struct its_collection *collection;
	struct its_device *device;
847
	struct its_ite *ite;
848 849 850 851 852 853 854 855 856 857

	/*
	 * Clearing the mapping for that collection ID removes the
	 * entry from the list. If there wasn't any before, we can
	 * go home early.
	 */
	collection = find_collection(its, coll_id);
	if (!collection)
		return;

858 859 860 861
	for_each_lpi_its(device, ite, its)
		if (ite->collection &&
		    ite->collection->collection_id == coll_id)
			ite->collection = NULL;
862 863 864

	list_del(&collection->coll_list);
	kfree(collection);
865 866
}

867 868 869
/* Must be called with its_lock mutex held */
static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
					  struct its_collection *collection,
870
					  u32 event_id)
871 872 873 874 875 876 877 878 879 880 881 882 883 884
{
	struct its_ite *ite;

	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
	if (!ite)
		return ERR_PTR(-ENOMEM);

	ite->event_id	= event_id;
	ite->collection = collection;

	list_add_tail(&ite->ite_list, &device->itt_head);
	return ite;
}

885 886 887 888 889
/*
 * The MAPTI and MAPI commands map LPIs to ITTEs.
 * Must be called with its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
890
				    u64 *its_cmd)
891 892 893 894
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
	u32 coll_id = its_cmd_get_collection(its_cmd);
895
	struct its_ite *ite;
896
	struct kvm_vcpu *vcpu = NULL;
897 898
	struct its_device *device;
	struct its_collection *collection, *new_coll = NULL;
899
	struct vgic_irq *irq;
900
	int lpi_nr;
901 902 903 904 905

	device = find_its_device(its, device_id);
	if (!device)
		return E_ITS_MAPTI_UNMAPPED_DEVICE;

906 907 908
	if (event_id >= BIT_ULL(device->num_eventid_bits))
		return E_ITS_MAPTI_ID_OOR;

909
	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
910 911 912 913
		lpi_nr = its_cmd_get_physical_id(its_cmd);
	else
		lpi_nr = event_id;
	if (lpi_nr < GIC_LPI_OFFSET ||
914 915 916
	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
		return E_ITS_MAPTI_PHYSICALID_OOR;

917
	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
918
	if (find_ite(its, device_id, event_id))
919 920
		return 0;

921 922 923 924 925 926
	collection = find_collection(its, coll_id);
	if (!collection) {
		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
		if (ret)
			return ret;
		new_coll = collection;
927 928
	}

929
	ite = vgic_its_alloc_ite(device, collection, event_id);
930
	if (IS_ERR(ite)) {
931 932
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
933
		return PTR_ERR(ite);
934 935
	}

936 937 938 939
	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
940 941 942
	if (IS_ERR(irq)) {
		if (new_coll)
			vgic_its_free_collection(its, coll_id);
943
		its_free_ite(kvm, ite);
944 945
		return PTR_ERR(irq);
	}
946
	ite->irq = irq;
947

948 949 950 951
	return 0;
}

/* Requires the its_lock to be held. */
952
static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
953
{
954
	struct its_ite *ite, *temp;
955 956 957 958 959 960

	/*
	 * The spec says that unmapping a device with still valid
	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
	 * since we cannot leave the memory unreferenced.
	 */
961 962
	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
		its_free_ite(kvm, ite);
963 964 965 966 967

	list_del(&device->dev_list);
	kfree(device);
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
/* its lock must be held */
static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_device *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
		vgic_its_free_device(kvm, cur);
}

/* its lock must be held */
static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
{
	struct its_collection *cur, *temp;

	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
		vgic_its_free_collection(its, cur->collection_id);
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/* Must be called with its_lock mutex held */
static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
						u32 device_id, gpa_t itt_addr,
						u8 num_eventid_bits)
{
	struct its_device *device;

	device = kzalloc(sizeof(*device), GFP_KERNEL);
	if (!device)
		return ERR_PTR(-ENOMEM);

	device->device_id = device_id;
	device->itt_addr = itt_addr;
	device->num_eventid_bits = num_eventid_bits;
	INIT_LIST_HEAD(&device->itt_head);

	list_add_tail(&device->dev_list, &its->device_list);
	return device;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	bool valid = its_cmd_get_validbit(its_cmd);
1015
	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1016
	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1017 1018
	struct its_device *device;

1019
	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1020 1021
		return E_ITS_MAPD_DEVICE_OOR;

1022 1023 1024
	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
		return E_ITS_MAPD_ITTSIZE_OOR;

1025 1026 1027 1028 1029 1030 1031 1032
	device = find_its_device(its, device_id);

	/*
	 * The spec says that calling MAPD on an already mapped device
	 * invalidates all cached data for this device. We implement this
	 * by removing the mapping and re-establishing it.
	 */
	if (device)
1033
		vgic_its_free_device(kvm, device);
1034 1035 1036 1037 1038 1039 1040 1041

	/*
	 * The spec does not say whether unmapping a not-mapped device
	 * is an error, so we are done in any case.
	 */
	if (!valid)
		return 0;

1042 1043
	device = vgic_its_alloc_device(its, device_id, itt_addr,
				       num_eventid_bits);
1044

