memory.c 132.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
34
 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
L
Linus Torvalds 已提交
35 36 37 38 39 40 41 42 43
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
44
#include <linux/sched/mm.h>
45
#include <linux/sched/coredump.h>
46
#include <linux/sched/numa_balancing.h>
47
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
48 49 50 51 52
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
53
#include <linux/memremap.h>
54
#include <linux/ksm.h>
L
Linus Torvalds 已提交
55
#include <linux/rmap.h>
56
#include <linux/export.h>
57
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
58
#include <linux/init.h>
59
#include <linux/pfn_t.h>
60
#include <linux/writeback.h>
61
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
62
#include <linux/mmu_notifier.h>
63 64
#include <linux/swapops.h>
#include <linux/elf.h>
65
#include <linux/gfp.h>
66
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
67
#include <linux/string.h>
68
#include <linux/dma-debug.h>
69
#include <linux/debugfs.h>
70
#include <linux/userfaultfd_k.h>
71
#include <linux/dax.h>
72
#include <linux/oom.h>
73
#include <linux/numa.h>
L
Linus Torvalds 已提交
74

75 76
#include <trace/events/kmem.h>

77
#include <asm/io.h>
78
#include <asm/mmu_context.h>
L
Linus Torvalds 已提交
79
#include <asm/pgalloc.h>
80
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
81 82 83 84
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

85 86
#include "internal.h"

87
#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 90
#endif

91
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
92 93 94
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
EXPORT_SYMBOL(max_mapnr);
95 96

struct page *mem_map;
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
107
void *high_memory;
L
Linus Torvalds 已提交
108 109
EXPORT_SYMBOL(high_memory);

110 111 112 113 114 115 116 117 118 119 120 121
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
122

123 124 125 126 127 128 129 130 131 132 133 134
#ifndef arch_faults_on_old_pte
static inline bool arch_faults_on_old_pte(void)
{
	/*
	 * Those arches which don't have hw access flag feature need to
	 * implement their own helper. By default, "true" means pagefault
	 * will be hit on old pte.
	 */
	return true;
}
#endif

135 136 137
static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
138
	return 1;
139 140 141
}
__setup("norandmaps", disable_randmaps);

142
unsigned long zero_pfn __read_mostly;
143 144
EXPORT_SYMBOL(zero_pfn);

145 146
unsigned long highest_memmap_pfn __read_mostly;

H
Hugh Dickins 已提交
147 148 149 150 151 152 153 154 155
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
156

157
void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158
{
159
	trace_rss_stat(mm, member, count);
160
}
161

162 163
#if defined(SPLIT_RSS_COUNTING)

164
void sync_mm_rss(struct mm_struct *mm)
165 166 167 168
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 170 171
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
172 173
		}
	}
174
	current->rss_stat.events = 0;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196
		sync_mm_rss(task->mm);
197
}
198
#else /* SPLIT_RSS_COUNTING */
199 200 201 202 203 204 205 206

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

207 208
#endif /* SPLIT_RSS_COUNTING */

L
Linus Torvalds 已提交
209 210 211 212
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
213 214
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
215
{
216
	pgtable_t token = pmd_pgtable(*pmd);
217
	pmd_clear(pmd);
218
	pte_free_tlb(tlb, token, addr);
219
	mm_dec_nr_ptes(tlb->mm);
L
Linus Torvalds 已提交
220 221
}

222 223 224
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
225 226 227
{
	pmd_t *pmd;
	unsigned long next;
228
	unsigned long start;
L
Linus Torvalds 已提交
229

230
	start = addr;
L
Linus Torvalds 已提交
231 232 233 234 235
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
236
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
237 238
	} while (pmd++, addr = next, addr != end);

239 240 241 242 243 244 245
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
246
	}
247 248 249 250 251
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
252
	pmd_free_tlb(tlb, pmd, start);
253
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
254 255
}

256
static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 258
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
259 260 261
{
	pud_t *pud;
	unsigned long next;
262
	unsigned long start;
L
Linus Torvalds 已提交
263

264
	start = addr;
265
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
266 267 268 269
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
270
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
271 272
	} while (pud++, addr = next, addr != end);

273 274 275 276 277 278 279 280 281 282 283 284 285 286
	start &= P4D_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= P4D_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(p4d, start);
	p4d_clear(p4d);
	pud_free_tlb(tlb, pud, start);
287
	mm_dec_nr_puds(tlb->mm);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
{
	p4d_t *p4d;
	unsigned long next;
	unsigned long start;

	start = addr;
	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(p4d))
			continue;
		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
	} while (p4d++, addr = next, addr != end);

307 308 309 310 311 312 313
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
314
	}
315 316 317
	if (end - 1 > ceiling - 1)
		return;

318
	p4d = p4d_offset(pgd, start);
319
	pgd_clear(pgd);
320
	p4d_free_tlb(tlb, p4d, start);
L
Linus Torvalds 已提交
321 322 323
}

/*
324
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
325
 */
326
void free_pgd_range(struct mmu_gather *tlb,
327 328
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
329 330 331
{
	pgd_t *pgd;
	unsigned long next;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;
374 375 376 377
	/*
	 * We add page table cache pages with PAGE_SIZE,
	 * (see pte_free_tlb()), flush the tlb if we need
	 */
378
	tlb_change_page_size(tlb, PAGE_SIZE);
379
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
380 381 382 383
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
384
		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
385
	} while (pgd++, addr = next, addr != end);
386 387
}

388
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389
		unsigned long floor, unsigned long ceiling)
390 391 392 393 394
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

395
		/*
N
npiggin@suse.de 已提交
396 397
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
398
		 */
399
		unlink_anon_vmas(vma);
400 401
		unlink_file_vma(vma);

402
		if (is_vm_hugetlb_page(vma)) {
403
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404
				floor, next ? next->vm_start : ceiling);
405 406 407 408 409
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410
			       && !is_vm_hugetlb_page(next)) {
411 412
				vma = next;
				next = vma->vm_next;
413
				unlink_anon_vmas(vma);
414
				unlink_file_vma(vma);
415 416
			}
			free_pgd_range(tlb, addr, vma->vm_end,
417
				floor, next ? next->vm_start : ceiling);
418
		}
419 420
		vma = next;
	}
L
Linus Torvalds 已提交
421 422
}

423
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
L
Linus Torvalds 已提交
424
{
425
	spinlock_t *ptl;
426
	pgtable_t new = pte_alloc_one(mm);
427 428 429
	if (!new)
		return -ENOMEM;

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

445
	ptl = pmd_lock(mm, pmd);
446
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447
		mm_inc_nr_ptes(mm);
L
Linus Torvalds 已提交
448
		pmd_populate(mm, pmd, new);
449
		new = NULL;
450
	}
451
	spin_unlock(ptl);
452 453
	if (new)
		pte_free(mm, new);
454
	return 0;
L
Linus Torvalds 已提交
455 456
}

457
int __pte_alloc_kernel(pmd_t *pmd)
L
Linus Torvalds 已提交
458
{
459
	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 461 462
	if (!new)
		return -ENOMEM;

463 464
	smp_wmb(); /* See comment in __pte_alloc */

465
	spin_lock(&init_mm.page_table_lock);
466
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467
		pmd_populate_kernel(&init_mm, pmd, new);
468
		new = NULL;
469
	}
470
	spin_unlock(&init_mm.page_table_lock);
471 472
	if (new)
		pte_free_kernel(&init_mm, new);
473
	return 0;
L
Linus Torvalds 已提交
474 475
}

476 477 478 479 480 481
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482
{
483 484
	int i;

485
	if (current->mm == mm)
486
		sync_mm_rss(mm);
487 488 489
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
490 491
}

492
/*
493 494 495
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
496 497 498
 *
 * The calling function must still handle the error.
 */
499 500
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
501
{
502
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 504
	p4d_t *p4d = p4d_offset(pgd, addr);
	pud_t *pud = pud_offset(p4d, addr);
505 506 507
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
508 509 510 511 512 513 514 515 516 517 518 519 520 521
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
522 523
			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
				 nr_unshown);
524 525 526 527 528 529
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
530 531 532 533