1045
	return PTR_ERR_OR_ZERO(device);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
}

/*
 * The MAPC command maps collection IDs to redistributors.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
				    u64 *its_cmd)
{
	u16 coll_id;
	u32 target_addr;
	struct its_collection *collection;
	bool valid;

	valid = its_cmd_get_validbit(its_cmd);
	coll_id = its_cmd_get_collection(its_cmd);
	target_addr = its_cmd_get_target_addr(its_cmd);

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MAPC_PROCNUM_OOR;

	if (!valid) {
1068
		vgic_its_free_collection(its, coll_id);
1069
	} else {
1070 1071
		collection = find_collection(its, coll_id);

1072
		if (!collection) {
1073
			int ret;
1074

1075 1076 1077 1078
			ret = vgic_its_alloc_collection(its, &collection,
							coll_id);
			if (ret)
				return ret;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			collection->target_addr = target_addr;
		} else {
			collection->target_addr = target_addr;
			update_affinity_collection(kvm, its, collection);
		}
	}

	return 0;
}

/*
 * The CLEAR command removes the pending state for a particular LPI.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
				     u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1098
	struct its_ite *ite;
1099 1100


1101 1102
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1103 1104
		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;

1105
	ite->irq->pending_latch = false;
1106

1107 1108 1109 1110
	if (ite->irq->hw)
		return irq_set_irqchip_state(ite->irq->host_irq,
					     IRQCHIP_STATE_PENDING, false);

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	return 0;
}

/*
 * The INV command syncs the configuration bits from the memory table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 device_id = its_cmd_get_deviceid(its_cmd);
	u32 event_id = its_cmd_get_id(its_cmd);
1123
	struct its_ite *ite;
1124 1125


1126 1127
	ite = find_ite(its, device_id, event_id);
	if (!ite)
1128 1129
		return E_ITS_INV_UNMAPPED_INTERRUPT;

1130
	return update_lpi_config(kvm, ite->irq, NULL, true);
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
}

/*
 * The INVALL command requests flushing of all IRQ data in this collection.
 * Find the VCPU mapped to that collection, then iterate over the VM's list
 * of mapped LPIs and update the configuration for each IRQ which targets
 * the specified vcpu. The configuration will be read from the in-memory
 * configuration table.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 coll_id = its_cmd_get_collection(its_cmd);
	struct its_collection *collection;
	struct kvm_vcpu *vcpu;
	struct vgic_irq *irq;
	u32 *intids;
	int irq_count, i;

	collection = find_collection(its, coll_id);
	if (!its_is_collection_mapped(collection))
		return E_ITS_INVALL_UNMAPPED_COLLECTION;

	vcpu = kvm_get_vcpu(kvm, collection->target_addr);

1157
	irq_count = vgic_copy_lpi_list(vcpu, &intids);
1158 1159 1160 1161 1162 1163 1164
	if (irq_count < 0)
		return irq_count;

	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
		if (!irq)
			continue;
1165
		update_lpi_config(kvm, irq, vcpu, false);
1166 1167 1168 1169 1170
		vgic_put_irq(kvm, irq);
	}

	kfree(intids);

1171 1172 1173
	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	return 0;
}

/*
 * The MOVALL command moves the pending state of all IRQs targeting one
 * redistributor to another. We don't hold the pending state in the VCPUs,
 * but in the IRQs instead, so there is really not much to do for us here.
 * However the spec says that no IRQ must target the old redistributor
 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
 * This command affects all LPIs in the system that target that redistributor.
 */
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
				      u64 *its_cmd)
{
	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
	struct kvm_vcpu *vcpu1, *vcpu2;
	struct vgic_irq *irq;
1192 1193
	u32 *intids;
	int irq_count, i;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
	    target2_addr >= atomic_read(&kvm->online_vcpus))
		return E_ITS_MOVALL_PROCNUM_OOR;

	if (target1_addr == target2_addr)
		return 0;

	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
	vcpu2 = kvm_get_vcpu(kvm, target2_addr);

1205 1206 1207
	irq_count = vgic_copy_lpi_list(vcpu1, &intids);
	if (irq_count < 0)
		return irq_count;
1208

1209 1210
	for (i = 0; i < irq_count; i++) {
		irq = vgic_get_irq(kvm, NULL, intids[i]);
1211

1212
		update_affinity(irq, vcpu2);
1213

1214
		vgic_put_irq(kvm, irq);
1215 1216
	}

1217
	kfree(intids);
1218 1219 1220
	return 0;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * The INT command injects the LPI associated with that DevID/EvID pair.
 * Must be called with the its_lock mutex held.
 */
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
	u32 msi_data = its_cmd_get_id(its_cmd);
	u64 msi_devid = its_cmd_get_deviceid(its_cmd);