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

534 535 536
	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
		 current->comm,
		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537
	if (page)
538
		dump_page(page, "bad pte");
539
	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540
		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541
	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 543 544 545
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
546
	dump_stack();
547
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 549
}

550
/*
551
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552
 *
553 554 555
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
556
 *
557 558 559 560 561 562 563 564
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
565
 *
J
Jared Hulbert 已提交
566 567
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 569
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
570 571 572
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
573 574 575 576 577 578
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
579 580
 *
 *
581
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
582 583 584 585 586 587 588 589 590
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
591
 */
592 593
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
			    pte_t pte)
594
{
595
	unsigned long pfn = pte_pfn(pte);
596

597
	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598
		if (likely(!pte_special(pte)))
599
			goto check_pfn;
600 601
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
602 603
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
604 605
		if (is_zero_pfn(pfn))
			return NULL;
606 607 608
		if (pte_devmap(pte))
			return NULL;

609
		print_bad_pte(vma, addr, pte, NULL);
610 611 612
		return NULL;
	}

613
	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614

J
Jared Hulbert 已提交
615 616 617 618 619 620
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
621 622
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
623 624 625 626 627
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
628 629
	}

630 631
	if (is_zero_pfn(pfn))
		return NULL;
632

633 634 635 636 637
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
638 639

	/*
640 641
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
642
	 */
J
Jared Hulbert 已提交
643
out:
644
	return pfn_to_page(pfn);
645 646
}

647 648 649 650 651 652 653 654 655
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
				pmd_t pmd)
{
	unsigned long pfn = pmd_pfn(pmd);

	/*
	 * There is no pmd_special() but there may be special pmds, e.g.
	 * in a direct-access (dax) mapping, so let's just replicate the
656
	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	 */
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
	}

673 674
	if (pmd_devmap(pmd))
		return NULL;
675
	if (is_huge_zero_pmd(pmd))
676 677 678 679 680 681 682 683 684 685 686 687 688
		return NULL;
	if (unlikely(pfn > highest_memmap_pfn))
		return NULL;

	/*
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
	 */
out:
	return pfn_to_page(pfn);
}
#endif

L
Linus Torvalds 已提交
689 690 691 692 693 694
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

695
static inline unsigned long
L
Linus Torvalds 已提交
696
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
699
{
700
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
701 702 703 704 705
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

724
			rss[mm_counter(page)]++;
725 726 727 728 729 730 731 732 733 734 735

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
736 737
				if (pte_swp_uffd_wp(*src_pte))
					pte = pte_swp_mkuffd_wp(pte);
738
				set_pte_at(src_mm, addr, src_pte, pte);
739
			}
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		} else if (is_device_private_entry(entry)) {
			page = device_private_entry_to_page(entry);

			/*
			 * Update rss count even for unaddressable pages, as
			 * they should treated just like normal pages in this
			 * respect.
			 *
			 * We will likely want to have some new rss counters
			 * for unaddressable pages, at some point. But for now
			 * keep things as they are.
			 */
			get_page(page);
			rss[mm_counter(page)]++;
			page_dup_rmap(page, false);

			/*
			 * We do not preserve soft-dirty information, because so
			 * far, checkpoint/restore is the only feature that
			 * requires that. And checkpoint/restore does not work
			 * when a device driver is involved (you cannot easily
			 * save and restore device driver state).
			 */
			if (is_write_device_private_entry(entry) &&
			    is_cow_mapping(vm_flags)) {
				make_device_private_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
767 768
				if (pte_swp_uffd_wp(*src_pte))
					pte = pte_swp_mkuffd_wp(pte);
769 770
				set_pte_at(src_mm, addr, src_pte, pte);
			}
L
Linus Torvalds 已提交
771
		}
772
		goto out_set_pte;
L
Linus Torvalds 已提交
773 774 775 776 777 778
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
779
	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
L
Linus Torvalds 已提交
780
		ptep_set_wrprotect(src_mm, addr, src_pte);
781
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789 790
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
791

792 793 794 795 796 797 798 799
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vm_flags & VM_UFFD_WP))
		pte = pte_clear_uffd_wp(pte);

800 801 802
	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
803
		page_dup_rmap(page, false);
804
		rss[mm_counter(page)]++;
805 806
	} else if (pte_devmap(pte)) {
		page = pte_page(pte);
807
	}
808 809 810

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
811
	return 0;
L
Linus Torvalds 已提交
812 813
}

814
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815 816
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
817
{
818
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
819
	pte_t *src_pte, *dst_pte;
820
	spinlock_t *src_ptl, *dst_ptl;
821
	int progress = 0;
822
	int rss[NR_MM_COUNTERS];
823
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
824 825

again:
826 827
	init_rss_vec(rss);

828
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
829 830
	if (!dst_pte)
		return -ENOMEM;
831
	src_pte = pte_offset_map(src_pmd, addr);
832
	src_ptl = pte_lockptr(src_mm, src_pmd);
833
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834 835
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
836
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
837 838 839 840 841 842

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
843 844 845
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
846
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847 848
				break;
		}
L
Linus Torvalds 已提交
849 850 851 852
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
853 854 855 856
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
857 858 859
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

860
	arch_leave_lazy_mmu_mode();
861
	spin_unlock(src_ptl);
862
	pte_unmap(orig_src_pte);
863
	add_mm_rss_vec(dst_mm, rss);
864
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
865
	cond_resched();
866 867 868 869 870 871

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
890 891
		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
			|| pmd_devmap(*src_pmd)) {
892
			int err;
893
			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894 895 896 897 898 899 900 901
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
902 903 904 905 906 907 908 909 910 911
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912
		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
L
Linus Torvalds 已提交
913 914 915 916 917
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

918
	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
L
Linus Torvalds 已提交
919 920
	if (!dst_pud)
		return -ENOMEM;
921
	src_pud = pud_offset(src_p4d, addr);
L
Linus Torvalds 已提交
922 923
	do {
		next = pud_addr_end(addr, end);
924 925 926 927 928 929 930 931 932 933 934 935
		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
			int err;

			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
			err = copy_huge_pud(dst_mm, src_mm,
					    dst_pud, src_pud, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
936 937 938 939 940 941 942 943 944
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	p4d_t *src_p4d, *dst_p4d;
	unsigned long next;

	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
	if (!dst_p4d)
		return -ENOMEM;
	src_p4d = p4d_offset(src_pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(src_p4d))
			continue;
		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
	return 0;
}

L
Linus Torvalds 已提交
967 968 969 970 971 972 973
int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
974
	struct mmu_notifier_range range;
975
	bool is_cow;
A
Andrea Arcangeli 已提交
976
	int ret;
L
Linus Torvalds 已提交
977

978 979 980 981 982 983
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
984 985 986
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
987

L
Linus Torvalds 已提交
988 989 990
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

991
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992 993 994 995
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
996
		ret = track_pfn_copy(vma);
997 998 999 1000
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1001 1002 1003 1004 1005 1006
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1007
	is_cow = is_cow_mapping(vma->vm_flags);
1008 1009

	if (is_cow) {
1010 1011
		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
					0, vma, src_mm, addr, end);
1012 1013
		mmu_notifier_invalidate_range_start(&range);
	}
A
Andrea Arcangeli 已提交
1014 1015

	ret = 0;
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020 1021
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
1022
		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
A
Andrea Arcangeli 已提交
1023 1024 1025 1026
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1027
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1028

1029
	if (is_cow)
1030
		mmu_notifier_invalidate_range_end(&range);
A
Andrea Arcangeli 已提交
1031
	return ret;
L
Linus Torvalds 已提交
1032 1033
}

1034
static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1036
				unsigned long addr, unsigned long end,
1037
				struct zap_details *details)
L
Linus Torvalds 已提交
1038
{
1039
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1040
	int force_flush = 0;
1041
	int rss[NR_MM_COUNTERS];
1042
	spinlock_t *ptl;
1043
	pte_t *start_pte;
1044
	pte_t *pte;
1045
	swp_entry_t entry;
1046