1231
	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1232 1233
}

1234 1235 1236 1237
/*
 * This function is called with the its_cmd lock held, but the ITS data
 * structure lock dropped.
 */
1238 1239 1240
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
				   u64 *its_cmd)
{
1241 1242 1243
	int ret = -ENODEV;

	mutex_lock(&its->its_lock);
1244
	switch (its_cmd_get_command(its_cmd)) {
1245 1246 1247 1248 1249 1250 1251
	case GITS_CMD_MAPD:
		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPC:
		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
		break;
	case GITS_CMD_MAPI:
1252
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1253 1254
		break;
	case GITS_CMD_MAPTI:
1255
		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		break;
	case GITS_CMD_MOVI:
		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
		break;
	case GITS_CMD_DISCARD:
		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
		break;
	case GITS_CMD_CLEAR:
		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
		break;
	case GITS_CMD_MOVALL:
		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
		break;
1269 1270 1271
	case GITS_CMD_INT:
		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
		break;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	case GITS_CMD_INV:
		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
		break;
	case GITS_CMD_INVALL:
		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
		break;
	case GITS_CMD_SYNC:
		/* we ignore this command: we are in sync all of the time */
		ret = 0;
		break;
	}
	mutex_unlock(&its->its_lock);

	return ret;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
}

static u64 vgic_sanitise_its_baser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
				  GITS_BASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
	reg &= ~GENMASK_ULL(15, 12);

	/* We support only one (ITS) page size: 64K */
	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;

	return reg;
}

static u64 vgic_sanitise_its_cbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
				  GITS_CBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	/*
	 * Sanitise the physical address to be 64k aligned.
	 * Also limit the physical addresses to 48 bits.
	 */
	reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));

	return reg;
}

static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cbaser, addr & 7, len);
}

static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
				       gpa_t addr, unsigned int len,
				       unsigned long val)
{
	/* When GITS_CTLR.Enable is 1, this register is RO. */
	if (its->enabled)
		return;

	mutex_lock(&its->cmd_lock);
	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
	its->creadr = 0;
	/*
	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
	 * it to CREADR to make sure we start with an empty command buffer.
	 */
	its->cwriter = its->creadr;
	mutex_unlock(&its->cmd_lock);
}

#define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
#define ITS_CMD_SIZE			32
#define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))

1361 1362
/* Must be called with the cmd_lock held. */
static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1363 1364 1365 1366
{
	gpa_t cbaser;
	u64 cmd_buf[4];

1367 1368
	/* Commands are only processed when the ITS is enabled. */
	if (!its->enabled)
1369 1370 1371 1372 1373
		return;

	cbaser = CBASER_ADDRESS(its->cbaser);

	while (its->cwriter != its->creadr) {
1374 1375
		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
					      cmd_buf, ITS_CMD_SIZE);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		/*
		 * If kvm_read_guest() fails, this could be due to the guest
		 * programming a bogus value in CBASER or something else going
		 * wrong from which we cannot easily recover.
		 * According to section 6.3.2 in the GICv3 spec we can just
		 * ignore that command then.
		 */
		if (!ret)
			vgic_its_handle_command(kvm, its, cmd_buf);

		its->creadr += ITS_CMD_SIZE;
		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
			its->creadr = 0;
	}
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

/*
 * By writing to CWRITER the guest announces new commands to be processed.
 * To avoid any races in the first place, we take the its_cmd lock, which
 * protects our ring buffer variables, so that there is only one user
 * per ITS handling commands at a given time.
 */
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
					gpa_t addr, unsigned int len,
					unsigned long val)
{
	u64 reg;

	if (!its)
		return;

	mutex_lock(&its->cmd_lock);

	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
	reg = ITS_CMD_OFFSET(reg);
	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		mutex_unlock(&its->cmd_lock);
		return;
	}
	its->cwriter = reg;

	vgic_its_process_commands(kvm, its);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

	mutex_unlock(&its->cmd_lock);
}

static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
						struct vgic_its *its,
						gpa_t addr, unsigned int len)
{
	return extract_bytes(its->cwriter, addr & 0x7, len);
}

static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
					       struct vgic_its *its,
					       gpa_t addr, unsigned int len)
{
	return extract_bytes(its->creadr, addr & 0x7, len);
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len,
					      unsigned long val)
{
	u32 cmd_offset;
	int ret = 0;

	mutex_lock(&its->cmd_lock);

	if (its->enabled) {
		ret = -EBUSY;
		goto out;
	}

	cmd_offset = ITS_CMD_OFFSET(val);
	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
		ret = -EINVAL;
		goto out;
	}

	its->creadr = cmd_offset;
out:
	mutex_unlock(&its->cmd_lock);
	return ret;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
					      struct vgic_its *its,
					      gpa_t addr, unsigned int len)
{
	u64 reg;

	switch (BASER_INDEX(addr)) {
	case 0:
		reg = its->baser_device_table;
		break;
	case 1:
		reg = its->baser_coll_table;
		break;
	default:
		reg = 0;
		break;
	}

	return extract_bytes(reg, addr & 7, len);
}

#define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
static void vgic_mmio_write_its_baser(struct kvm *kvm,
				      struct vgic_its *its,
				      gpa_t addr, unsigned int len,
				      unsigned long val)
{
1491
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1492
	u64 entry_size, table_type;
1493 1494 1495 1496 1497 1498 1499 1500 1501
	u64 reg, *regptr, clearbits = 0;

	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
	if (its->enabled)
		return;

	switch (BASER_INDEX(addr)) {
	case 0:
		regptr = &its->baser_device_table;
1502
		entry_size = abi->dte_esz;
1503
		table_type = GITS_BASER_TYPE_DEVICE;
1504 1505 1506
		break;
	case 1:
		regptr = &its->baser_coll_table;
1507
		entry_size = abi->cte_esz;
1508
		table_type = GITS_BASER_TYPE_COLLECTION;
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		clearbits = GITS_BASER_INDIRECT;
		break;
	default:
		return;
	}

	reg = update_64bit_reg(*regptr, addr & 7, len, val);
	reg &= ~GITS_BASER_RO_MASK;
	reg &= ~clearbits;

	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1520
	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1521 1522 1523
	reg = vgic_sanitise_its_baser(reg);

	*regptr = reg;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	if (!(reg & GITS_BASER_VALID)) {
		/* Take the its_lock to prevent a race with a save/restore */
		mutex_lock(&its->its_lock);
		switch (table_type) {
		case GITS_BASER_TYPE_DEVICE:
			vgic_its_free_device_list(kvm, its);
			break;
		case GITS_BASER_TYPE_COLLECTION:
			vgic_its_free_collection_list(kvm, its);
			break;
		}
		mutex_unlock(&its->its_lock);
	}
1538 1539
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
					     struct vgic_its *its,
					     gpa_t addr, unsigned int len)
{
	u32 reg = 0;

	mutex_lock(&its->cmd_lock);
	if (its->creadr == its->cwriter)
		reg |= GITS_CTLR_QUIESCENT;
	if (its->enabled)
		reg |= GITS_CTLR_ENABLE;
	mutex_unlock(&its->cmd_lock);

	return reg;
}

static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	mutex_lock(&its->cmd_lock);

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	/*
	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
	 * device/collection BASER are invalid
	 */
	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
		(!(its->baser_device_table & GITS_BASER_VALID) ||
		 !(its->baser_coll_table & GITS_BASER_VALID) ||
		 !(its->cbaser & GITS_CBASER_VALID)))
		goto out;

1572 1573 1574 1575 1576 1577 1578 1579
	its->enabled = !!(val & GITS_CTLR_ENABLE);

	/*
	 * Try to process any pending commands. This function bails out early
	 * if the ITS is disabled or no commands have been queued.
	 */
	vgic_its_process_commands(kvm, its);

1580
out:
1581 1582 1583
	mutex_unlock(&its->cmd_lock);
}

1584 1585 1586 1587 1588 1589 1590 1591 1592
#define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
{								\
	.reg_offset = off,					\
	.len = length,						\
	.access_flags = acc,					\
	.its_read = rd,						\
	.its_write = wr,					\
	.uaccess_its_write = uwr,				\
}

1603 1604 1605 1606 1607 1608 1609 1610
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
			      gpa_t addr, unsigned int len, unsigned long val)
{
	/* Ignore */
}

static struct vgic_register_region its_registers[] = {
	REGISTER_ITS_DESC(GITS_CTLR,
1611
		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1612
		VGIC_ACCESS_32bit),
1613 1614 1615
	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
		vgic_mmio_read_its_iidr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_iidr, 4,
1616 1617
		VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_TYPER,
1618
		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1619 1620
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CBASER,
1621
		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1622 1623
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_CWRITER,
1624
		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1625
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1626 1627 1628
	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
		vgic_mmio_read_its_creadr, its_mmio_write_wi,
		vgic_mmio_uaccess_write_its_creadr, 8,
1629 1630
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_BASER,
1631
		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1632 1633
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1634
		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1635 1636 1637
		VGIC_ACCESS_32bit),
};

1638 1639 1640 1641 1642 1643 1644
/* This is called on setting the LPI enable bit in the redistributor. */
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
		its_sync_lpi_pending_table(vcpu);
}

1645 1646
static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
				   u64 addr)
1647 1648 1649 1650
{
	struct vgic_io_device *iodev = &its->iodev;
	int ret;

1651 1652 1653 1654 1655
	mutex_lock(&kvm->slots_lock);
	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -EBUSY;
		goto out;
	}
1656

1657
	its->vgic_its_base = addr;
1658 1659 1660 1661 1662 1663 1664 1665 1666
	iodev->regions = its_registers;
	iodev->nr_regions = ARRAY_SIZE(its_registers);
	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);

	iodev->base_addr = its->vgic_its_base;
	iodev->iodev_type = IODEV_ITS;
	iodev->its = its;
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1667
out:
1668 1669 1670 1671
	mutex_unlock(&kvm->slots_lock);

	return ret;
}
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
#define INITIAL_BASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
	 GITS_BASER_PAGE_SIZE_64K)

#define INITIAL_PROPBASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static int vgic_its_create(struct kvm_device *dev, u32 type)
{
	struct vgic_its *its;

	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
		return -ENODEV;

	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
	if (!its)
		return -ENOMEM;

1695 1696
	if (vgic_initialized(dev->kvm)) {
		int ret = vgic_v4_init(dev->kvm);
1697
		if (ret < 0) {
1698 1699 1700 1701 1702
			kfree(its);
			return ret;
		}
	}

1703 1704 1705
	mutex_init(&its->its_lock);
	mutex_init(&its->cmd_lock);