1047
	tlb_change_page_size(tlb, PAGE_SIZE);
P
Peter Zijlstra 已提交
1048
again:
1049
	init_rss_vec(rss);
1050 1051
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1052
	flush_tlb_batched_pending(mm);
1053
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1054 1055
	do {
		pte_t ptent = *pte;
1056
		if (pte_none(ptent))
L
Linus Torvalds 已提交
1057
			continue;
1058

1059 1060 1061
		if (need_resched())
			break;

L
Linus Torvalds 已提交
1062
		if (pte_present(ptent)) {
1063
			struct page *page;
1064

1065
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1066 1067 1068 1069 1070 1071 1072
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
1073
				    details->check_mapping != page_rmapping(page))
L
Linus Torvalds 已提交
1074 1075
					continue;
			}
1076
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1077
							tlb->fullmm);
L
Linus Torvalds 已提交
1078 1079 1080
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1081 1082

			if (!PageAnon(page)) {
1083 1084
				if (pte_dirty(ptent)) {
					force_flush = 1;
1085
					set_page_dirty(page);
1086
				}
1087
				if (pte_young(ptent) &&
1088
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1089
					mark_page_accessed(page);
1090
			}
1091
			rss[mm_counter(page)]--;
1092
			page_remove_rmap(page, false);
1093 1094
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1095
			if (unlikely(__tlb_remove_page(tlb, page))) {
1096
				force_flush = 1;
1097
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1098
				break;
1099
			}
L
Linus Torvalds 已提交
1100 1101
			continue;
		}
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

		entry = pte_to_swp_entry(ptent);
		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
			struct page *page = device_private_entry_to_page(entry);

			if (unlikely(details && details->check_mapping)) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping !=
				    page_rmapping(page))
					continue;
			}

			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
			rss[mm_counter(page)]--;
			page_remove_rmap(page, false);
			put_page(page);
			continue;
		}

1125 1126
		/* If details->check_mapping, we leave swap entries. */
		if (unlikely(details))
L
Linus Torvalds 已提交
1127
			continue;
K
KAMEZAWA Hiroyuki 已提交
1128

1129 1130 1131 1132
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1133

1134
			page = migration_entry_to_page(entry);
1135
			rss[mm_counter(page)]--;
K
KAMEZAWA Hiroyuki 已提交
1136
		}
1137 1138
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1139
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140
	} while (pte++, addr += PAGE_SIZE, addr != end);
1141

1142
	add_mm_rss_vec(mm, rss);
1143
	arch_leave_lazy_mmu_mode();
1144

1145
	/* Do the actual TLB flush before dropping ptl */
1146
	if (force_flush)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
1158
		tlb_flush_mmu(tlb);
1159 1160 1161 1162 1163
	}

	if (addr != end) {
		cond_resched();
		goto again;
P
Peter Zijlstra 已提交
1164 1165
	}

1166
	return addr;
L
Linus Torvalds 已提交
1167 1168
}

1169
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1171
				unsigned long addr, unsigned long end,
1172
				struct zap_details *details)
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177 1178 1179
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1180
		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181
			if (next - addr != HPAGE_PMD_SIZE)
1182
				__split_huge_pmd(vma, pmd, addr, false, NULL);
1183
			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184
				goto next;
1185 1186
			/* fall through */
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1196
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197
next:
1198 1199
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1200 1201

	return addr;
L
Linus Torvalds 已提交
1202 1203
}

1204
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205
				struct vm_area_struct *vma, p4d_t *p4d,
L
Linus Torvalds 已提交
1206
				unsigned long addr, unsigned long end,
1207
				struct zap_details *details)
L
Linus Torvalds 已提交
1208 1209 1210 1211
{
	pud_t *pud;
	unsigned long next;

1212
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
1213 1214
	do {
		next = pud_addr_end(addr, end);
1215 1216 1217 1218 1219 1220 1221 1222
		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
			if (next - addr != HPAGE_PUD_SIZE) {
				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
				split_huge_pud(vma, pud, addr);
			} else if (zap_huge_pud(tlb, vma, pud, addr))
				goto next;
			/* fall through */
		}
1223
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1224
			continue;
1225
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 1227
next:
		cond_resched();
1228
	} while (pud++, addr = next, addr != end);
1229 1230

	return addr;
L
Linus Torvalds 已提交
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
				struct vm_area_struct *vma, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				struct zap_details *details)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_none_or_clear_bad(p4d))
			continue;
		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
	} while (p4d++, addr = next, addr != end);

	return addr;
}

1252
void unmap_page_range(struct mmu_gather *tlb,
1253 1254 1255
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1265
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1266
			continue;
1267
		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1269 1270
	tlb_end_vma(tlb, vma);
}
1271

1272 1273 1274

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1275
		unsigned long end_addr,
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1287 1288 1289
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1290
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1291
		untrack_pfn(vma, 0, 0);
1292 1293 1294 1295 1296 1297 1298

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1299
			 * cleanup path of mmap_region. When
1300
			 * hugetlbfs ->mmap method fails,
1301
			 * mmap_region() nullifies vma->vm_file
1302 1303 1304 1305
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1306
			if (vma->vm_file) {
1307
				i_mmap_lock_write(vma->vm_file->f_mapping);
1308
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1310
			}
1311 1312 1313
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1314 1315 1316 1317
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1318
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1319 1320 1321 1322
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1323
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
1334
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1335
		struct vm_area_struct *vma, unsigned long start_addr,
1336
		unsigned long end_addr)
L
Linus Torvalds 已提交
1337
{
1338
	struct mmu_notifier_range range;
L
Linus Torvalds 已提交
1339

1340 1341
	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
				start_addr, end_addr);
1342
	mmu_notifier_invalidate_range_start(&range);
1343
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345
	mmu_notifier_invalidate_range_end(&range);
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1351
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1352
 * @size: number of bytes to zap
1353 1354
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1355
 */
1356
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357
		unsigned long size)
L
Linus Torvalds 已提交
1358
{
1359
	struct mmu_notifier_range range;
P
Peter Zijlstra 已提交
1360
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1361 1362

	lru_add_drain();
1363
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364
				start, start + size);
1365 1366 1367 1368 1369 1370 1371
	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
	update_hiwater_rss(vma->vm_mm);
	mmu_notifier_invalidate_range_start(&range);
	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
		unmap_single_vma(&tlb, vma, start, range.end, NULL);
	mmu_notifier_invalidate_range_end(&range);
	tlb_finish_mmu(&tlb, start, range.end);
L
Linus Torvalds 已提交
1372 1373
}

1374 1375 1376 1377 1378
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1379
 * @details: details of shared cache invalidation
1380 1381
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1382
 */
1383
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1384 1385
		unsigned long size, struct zap_details *details)
{
1386
	struct mmu_notifier_range range;
P
Peter Zijlstra 已提交
1387
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1388 1389

	lru_add_drain();
1390
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391
				address, address + size);
1392 1393 1394 1395 1396 1397
	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
	update_hiwater_rss(vma->vm_mm);
	mmu_notifier_invalidate_range_start(&range);
	unmap_single_vma(&tlb, vma, address, range.end, details);
	mmu_notifier_invalidate_range_end(&range);
	tlb_finish_mmu(&tlb, address, range.end);
L
Linus Torvalds 已提交
1398 1399
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 */
1411
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412 1413 1414 1415
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
1416 1417
		return;

1418
	zap_page_range_single(vma, address, size, NULL);
1419 1420 1421
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1422
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423
			spinlock_t **ptl)
1424
{
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	pgd_t *pgd;
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;

	pgd = pgd_offset(mm, addr);
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
	pud = pud_alloc(mm, p4d, addr);
	if (!pud)
		return NULL;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return NULL;

	VM_BUG_ON(pmd_trans_huge(*pmd));
	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static int validate_page_before_insert(struct page *page)
{
	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
		return -EINVAL;
	flush_dcache_page(page);
	return 0;
}

static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
			unsigned long addr, struct page *page, pgprot_t prot)
{
	if (!pte_none(*pte))
		return -EBUSY;
	/* Ok, finally just insert the thing.. */
	get_page(page);
	inc_mm_counter_fast(mm, mm_counter_file(page));
	page_add_file_rmap(page, false);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));
	return 0;
}

1466 1467 1468 1469 1470 1471 1472
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1473 1474
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1475
{
N
Nick Piggin 已提交
1476
	struct mm_struct *mm = vma->vm_mm;
1477
	int retval;
1478
	pte_t *pte;
1479 1480
	spinlock_t *ptl;

1481 1482
	retval = validate_page_before_insert(page);
	if (retval)
1483
		goto out;
1484
	retval = -ENOMEM;
1485
	pte = get_locked_pte(mm, addr, &ptl);
1486
	if (!pte)
1487
		goto out;
1488
	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1489 1490 1491 1492 1493
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1494 1495 1496 1497 1498 1499
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1500 1501 1502 1503 1504 1505
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
1506
 * (see split_page()).
1507 1508 1509 1510 1511 1512 1513 1514
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1515 1516 1517 1518 1519
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1520 1521
 *
 * Return: %0 on success, negative error code otherwise.
1522
 */
N
Nick Piggin 已提交
1523 1524
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1525 1526 1527 1528 1529
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1530 1531 1532 1533 1534
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1535
	return insert_page(vma, addr, page, vma->vm_page_prot);
1536
}
1537
EXPORT_SYMBOL(vm_insert_page);
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/*
 * __vm_map_pages - maps range of kernel pages into user vma
 * @vma: user vma to map to
 * @pages: pointer to array of source kernel pages
 * @num: number of pages in page array
 * @offset: user's requested vm_pgoff
 *
 * This allows drivers to map range of kernel pages into a user vma.
 *
 * Return: 0 on success and error code otherwise.
 */
static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
				unsigned long num, unsigned long offset)
{
	unsigned long count = vma_pages(vma);
	unsigned long uaddr = vma->vm_start;
	int ret, i;

	/* Fail if the user requested offset is beyond the end of the object */
1558
	if (offset >= num)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		return -ENXIO;

	/* Fail if the user requested size exceeds available object size */
	if (count > num - offset)
		return -ENXIO;

	for (i = 0; i < count; i++) {
		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
		if (ret < 0)
			return ret;
		uaddr += PAGE_SIZE;
	}

	return 0;
}

/**
 * vm_map_pages - maps range of kernel pages starts with non zero offset
 * @vma: user vma to map to
 * @pages: pointer to array of source kernel pages
 * @num: number of pages in page array
 *
 * Maps an object consisting of @num pages, catering for the user's
 * requested vm_pgoff
 *
 * If we fail to insert any page into the vma, the function will return
 * immediately leaving any previously inserted pages present.  Callers
 * from the mmap handler may immediately return the error as their caller
 * will destroy the vma, removing any successfully inserted pages. Other
 * callers should make their own arrangements for calling unmap_region().
 *
 * Context: Process context. Called by mmap handlers.
 * Return: 0 on success and error code otherwise.
 */
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
				unsigned long num)
{
	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
}
EXPORT_SYMBOL(vm_map_pages);

/**
 * vm_map_pages_zero - map range of kernel pages starts with zero offset
 * @vma: user vma to map to
 * @pages: pointer to array of source kernel pages
 * @num: number of pages in page array
 *
 * Similar to vm_map_pages(), except that it explicitly sets the offset
 * to 0. This function is intended for the drivers that did not consider
 * vm_pgoff.
 *
 * Context: Process context. Called by mmap handlers.
 * Return: 0 on success and error code otherwise.
 */
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
				unsigned long num)
{
	return __vm_map_pages(vma, pages, num, 0);
}
EXPORT_SYMBOL(vm_map_pages_zero);

1620
static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1621
			pfn_t pfn, pgprot_t prot, bool mkwrite)
N
Nick Piggin 已提交
1622 1623 1624 1625 1626 1627 1628
{
	struct mm_struct *mm = vma->vm_mm;
	pte_t *pte, entry;
	spinlock_t *ptl;

	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
1629
		return VM_FAULT_OOM;
1630 1631 1632 1633 1634 1635 1636
	if (!pte_none(*pte)) {
		if (mkwrite) {
			/*
			 * For read faults on private mappings the PFN passed
			 * in may not match the PFN we have mapped if the
			 * mapped PFN is a writeable COW page.  In the mkwrite
			 * case we are creating a writable PTE for a shared
1637 1638 1639 1640
			 * mapping and we expect the PFNs to match. If they
			 * don't match, we are likely racing with block
			 * allocation and mapping invalidation so just skip the
			 * update.
1641
			 */
1642 1643
			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1644
				goto out_unlock;
1645
			}
1646 1647 1648 1649 1650 1651
			entry = pte_mkyoung(*pte);
			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
				update_mmu_cache(vma, addr, pte);
		}
		goto out_unlock;
1652
	}
N
Nick Piggin 已提交
1653 1654

	/* Ok, finally just insert the thing.. */
1655 1656 1657 1658
	if (pfn_t_devmap(pfn))
		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
	else
		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1659 1660 1661 1662 1663 1664

	if (mkwrite) {
		entry = pte_mkyoung(entry);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	}

N
Nick Piggin 已提交
1665
	set_pte_at(mm, addr, pte, entry);
1666
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1667 1668 1669

out_unlock:
	pte_unmap_unlock(pte, ptl);
1670
	return VM_FAULT_NOPAGE;
N
Nick Piggin 已提交
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 * @pgprot: pgprot flags for the inserted page
 *
 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
 * to override pgprot on a per-page basis.
 *
 * This only makes sense for IO mappings, and it makes no sense for
 * COW mappings.  In general, using multiple vmas is preferable;
1685
 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1686 1687
 * impractical.
 *
1688 1689 1690
 * See vmf_insert_mixed_prot() for a discussion of the implication of using
 * a value of @pgprot different from that of @vma->vm_page_prot.
 *
1691
 * Context: Process context.  May allocate using %GFP_KERNEL.
1692 1693 1694 1695 1696
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t pgprot)
{
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	if (!pfn_modify_allowed(pfn, pgprot))
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));

1717
	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1718
			false);
1719 1720
}
EXPORT_SYMBOL(vmf_insert_pfn_prot);
N
Nick Piggin 已提交
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/**
 * vmf_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
 * Similar to vm_insert_page, this allows drivers to insert individual pages
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return the result of this function.
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
 *
 * Context: Process context.  May allocate using %GFP_KERNEL.
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vmf_insert_pfn);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
{
	/* these checks mirror the abort conditions in vm_normal_page */
	if (vma->vm_flags & VM_MIXEDMAP)
		return true;
	if (pfn_t_devmap(pfn))
		return true;
	if (pfn_t_special(pfn))
		return true;
	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
		return true;
	return false;
}

1763
static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1764 1765
		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
		bool mkwrite)
N
Nick Piggin 已提交
1766
{
1767
	int err;
1768

1769
	BUG_ON(!vm_mixed_ok(vma, pfn));
N
Nick Piggin 已提交
1770

N
Nick Piggin 已提交
1771
	if (addr < vma->vm_start || addr >= vma->vm_end)
1772
		return VM_FAULT_SIGBUS;
1773 1774

	track_pfn_insert(vma, &pgprot, pfn);
N
Nick Piggin 已提交
1775

1776
	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1777
		return VM_FAULT_SIGBUS;
1778

N
Nick Piggin 已提交
1779 1780 1781 1782
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
1783 1784
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1785
	 */
1786 1787
	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
N
Nick Piggin 已提交
1788 1789
		struct page *page;