1706 1707
	its->vgic_its_base = VGIC_ADDR_UNDEF;

1708 1709 1710
	INIT_LIST_HEAD(&its->device_list);
	INIT_LIST_HEAD(&its->collection_list);

1711
	dev->kvm->arch.vgic.msis_require_devid = true;
1712 1713
	dev->kvm->arch.vgic.has_its = true;
	its->enabled = false;
1714
	its->dev = dev;
1715

1716 1717 1718 1719 1720 1721
	its->baser_device_table = INITIAL_BASER_VALUE			|
		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
	its->baser_coll_table = INITIAL_BASER_VALUE |
		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;

1722 1723
	dev->private = its;

1724
	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1725 1726 1727 1728
}

static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
1729
	struct kvm *kvm = kvm_dev->kvm;
1730
	struct vgic_its *its = kvm_dev->private;
1731 1732

	mutex_lock(&its->its_lock);
1733

1734 1735
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
1736 1737

	mutex_unlock(&its->its_lock);
1738 1739 1740
	kfree(its);
}

1741 1742 1743
int vgic_its_has_attr_regs(struct kvm_device *dev,
			   struct kvm_device_attr *attr)
{
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	const struct vgic_register_region *region;
	gpa_t offset = attr->attr;
	int align;

	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;

	if (offset & align)
		return -EINVAL;

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region)
		return -ENXIO;

	return 0;
1760 1761 1762 1763 1764 1765
}

int vgic_its_attr_regs_access(struct kvm_device *dev,
			      struct kvm_device_attr *attr,
			      u64 *reg, bool is_write)
{
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	const struct vgic_register_region *region;
	struct vgic_its *its;
	gpa_t addr, offset;
	unsigned int len;
	int align, ret = 0;

	its = dev->private;
	offset = attr->attr;

	/*
	 * Although the spec supports upper/lower 32-bit accesses to
	 * 64-bit ITS registers, the userspace ABI requires 64-bit
	 * accesses to all 64-bit wide registers. We therefore only
	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
	 * registers
	 */
	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
		align = 0x3;
	else
		align = 0x7;

	if (offset & align)
		return -EINVAL;

	mutex_lock(&dev->kvm->lock);

	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
		ret = -ENXIO;
		goto out;
	}

	region = vgic_find_mmio_region(its_registers,
				       ARRAY_SIZE(its_registers),
				       offset);
	if (!region) {
		ret = -ENXIO;
		goto out;
	}

	if (!lock_all_vcpus(dev->kvm)) {
		ret = -EBUSY;
		goto out;
	}

	addr = its->vgic_its_base + offset;

	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;

	if (is_write) {
		if (region->uaccess_its_write)
			ret = region->uaccess_its_write(dev->kvm, its, addr,
							len, *reg);
		else
			region->its_write(dev->kvm, its, addr, len, *reg);
	} else {
		*reg = region->its_read(dev->kvm, its, addr, len);
	}
	unlock_all_vcpus(dev->kvm);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
1827 1828
}

1829 1830
static u32 compute_next_devid_offset(struct list_head *h,
				     struct its_device *dev)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
{
	struct its_device *next;
	u32 next_offset;

	if (list_is_last(&dev->dev_list, h))
		return 0;
	next = list_next_entry(dev, dev_list);
	next_offset = next->device_id - dev->device_id;

	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
}

1843
static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
{
	struct its_ite *next;
	u32 next_offset;

	if (list_is_last(&ite->ite_list, h))
		return 0;
	next = list_next_entry(ite, ite_list);
	next_offset = next->event_id - ite->event_id;

	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
}

/**
 * entry_fn_t - Callback called on a table entry restore path
 * @its: its handle
 * @id: id of the entry
 * @entry: pointer to the entry
 * @opaque: pointer to an opaque data
 *
 * Return: < 0 on error, 0 if last element was identified, id offset to next
 * element otherwise
 */
typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
			  void *opaque);

/**
 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
 * to each entry
 *
 * @its: its handle
 * @base: base gpa of the table
 * @size: size of the table in bytes
 * @esz: entry size in bytes
 * @start_id: the ID of the first entry in the table
 * (non zero for 2d level tables)
 * @fn: function to apply on each entry
 *
 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
 * (the last element may not be found on second level tables)
 */
1884 1885
static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
			  int start_id, entry_fn_t fn, void *opaque)
1886 1887 1888 1889 1890
{
	struct kvm *kvm = its->dev->kvm;
	unsigned long len = size;
	int id = start_id;
	gpa_t gpa = base;
1891
	char entry[esz];
1892 1893
	int ret;

1894 1895
	memset(entry, 0, esz);

1896 1897 1898 1899 1900 1901
	while (len > 0) {
		int next_offset;
		size_t byte_offset;

		ret = kvm_read_guest(kvm, gpa, entry, esz);
		if (ret)
1902
			return ret;
1903 1904

		next_offset = fn(its, id, entry, opaque);
1905 1906
		if (next_offset <= 0)
			return next_offset;
1907 1908 1909 1910 1911 1912

		byte_offset = next_offset * esz;
		id += next_offset;
		gpa += byte_offset;
		len -= byte_offset;
	}
1913
	return 1;
1914 1915
}

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/**
 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
 */
static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
			      struct its_ite *ite, gpa_t gpa, int ite_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u32 next_offset;
	u64 val;

	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1928
	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		ite->collection->collection_id;
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, gpa, &val, ite_esz);
}

/**
 * vgic_its_restore_ite - restore an interrupt translation entry
 * @event_id: id used for indexing
 * @ptr: pointer to the ITE entry
 * @opaque: pointer to the its_device
 */
static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
				void *ptr, void *opaque)
{
	struct its_device *dev = (struct its_device *)opaque;
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	struct kvm_vcpu *vcpu = NULL;
	u64 val;
	u64 *p = (u64 *)ptr;
	struct vgic_irq *irq;
	u32 coll_id, lpi_id;
	struct its_ite *ite;
	u32 offset;

	val = *p;

	val = le64_to_cpu(val);

	coll_id = val & KVM_ITS_ITE_ICID_MASK;
	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;

	if (!lpi_id)
		return 1; /* invalid entry, no choice but to scan next entry */

	if (lpi_id < VGIC_MIN_LPI)
		return -EINVAL;

	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (!collection)
		return -EINVAL;

1975
	ite = vgic_its_alloc_ite(dev, collection, event_id);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	if (IS_ERR(ite))
		return PTR_ERR(ite);

	if (its_is_collection_mapped(collection))
		vcpu = kvm_get_vcpu(kvm, collection->target_addr);

	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
	if (IS_ERR(irq))
		return PTR_ERR(irq);
	ite->irq = irq;

	return offset;
}

static int vgic_its_ite_cmp(void *priv, struct list_head *a,
			    struct list_head *b)
{
	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);

	if (itea->event_id < iteb->event_id)
		return -1;
	else
		return 1;
}

2002 2003
static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
{
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = device->itt_addr;
	struct its_ite *ite;
	int ret;
	int ite_esz = abi->ite_esz;

	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);

	list_for_each_entry(ite, &device->itt_head, ite_list) {
		gpa_t gpa = base + ite->event_id * ite_esz;

2015 2016 2017 2018 2019 2020 2021 2022 2023
		/*
		 * If an LPI carries the HW bit, this means that this
		 * interrupt is controlled by GICv4, and we do not
		 * have direct access to that state. Let's simply fail
		 * the save operation...
		 */
		if (ite->irq->hw)
			return -EACCES;

2024 2025 2026 2027 2028
		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
		if (ret)
			return ret;
	}
	return 0;
2029 2030
}

2031 2032 2033 2034 2035 2036 2037 2038
/**
 * vgic_its_restore_itt - restore the ITT of a device
 *
 * @its: its handle
 * @dev: device handle
 *
 * Return 0 on success, < 0 on error
 */
2039 2040
static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
{
2041 2042 2043 2044 2045 2046 2047 2048 2049
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	gpa_t base = dev->itt_addr;
	int ret;
	int ite_esz = abi->ite_esz;
	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;

	ret = scan_its_table(its, base, max_size, ite_esz, 0,
			     vgic_its_restore_ite, dev);

2050 2051 2052 2053
	/* scan_its_table returns +1 if all ITEs are invalid */
	if (ret > 0)
		ret = 0;

2054
	return ret;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
}

/**
 * vgic_its_save_dte - Save a device table entry at a given GPA
 *
 * @its: ITS handle
 * @dev: ITS device
 * @ptr: GPA
 */
static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
			     gpa_t ptr, int dte_esz)
{
	struct kvm *kvm = its->dev->kvm;
	u64 val, itt_addr_field;
	u32 next_offset;

	itt_addr_field = dev->itt_addr >> 8;
	next_offset = compute_next_devid_offset(&its->device_list, dev);
	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
		(dev->num_eventid_bits - 1));
	val = cpu_to_le64(val);
	return kvm_write_guest(kvm, ptr, &val, dte_esz);
}

/**
 * vgic_its_restore_dte - restore a device table entry
 *
 * @its: its handle
 * @id: device id the DTE corresponds to
 * @ptr: kernel VA where the 8 byte DTE is located
 * @opaque: unused
 *
 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
 * next dte otherwise
 */
static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
				void *ptr, void *opaque)
{
	struct its_device *dev;
	gpa_t itt_addr;
	u8 num_eventid_bits;
	u64 entry = *(u64 *)ptr;
	bool valid;
	u32 offset;
	int ret;

	entry = le64_to_cpu(entry);

	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;

	if (!valid)
		return 1;

	/* dte entry is valid */
	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;

	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
	if (IS_ERR(dev))
		return PTR_ERR(dev);

	ret = vgic_its_restore_itt(its, dev);
2121 2122
	if (ret) {
		vgic_its_free_device(its->dev->kvm, dev);
2123
		return ret;
2124
	}
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

	return offset;
}

static int vgic_its_device_cmp(void *priv, struct list_head *a,
			       struct list_head *b)
{
	struct its_device *deva = container_of(a, struct its_device, dev_list);
	struct its_device *devb = container_of(b, struct its_device, dev_list);

	if (deva->device_id < devb->device_id)
		return -1;
	else
		return 1;
}

2141 2142 2143
/**
 * vgic_its_save_device_tables - Save the device table and all ITT
 * into guest RAM
2144 2145 2146
 *
 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
 * returns the GPA of the device entry
2147 2148 2149
 */
static int vgic_its_save_device_tables(struct vgic_its *its)
{
2150
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2151
	u64 baser = its->baser_device_table;
2152 2153 2154
	struct its_device *dev;
	int dte_esz = abi->dte_esz;