1790 1791 1792 1793 1794 1795
		/*
		 * At this point we are committed to insert_page()
		 * regardless of whether the caller specified flags that
		 * result in pfn_t_has_page() == false.
		 */
		page = pfn_to_page(pfn_t_to_pfn(pfn));
1796 1797
		err = insert_page(vma, addr, page, pgprot);
	} else {
1798
		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
N
Nick Piggin 已提交
1799
	}
1800

1801 1802 1803 1804 1805 1806
	if (err == -ENOMEM)
		return VM_FAULT_OOM;
	if (err < 0 && err != -EBUSY)
		return VM_FAULT_SIGBUS;

	return VM_FAULT_NOPAGE;
N
Nick Piggin 已提交
1807
}
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
/**
 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 * @pgprot: pgprot flags for the inserted page
 *
 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
 * to override pgprot on a per-page basis.
 *
 * Typically this function should be used by drivers to set caching- and
 * encryption bits different than those of @vma->vm_page_prot, because
 * the caching- or encryption mode may not be known at mmap() time.
 * This is ok as long as @vma->vm_page_prot is not used by the core vm
 * to set caching and encryption bits for those vmas (except for COW pages).
 * This is ensured by core vm only modifying these page table entries using
 * functions that don't touch caching- or encryption bits, using pte_modify()
 * if needed. (See for example mprotect()).
 * Also when new page-table entries are created, this is only done using the
 * fault() callback, and never using the value of vma->vm_page_prot,
 * except for page-table entries that point to anonymous pages as the result
 * of COW.
 *
 * Context: Process context.  May allocate using %GFP_KERNEL.
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
				 pfn_t pfn, pgprot_t pgprot)
{
	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
}
1840
EXPORT_SYMBOL(vmf_insert_mixed_prot);
1841

1842 1843 1844
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
		pfn_t pfn)
{
1845
	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1846
}
1847
EXPORT_SYMBOL(vmf_insert_mixed);
N
Nick Piggin 已提交
1848

1849 1850 1851 1852 1853 1854 1855
/*
 *  If the insertion of PTE failed because someone else already added a
 *  different entry in the mean time, we treat that as success as we assume
 *  the same entry was actually inserted.
 */
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
		unsigned long addr, pfn_t pfn)
1856
{
1857
	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1858
}
1859
EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1860

L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
1871
	spinlock_t *ptl;
1872
	int err = 0;
L
Linus Torvalds 已提交
1873

1874
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1875 1876
	if (!pte)
		return -ENOMEM;
1877
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1878 1879
	do {
		BUG_ON(!pte_none(*pte));
1880 1881 1882 1883
		if (!pfn_modify_allowed(pfn, prot)) {
			err = -EACCES;
			break;
		}
1884
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1885 1886
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1887
	arch_leave_lazy_mmu_mode();
1888
	pte_unmap_unlock(pte - 1, ptl);
1889
	return err;
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895 1896 1897
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;
1898
	int err;
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1904
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1905 1906
	do {
		next = pmd_addr_end(addr, end);
1907 1908 1909 1910
		err = remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
L
Linus Torvalds 已提交
1911 1912 1913 1914
	} while (pmd++, addr = next, addr != end);
	return 0;
}

1915
static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;
1921
	int err;
L
Linus Torvalds 已提交
1922 1923

	pfn -= addr >> PAGE_SHIFT;
1924
	pud = pud_alloc(mm, p4d, addr);
L
Linus Torvalds 已提交
1925 1926 1927 1928
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
1929 1930 1931 1932
		err = remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
L
Linus Torvalds 已提交
1933 1934 1935 1936
	} while (pud++, addr = next, addr != end);
	return 0;
}

1937 1938 1939 1940 1941 1942
static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	p4d_t *p4d;
	unsigned long next;
1943
	int err;
1944 1945 1946 1947 1948 1949 1950

	pfn -= addr >> PAGE_SHIFT;
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
1951 1952 1953 1954
		err = remap_pud_range(mm, p4d, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			return err;
1955 1956 1957 1958
	} while (p4d++, addr = next, addr != end);
	return 0;
}

1959 1960 1961 1962
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
1963
 * @pfn: page frame number of kernel physical memory address
1964
 * @size: size of mapping area
1965 1966
 * @prot: page protection flags for this mapping
 *
1967 1968 1969
 * Note: this is only safe if the mm semaphore is held when called.
 *
 * Return: %0 on success, negative error code otherwise.
1970
 */
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1976
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1977
	struct mm_struct *mm = vma->vm_mm;
1978
	unsigned long remap_pfn = pfn;
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1986 1987 1988
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1989 1990 1991 1992
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
1993 1994 1995 1996
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1997
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1998
	 */
1999 2000 2001
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
2002
		vma->vm_pgoff = pfn;
2003 2004
	}

2005
	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2006
	if (err)
2007
		return -EINVAL;
2008

2009
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
2017
		err = remap_p4d_range(mm, pgd, addr, next,
L
Linus Torvalds 已提交
2018 2019 2020 2021
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
2022 2023

	if (err)
2024
		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2025

L
Linus Torvalds 已提交
2026 2027 2028 2029
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

2030 2031 2032
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
2033
 * @start: start of the physical memory to be mapped
2034 2035 2036 2037 2038 2039 2040 2041
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
2042 2043
 *
 * Return: %0 on success, negative error code otherwise.
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

2079 2080
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
2081
				     pte_fn_t fn, void *data, bool create)
2082 2083
{
	pte_t *pte;
2084
	int err = 0;
2085
	spinlock_t *uninitialized_var(ptl);
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	if (create) {
		pte = (mm == &init_mm) ?
			pte_alloc_kernel(pmd, addr) :
			pte_alloc_map_lock(mm, pmd, addr, &ptl);
		if (!pte)
			return -ENOMEM;
	} else {
		pte = (mm == &init_mm) ?
			pte_offset_kernel(pmd, addr) :
			pte_offset_map_lock(mm, pmd, addr, &ptl);
	}
2098 2099 2100

	BUG_ON(pmd_huge(*pmd));

2101 2102
	arch_enter_lazy_mmu_mode();

2103
	do {
2104 2105 2106 2107 2108
		if (create || !pte_none(*pte)) {
			err = fn(pte++, addr, data);
			if (err)
				break;
		}
2109
	} while (addr += PAGE_SIZE, addr != end);
2110

2111 2112
	arch_leave_lazy_mmu_mode();

2113 2114 2115 2116 2117 2118 2119
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
2120
				     pte_fn_t fn, void *data, bool create)
2121 2122 2123
{
	pmd_t *pmd;
	unsigned long next;
2124
	int err = 0;
2125

A
Andi Kleen 已提交
2126 2127
	BUG_ON(pud_huge(*pud));

2128 2129 2130 2131 2132 2133 2134
	if (create) {
		pmd = pmd_alloc(mm, pud, addr);
		if (!pmd)
			return -ENOMEM;
	} else {
		pmd = pmd_offset(pud, addr);
	}
2135 2136
	do {
		next = pmd_addr_end(addr, end);
2137 2138 2139 2140 2141 2142
		if (create || !pmd_none_or_clear_bad(pmd)) {
			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
						 create);
			if (err)
				break;
		}
2143 2144 2145 2146
	} while (pmd++, addr = next, addr != end);
	return err;
}

2147
static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2148
				     unsigned long addr, unsigned long end,
2149
				     pte_fn_t fn, void *data, bool create)
2150 2151 2152
{
	pud_t *pud;
	unsigned long next;
2153
	int err = 0;
2154

2155 2156 2157 2158 2159 2160 2161
	if (create) {
		pud = pud_alloc(mm, p4d, addr);
		if (!pud)
			return -ENOMEM;
	} else {
		pud = pud_offset(p4d, addr);
	}
2162 2163
	do {
		next = pud_addr_end(addr, end);
2164 2165 2166 2167 2168 2169
		if (create || !pud_none_or_clear_bad(pud)) {
			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
						 create);
			if (err)
				break;
		}
2170 2171 2172 2173
	} while (pud++, addr = next, addr != end);
	return err;
}

2174 2175
static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
2176
				     pte_fn_t fn, void *data, bool create)
2177 2178 2179
{
	p4d_t *p4d;
	unsigned long next;
2180
	int err = 0;
2181

2182 2183 2184 2185 2186 2187 2188
	if (create) {
		p4d = p4d_alloc(mm, pgd, addr);
		if (!p4d)
			return -ENOMEM;
	} else {
		p4d = p4d_offset(pgd, addr);
	}
2189 2190
	do {
		next = p4d_addr_end(addr, end);
2191 2192 2193 2194 2195 2196
		if (create || !p4d_none_or_clear_bad(p4d)) {
			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
						 create);
			if (err)
				break;
		}
2197 2198 2199 2200
	} while (p4d++, addr = next, addr != end);
	return err;
}

2201 2202 2203
static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
				 unsigned long size, pte_fn_t fn,
				 void *data, bool create)
2204 2205 2206
{
	pgd_t *pgd;
	unsigned long next;
2207
	unsigned long end = addr + size;
2208
	int err = 0;
2209

2210 2211 2212
	if (WARN_ON(addr >= end))
		return -EINVAL;

2213 2214 2215
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
2216 2217 2218
		if (!create && pgd_none_or_clear_bad(pgd))
			continue;
		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2219 2220 2221
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
2222

2223 2224
	return err;
}
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	return __apply_to_page_range(mm, addr, size, fn, data, true);
}
2235 2236
EXPORT_SYMBOL_GPL(apply_to_page_range);

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/*
 * Scan a region of virtual memory, calling a provided function on
 * each leaf page table where it exists.
 *
 * Unlike apply_to_page_range, this does _not_ fill in page tables
 * where they are absent.
 */
int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
				 unsigned long size, pte_fn_t fn, void *data)
{
	return __apply_to_page_range(mm, addr, size, fn, data, false);
}
EXPORT_SYMBOL_GPL(apply_to_existing_page_range);

2251
/*
2252 2253 2254 2255 2256
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
2257
 * and do_anonymous_page can safely check later on).
2258
 */
2259
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2260 2261 2262
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
2263
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2264
	if (sizeof(pte_t) > sizeof(unsigned long)) {
2265 2266
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
2267
		same = pte_same(*page_table, orig_pte);
2268
		spin_unlock(ptl);
2269 2270 2271 2272 2273 2274
	}
#endif
	pte_unmap(page_table);
	return same;
}

2275 2276
static inline bool cow_user_page(struct page *dst, struct page *src,
				 struct vm_fault *vmf)
2277
{
2278 2279 2280
	bool ret;
	void *kaddr;
	void __user *uaddr;
2281
	bool locked = false;
2282 2283 2284 2285
	struct vm_area_struct *vma = vmf->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr = vmf->address;

2286 2287
	debug_dma_assert_idle(src);

2288 2289 2290 2291 2292
	if (likely(src)) {
		copy_user_highpage(dst, src, addr, vma);
		return true;
	}

2293 2294 2295 2296 2297 2298
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
2299 2300 2301 2302 2303 2304 2305
	kaddr = kmap_atomic(dst);
	uaddr = (void __user *)(addr & PAGE_MASK);

	/*
	 * On architectures with software "accessed" bits, we would
	 * take a double page fault, so mark it accessed here.
	 */
2306
	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2307
		pte_t entry;
2308

2309
		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2310
		locked = true;
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
			/*
			 * Other thread has already handled the fault
			 * and we don't need to do anything. If it's
			 * not the case, the fault will be triggered
			 * again on the same address.
			 */
			ret = false;
			goto pte_unlock;
		}

		entry = pte_mkyoung(vmf->orig_pte);
		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
			update_mmu_cache(vma, addr, vmf->pte);
	}

	/*
	 * This really shouldn't fail, because the page is there
	 * in the page tables. But it might just be unreadable,
	 * in which case we just give up and fill the result with
	 * zeroes.
	 */
	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		if (locked)
			goto warn;

		/* Re-validate under PTL if the page is still mapped */
		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
		locked = true;
		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
			/* The PTE changed under us. Retry page fault. */
			ret = false;
			goto pte_unlock;
		}

2346
		/*
2347 2348
		 * The same page can be mapped back since last copy attampt.
		 * Try to copy again under PTL.
2349
		 */
2350 2351 2352 2353 2354 2355 2356 2357 2358
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
			/*
			 * Give a warn in case there can be some obscure
			 * use-case
			 */
warn:
			WARN_ON_ONCE(1);
			clear_page(kaddr);
		}
2359 2360 2361 2362 2363
	}

	ret = true;

pte_unlock:
2364
	if (locked)
2365 2366 2367 2368 2369
		pte_unmap_unlock(vmf->pte, vmf->ptl);
	kunmap_atomic(kaddr);
	flush_dcache_page(dst);

	return ret;
2370 2371
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

2386 2387 2388 2389 2390 2391
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
2392
static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2393
{
2394
	vm_fault_t ret;
2395 2396
	struct page *page = vmf->page;
	unsigned int old_flags = vmf->flags;
2397

2398
	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2399

2400 2401 2402 2403
	if (vmf->vma->vm_file &&
	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
		return VM_FAULT_SIGBUS;

2404
	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2405 2406
	/* Restore original flags so that caller is not surprised */
	vmf->flags = old_flags;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

2421 2422 2423 2424 2425
/*
 * Handle dirtying of a page in shared file mapping on a write fault.
 *
 * The function expects the page to be locked and unlocks it.
 */
2426
static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2427
{
2428
	struct vm_area_struct *vma = vmf->vma;
2429
	struct address_space *mapping;
2430
	struct page *page = vmf->page;
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	bool dirtied;
	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;

	dirtied = set_page_dirty(page);
	VM_BUG_ON_PAGE(PageAnon(page), page);
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
	mapping = page_rmapping(page);
	unlock_page(page);

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (!page_mkwrite)
		file_update_time(vma->vm_file);

	/*
	 * Throttle page dirtying rate down to writeback speed.
	 *
	 * mapping may be NULL here because some device drivers do not
	 * set page.mapping but still dirty their pages
	 *
	 * Drop the mmap_sem before waiting on IO, if we can. The file
	 * is pinning the mapping, as per above.
	 */
2457
	if ((dirtied || page_mkwrite) && mapping) {
2458 2459 2460
		struct file *fpin;

		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2461
		balance_dirty_pages_ratelimited(mapping);
2462 2463 2464 2465
		if (fpin) {
			fput(fpin);
			return VM_FAULT_RETRY;
		}
2466 2467
	}

2468
	return 0;
2469 2470
}

2471 2472 2473 2474 2475 2476 2477 2478
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
2479
static inline void wp_page_reuse(struct vm_fault *vmf)
2480
	__releases(vmf->ptl)
2481
{
2482
	struct vm_area_struct *vma = vmf->vma;
2483
	struct page *page = vmf->page;
2484 2485 2486 2487 2488 2489 2490 2491 2492
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

2493 2494
	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
	entry = pte_mkyoung(vmf->orig_pte);
2495
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2496 2497 2498
	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
		update_mmu_cache(vma, vmf->address, vmf->pte);
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2499 2500
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
2517
static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2518
{
2519
	struct vm_area_struct *vma = vmf->vma;
2520
	struct mm_struct *mm = vma->vm_mm;
2521
	struct page *old_page = vmf->page;
2522 2523 2524 2525
	struct page *new_page = NULL;
	pte_t entry;
	int page_copied = 0;
	struct mem_cgroup *memcg;
2526
	struct mmu_notifier_range range;
2527 2528 2529 2530

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

2531
	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2532 2533
		new_page = alloc_zeroed_user_highpage_movable(vma,
							      vmf->address);
2534 2535 2536
		if (!new_page)
			goto oom;
	} else {
2537
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2538
				vmf->address);
2539 2540
		if (!new_page)
			goto oom;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

		if (!cow_user_page(new_page, old_page, vmf)) {
			/*
			 * COW failed, if the fault was solved by other,
			 * it's fine. If not, userspace would re-fault on
			 * the same address and we will handle the fault
			 * from the second attempt.
			 */
			put_page(new_page);
			if (old_page)
				put_page(old_page);
			return 0;
		}
2554 2555
	}