2155 2156
	if (!(baser & GITS_BASER_VALID))
		return 0;
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

	list_sort(NULL, &its->device_list, vgic_its_device_cmp);

	list_for_each_entry(dev, &its->device_list, dev_list) {
		int ret;
		gpa_t eaddr;

		if (!vgic_its_check_id(its, baser,
				       dev->device_id, &eaddr))
			return -EINVAL;

		ret = vgic_its_save_itt(its, dev);
		if (ret)
			return ret;

		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
 *
 * @its: its handle
 * @id: index of the entry in the L1 table
 * @addr: kernel VA
 * @opaque: unused
 *
 * L1 table entries are scanned by steps of 1 entry
 * Return < 0 if error, 0 if last dte was found when scanning the L2
 * table, +1 otherwise (meaning next L1 entry must be scanned)
 */
static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
			 void *opaque)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int l2_start_id = id * (SZ_64K / abi->dte_esz);
	u64 entry = *(u64 *)addr;
	int dte_esz = abi->dte_esz;
	gpa_t gpa;
	int ret;

	entry = le64_to_cpu(entry);

	if (!(entry & KVM_ITS_L1E_VALID_MASK))
		return 1;

	gpa = entry & KVM_ITS_L1E_ADDR_MASK;

	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
			     l2_start_id, vgic_its_restore_dte, NULL);

2211
	return ret;
2212 2213 2214 2215 2216 2217 2218 2219
}

/**
 * vgic_its_restore_device_tables - Restore the device table and all ITT
 * from guest RAM to internal data structs
 */
static int vgic_its_restore_device_tables(struct vgic_its *its)
{
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	u64 baser = its->baser_device_table;
	int l1_esz, ret;
	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
	gpa_t l1_gpa;

	if (!(baser & GITS_BASER_VALID))
		return 0;

	l1_gpa = BASER_ADDRESS(baser);

	if (baser & GITS_BASER_INDIRECT) {
		l1_esz = GITS_LVL1_ENTRY_SIZE;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     handle_l1_dte, NULL);
	} else {
		l1_esz = abi->dte_esz;
		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
				     vgic_its_restore_dte, NULL);
	}

2241
	/* scan_its_table returns +1 if all entries are invalid */
2242
	if (ret > 0)
2243
		ret = 0;
2244 2245

	return ret;
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static int vgic_its_save_cte(struct vgic_its *its,
			     struct its_collection *collection,
			     gpa_t gpa, int esz)
{
	u64 val;

	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
	       collection->collection_id);
	val = cpu_to_le64(val);
	return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
}

static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
{
	struct its_collection *collection;
	struct kvm *kvm = its->dev->kvm;
	u32 target_addr, coll_id;
	u64 val;
	int ret;

	BUG_ON(esz > sizeof(val));
	ret = kvm_read_guest(kvm, gpa, &val, esz);
	if (ret)
		return ret;
	val = le64_to_cpu(val);
	if (!(val & KVM_ITS_CTE_VALID_MASK))
		return 0;

	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
	coll_id = val & KVM_ITS_CTE_ICID_MASK;

	if (target_addr >= atomic_read(&kvm->online_vcpus))
		return -EINVAL;

	collection = find_collection(its, coll_id);
	if (collection)
		return -EEXIST;
	ret = vgic_its_alloc_collection(its, &collection, coll_id);
	if (ret)
		return ret;
	collection->target_addr = target_addr;
	return 1;
}

2293 2294 2295 2296 2297 2298
/**
 * vgic_its_save_collection_table - Save the collection table into
 * guest RAM
 */
static int vgic_its_save_collection_table(struct vgic_its *its)
{
2299
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2300 2301
	u64 baser = its->baser_coll_table;
	gpa_t gpa = BASER_ADDRESS(baser);
2302 2303 2304 2305 2306
	struct its_collection *collection;
	u64 val;
	size_t max_size, filled = 0;
	int ret, cte_esz = abi->cte_esz;

2307
	if (!(baser & GITS_BASER_VALID))
2308 2309
		return 0;

2310
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

	list_for_each_entry(collection, &its->collection_list, coll_list) {
		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
		if (ret)
			return ret;
		gpa += cte_esz;
		filled += cte_esz;
	}

	if (filled == max_size)
		return 0;

	/*
	 * table is not fully filled, add a last dummy element
	 * with valid bit unset
	 */
	val = 0;
	BUG_ON(cte_esz > sizeof(val));
	ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
	return ret;
2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/**
 * vgic_its_restore_collection_table - reads the collection table
 * in guest memory and restores the ITS internal state. Requires the
 * BASER registers to be restored before.
 */
static int vgic_its_restore_collection_table(struct vgic_its *its)
{
2340
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2341
	u64 baser = its->baser_coll_table;
2342 2343 2344 2345 2346
	int cte_esz = abi->cte_esz;
	size_t max_size, read = 0;
	gpa_t gpa;
	int ret;