2556
	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2557 2558
		goto oom_free_new;

2559 2560
	__SetPageUptodate(new_page);

2561
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2562
				vmf->address & PAGE_MASK,
2563 2564
				(vmf->address & PAGE_MASK) + PAGE_SIZE);
	mmu_notifier_invalidate_range_start(&range);
2565 2566 2567 2568

	/*
	 * Re-check the pte - we dropped the lock
	 */
2569
	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2570
	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2571 2572
		if (old_page) {
			if (!PageAnon(old_page)) {
2573 2574
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2575 2576 2577 2578 2579
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
2580
		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2581 2582 2583 2584 2585 2586 2587 2588
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
2589 2590
		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2591
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2592 2593 2594 2595 2596 2597
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
2598 2599
		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
		update_mmu_cache(vma, vmf->address, vmf->pte);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2623
			page_remove_rmap(old_page, false);
2624 2625 2626 2627 2628 2629
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2630
		mem_cgroup_cancel_charge(new_page, memcg, false);
2631 2632 2633
	}

	if (new_page)
2634
		put_page(new_page);
2635

2636
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2637 2638 2639 2640
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above ptep_clear_flush_notify() did already call it.
	 */
2641
	mmu_notifier_invalidate_range_only_end(&range);
2642 2643 2644 2645 2646 2647 2648
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
2649 2650
			if (PageMlocked(old_page))
				munlock_vma_page(old_page);
2651 2652
			unlock_page(old_page);
		}
2653
		put_page(old_page);
2654 2655 2656
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
2657
	put_page(new_page);
2658 2659
oom:
	if (old_page)
2660
		put_page(old_page);
2661 2662 2663
	return VM_FAULT_OOM;
}

2664 2665 2666 2667 2668 2669 2670 2671
/**
 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
 *			  writeable once the page is prepared
 *
 * @vmf: structure describing the fault
 *
 * This function handles all that is needed to finish a write page fault in a
 * shared mapping due to PTE being read-only once the mapped page is prepared.
2672
 * It handles locking of PTE and modifying it.
2673 2674 2675
 *
 * The function expects the page to be locked or other protection against
 * concurrent faults / writeback (such as DAX radix tree locks).
2676 2677 2678
 *
 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
 * we acquired PTE lock.
2679
 */
2680
vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
{
	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
				       &vmf->ptl);
	/*
	 * We might have raced with another page fault while we released the
	 * pte_offset_map_lock.
	 */
	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2691
		return VM_FAULT_NOPAGE;
2692 2693
	}
	wp_page_reuse(vmf);
2694
	return 0;
2695 2696
}

2697 2698 2699 2700
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
2701
static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2702
{
2703
	struct vm_area_struct *vma = vmf->vma;
2704

2705
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2706
		vm_fault_t ret;
2707

2708
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2709
		vmf->flags |= FAULT_FLAG_MKWRITE;
2710
		ret = vma->vm_ops->pfn_mkwrite(vmf);
2711
		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2712
			return ret;
2713
		return finish_mkwrite_fault(vmf);
2714
	}
2715 2716
	wp_page_reuse(vmf);
	return VM_FAULT_WRITE;
2717 2718
}

2719
static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2720
	__releases(vmf->ptl)
2721
{
2722
	struct vm_area_struct *vma = vmf->vma;
2723
	vm_fault_t ret = VM_FAULT_WRITE;
2724

2725
	get_page(vmf->page);
2726 2727

	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2728
		vm_fault_t tmp;
2729

2730
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2731
		tmp = do_page_mkwrite(vmf);
2732 2733
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2734
			put_page(vmf->page);
2735 2736
			return tmp;
		}
2737
		tmp = finish_mkwrite_fault(vmf);
2738
		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2739 2740
			unlock_page(vmf->page);
			put_page(vmf->page);
2741
			return tmp;
2742
		}
2743 2744
	} else {
		wp_page_reuse(vmf);
2745
		lock_page(vmf->page);
2746
	}
2747
	ret |= fault_dirty_shared_page(vmf);
2748
	put_page(vmf->page);
2749

2750
	return ret;
2751 2752
}

L
Linus Torvalds 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2767 2768 2769
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2770
 */
2771
static vm_fault_t do_wp_page(struct vm_fault *vmf)
2772
	__releases(vmf->ptl)
L
Linus Torvalds 已提交
2773
{
2774
	struct vm_area_struct *vma = vmf->vma;
L
Linus Torvalds 已提交
2775

2776
	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2777 2778 2779 2780
		pte_unmap_unlock(vmf->pte, vmf->ptl);
		return handle_userfault(vmf, VM_UFFD_WP);
	}

2781 2782
	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
	if (!vmf->page) {
2783
		/*
2784 2785
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2786 2787
		 *
		 * We should not cow pages in a shared writeable mapping.
2788
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2789 2790 2791
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2792
			return wp_pfn_shared(vmf);
2793

2794
		pte_unmap_unlock(vmf->pte, vmf->ptl);
2795
		return wp_page_copy(vmf);
2796
	}
L
Linus Torvalds 已提交
2797

2798
	/*
2799 2800
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2801
	 */
2802
	if (PageAnon(vmf->page)) {
2803
		int total_map_swapcount;
2804 2805 2806
		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
					   page_count(vmf->page) != 1))
			goto copy;
2807 2808
		if (!trylock_page(vmf->page)) {
			get_page(vmf->page);
2809
			pte_unmap_unlock(vmf->pte, vmf->ptl);
2810
			lock_page(vmf->page);
2811 2812
			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
					vmf->address, &vmf->ptl);
2813
			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2814
				unlock_page(vmf->page);
2815
				pte_unmap_unlock(vmf->pte, vmf->ptl);
2816
				put_page(vmf->page);
2817
				return 0;
2818
			}
2819
			put_page(vmf->page);
2820
		}
2821 2822 2823 2824 2825 2826 2827 2828 2829
		if (PageKsm(vmf->page)) {
			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
						     vmf->address);
			unlock_page(vmf->page);
			if (!reused)
				goto copy;
			wp_page_reuse(vmf);
			return VM_FAULT_WRITE;
		}
2830 2831
		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
			if (total_map_swapcount == 1) {
2832 2833 2834 2835 2836 2837 2838
				/*
				 * The page is all ours. Move it to
				 * our anon_vma so the rmap code will
				 * not search our parent or siblings.
				 * Protected against the rmap code by
				 * the page lock.
				 */
2839
				page_move_anon_rmap(vmf->page, vma);
2840
			}
2841
			unlock_page(vmf->page);
2842 2843
			wp_page_reuse(vmf);
			return VM_FAULT_WRITE;
2844
		}
2845
		unlock_page(vmf->page);
2846
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2847
					(VM_WRITE|VM_SHARED))) {
2848
		return wp_page_shared(vmf);
L
Linus Torvalds 已提交
2849
	}
2850
copy:
L
Linus Torvalds 已提交
2851 2852 2853
	/*
	 * Ok, we need to copy. Oh, well..
	 */
2854
	get_page(vmf->page);
2855

2856
	pte_unmap_unlock(vmf->pte, vmf->ptl);
2857
	return wp_page_copy(vmf);
L
Linus Torvalds 已提交
2858 2859
}

2860
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2861 2862 2863
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2864
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2865 2866
}

2867
static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2873
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2874 2875 2876
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2877
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882 2883 2884
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2885
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2886 2887
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2888
				details);
L
Linus Torvalds 已提交
2889 2890 2891
	}
}