2347
	if (!(baser & GITS_BASER_VALID))
2348 2349
		return 0;

2350
	gpa = BASER_ADDRESS(baser);
2351

2352
	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2353 2354 2355 2356 2357 2358 2359 2360

	while (read < max_size) {
		ret = vgic_its_restore_cte(its, gpa, cte_esz);
		if (ret <= 0)
			break;
		gpa += cte_esz;
		read += cte_esz;
	}
2361 2362 2363 2364

	if (ret > 0)
		return 0;

2365
	return ret;
2366 2367
}

2368 2369 2370 2371 2372 2373
/**
 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
 * according to v0 ABI
 */
static int vgic_its_save_tables_v0(struct vgic_its *its)
{
2374 2375 2376 2377
	int ret;

	ret = vgic_its_save_device_tables(its);
	if (ret)
2378
		return ret;
2379

2380
	return vgic_its_save_collection_table(its);
2381 2382 2383 2384 2385 2386 2387 2388 2389
}

/**
 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
 * to internal data structs according to V0 ABI
 *
 */
static int vgic_its_restore_tables_v0(struct vgic_its *its)
{
2390 2391 2392 2393
	int ret;

	ret = vgic_its_restore_collection_table(its);
	if (ret)
2394
		return ret;
2395

2396
	return vgic_its_restore_device_tables(its);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

static int vgic_its_commit_v0(struct vgic_its *its)
{
	const struct vgic_its_abi *abi;

	abi = vgic_its_get_abi(its);
	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;

	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);

	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
					<< GITS_BASER_ENTRY_SIZE_SHIFT);
	return 0;
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
{
	/* We need to keep the ABI specific field values */
	its->baser_coll_table &= ~GITS_BASER_VALID;
	its->baser_device_table &= ~GITS_BASER_VALID;
	its->cbaser = 0;
	its->creadr = 0;
	its->cwriter = 0;
	its->enabled = 0;
	vgic_its_free_device_list(kvm, its);
	vgic_its_free_collection_list(kvm, its);
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
static int vgic_its_has_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_ITS_ADDR_TYPE:
			return 0;
		}
		break;
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		switch (attr->attr) {
		case KVM_DEV_ARM_VGIC_CTRL_INIT:
			return 0;
2442 2443
		case KVM_DEV_ARM_ITS_CTRL_RESET:
			return 0;
2444 2445 2446 2447
		case KVM_DEV_ARM_ITS_SAVE_TABLES:
			return 0;
		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
			return 0;
2448 2449
		}
		break;
2450 2451
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
		return vgic_its_has_attr_regs(dev, attr);
2452 2453 2454 2455
	}
	return -ENXIO;
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
{
	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
	int ret = 0;

	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
		return 0;

	mutex_lock(&kvm->lock);
	mutex_lock(&its->its_lock);

	if (!lock_all_vcpus(kvm)) {
		mutex_unlock(&its->its_lock);
		mutex_unlock(&kvm->lock);
		return -EBUSY;
	}

	switch (attr) {
	case KVM_DEV_ARM_ITS_CTRL_RESET:
		vgic_its_reset(kvm, its);
		break;
	case KVM_DEV_ARM_ITS_SAVE_TABLES:
		ret = abi->save_tables(its);
		break;
	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
		ret = abi->restore_tables(its);
		break;
	}

	unlock_all_vcpus(kvm);
	mutex_unlock(&its->its_lock);
	mutex_unlock(&kvm->lock);
	return ret;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
static int vgic_its_set_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	struct vgic_its *its = dev->private;
	int ret;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;
		u64 addr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
					addr, SZ_64K);
		if (ret)
			return ret;

2514
		return vgic_register_its_iodev(dev->kvm, its, addr);
2515
	}
2516 2517
	case KVM_DEV_ARM_VGIC_GRP_CTRL:
		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2518 2519 2520 2521 2522 2523 2524 2525 2526
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_its_attr_regs_access(dev, attr, &reg, true);
	}
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	}
	return -ENXIO;
}

static int vgic_its_get_attr(struct kvm_device *dev,
			     struct kvm_device_attr *attr)
{
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		struct vgic_its *its = dev->private;
		u64 addr = its->vgic_its_base;
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		unsigned long type = (unsigned long)attr->attr;

		if (type != KVM_VGIC_ITS_ADDR_TYPE)
			return -ENODEV;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
		break;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	}
	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 reg;
		int ret;

		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
		if (ret)
			return ret;
		return put_user(reg, uaddr);
	}
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	default:
		return -ENXIO;
	}

	return 0;
}

static struct kvm_device_ops kvm_arm_vgic_its_ops = {
	.name = "kvm-arm-vgic-its",
	.create = vgic_its_create,
	.destroy = vgic_its_destroy,
	.set_attr = vgic_its_set_attr,
	.get_attr = vgic_its_get_attr,
	.has_attr = vgic_its_has_attr,
};

int kvm_vgic_register_its_device(void)
{
	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
				       KVM_DEV_TYPE_ARM_VGIC_ITS);
}