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/**
 * unmap_mapping_pages() - Unmap pages from processes.
 * @mapping: The address space containing pages to be unmapped.
 * @start: Index of first page to be unmapped.
 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
 * @even_cows: Whether to unmap even private COWed pages.
 *
 * Unmap the pages in this address space from any userspace process which
 * has them mmaped.  Generally, you want to remove COWed pages as well when
 * a file is being truncated, but not when invalidating pages from the page
 * cache.
 */
void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
		pgoff_t nr, bool even_cows)
{
	struct zap_details details = { };

	details.check_mapping = even_cows ? NULL : mapping;
	details.first_index = start;
	details.last_index = start + nr - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

	i_mmap_lock_write(mapping);
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
	i_mmap_unlock_write(mapping);
}

L
Linus Torvalds 已提交
2921
/**
2922
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2923
 * address_space corresponding to the specified byte range in the underlying
2924 2925
 * file.
 *
2926
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2927 2928
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2929
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

2952
	unmap_mapping_pages(mapping, hba, hlen, even_cows);
L
Linus Torvalds 已提交
2953 2954 2955 2956
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2957 2958
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2959 2960 2961 2962
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2963
 */
2964
vm_fault_t do_swap_page(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2965
{
2966
	struct vm_area_struct *vma = vmf->vma;
2967
	struct page *page = NULL, *swapcache;
2968
	struct mem_cgroup *memcg;
2969
	swp_entry_t entry;
L
Linus Torvalds 已提交
2970
	pte_t pte;
2971
	int locked;
2972
	int exclusive = 0;
2973
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2974

2975
	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2976
		goto out;
2977

2978
	entry = pte_to_swp_entry(vmf->orig_pte);
2979 2980
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
2981 2982
			migration_entry_wait(vma->vm_mm, vmf->pmd,
					     vmf->address);
2983
		} else if (is_device_private_entry(entry)) {
2984 2985
			vmf->page = device_private_entry_to_page(entry);
			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2986 2987 2988
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
2989
			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2990
			ret = VM_FAULT_SIGBUS;
2991
		}
2992 2993
		goto out;
	}
2994 2995


2996
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2997 2998
	page = lookup_swap_cache(entry, vma, vmf->address);
	swapcache = page;
2999

L
Linus Torvalds 已提交
3000
	if (!page) {
3001 3002
		struct swap_info_struct *si = swp_swap_info(entry);

3003
		if (si->flags & SWP_SYNCHRONOUS_IO &&
3004
				__swap_count(entry) == 1) {
3005
			/* skip swapcache */
3006 3007
			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
							vmf->address);
3008 3009 3010 3011 3012 3013 3014
			if (page) {
				__SetPageLocked(page);
				__SetPageSwapBacked(page);
				set_page_private(page, entry.val);
				lru_cache_add_anon(page);
				swap_readpage(page, true);
			}
3015
		} else {
3016 3017
			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
						vmf);
3018
			swapcache = page;
3019 3020
		}

L
Linus Torvalds 已提交
3021 3022
		if (!page) {
			/*
3023 3024
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
3025
			 */
3026 3027
			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
					vmf->address, &vmf->ptl);
3028
			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
L
Linus Torvalds 已提交
3029
				ret = VM_FAULT_OOM;
3030
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3031
			goto unlock;
L
Linus Torvalds 已提交
3032 3033 3034 3035
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
3036
		count_vm_event(PGMAJFAULT);
3037
		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3038
	} else if (PageHWPoison(page)) {
3039 3040 3041 3042
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
3043 3044
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3045
		goto out_release;
L
Linus Torvalds 已提交
3046 3047
	}

3048
	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
R
Rik van Riel 已提交
3049

3050
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3051 3052 3053 3054
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
3055

3056
	/*
3057 3058 3059 3060
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
3061
	 */
3062 3063
	if (unlikely((!PageSwapCache(page) ||
			page_private(page) != entry.val)) && swapcache)
3064 3065
		goto out_page;

3066
	page = ksm_might_need_to_copy(page, vma, vmf->address);
3067 3068 3069 3070
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
3071 3072
	}

3073 3074
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
					&memcg, false)) {
3075
		ret = VM_FAULT_OOM;
3076
		goto out_page;
3077 3078
	}

L
Linus Torvalds 已提交
3079
	/*
3080
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
3081
	 */
3082 3083
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
3084
	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3085 3086 3087 3088 3089
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
3090 3091
	}

3092 3093 3094 3095 3096 3097 3098 3099 3100
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
3101

3102 3103
	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
3104
	pte = mk_pte(page, vma->vm_page_prot);
3105
	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
L
Linus Torvalds 已提交
3106
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3107
		vmf->flags &= ~FAULT_FLAG_WRITE;
3108
		ret |= VM_FAULT_WRITE;
3109
		exclusive = RMAP_EXCLUSIVE;
L
Linus Torvalds 已提交
3110 3111
	}
	flush_icache_page(vma, page);
3112
	if (pte_swp_soft_dirty(vmf->orig_pte))
3113
		pte = pte_mksoft_dirty(pte);
3114 3115 3116 3117
	if (pte_swp_uffd_wp(vmf->orig_pte)) {
		pte = pte_mkuffd_wp(pte);
		pte = pte_wrprotect(pte);
	}
3118
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3119
	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3120
	vmf->orig_pte = pte;
3121 3122 3123

	/* ksm created a completely new copy */
	if (unlikely(page != swapcache && swapcache)) {
3124
		page_add_new_anon_rmap(page, vma, vmf->address, false);
3125
		mem_cgroup_commit_charge(page, memcg, false, false);
3126
		lru_cache_add_active_or_unevictable(page, vma);
3127 3128 3129 3130
	} else {
		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
		mem_cgroup_commit_charge(page, memcg, true, false);
		activate_page(page);
3131
	}
L
Linus Torvalds 已提交
3132

3133
	swap_free(entry);
3134 3135
	if (mem_cgroup_swap_full(page) ||
	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3136
		try_to_free_swap(page);
3137
	unlock_page(page);
3138
	if (page != swapcache && swapcache) {
3139 3140 3141 3142 3143 3144 3145 3146 3147
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
3148
		put_page(swapcache);
3149
	}
3150

3151
	if (vmf->flags & FAULT_FLAG_WRITE) {
3152
		ret |= do_wp_page(vmf);
3153 3154
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
3155 3156 3157 3158
		goto out;
	}

	/* No need to invalidate - it was non-present before */
3159
	update_mmu_cache(vma, vmf->address, vmf->pte);
3160
unlock:
3161
	pte_unmap_unlock(vmf->pte, vmf->ptl);
L
Linus Torvalds 已提交
3162 3163
out:
	return ret;
3164
out_nomap:
3165
	mem_cgroup_cancel_charge(page, memcg, false);
3166
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3167
out_page:
3168
	unlock_page(page);
3169
out_release:
3170
	put_page(page);
3171
	if (page != swapcache && swapcache) {
3172
		unlock_page(swapcache);
3173
		put_page(swapcache);
3174
	}
3175
	return ret;
L
Linus Torvalds 已提交
3176 3177 3178
}

/*
3179 3180 3181
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
3182
 */
3183
static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3184
{
3185
	struct vm_area_struct *vma = vmf->vma;
3186
	struct mem_cgroup *memcg;
3187
	struct page *page;
3188
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
3189 3190
	pte_t entry;

3191 3192 3193 3194
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	/*
	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
	 * pte_offset_map() on pmds where a huge pmd might be created
	 * from a different thread.
	 *
	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
	 * parallel threads are excluded by other means.
	 *
	 * Here we only have down_read(mmap_sem).
	 */
3205
	if (pte_alloc(vma->vm_mm, vmf->pmd))
3206 3207 3208
		return VM_FAULT_OOM;

	/* See the comment in pte_alloc_one_map() */
3209
	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3210 3211
		return 0;

3212
	/* Use the zero-page for reads */
3213
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3214
			!mm_forbids_zeropage(vma->vm_mm)) {
3215
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3216
						vma->vm_page_prot));
3217 3218 3219
		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
				vmf->address, &vmf->ptl);
		if (!pte_none(*vmf->pte))
H
Hugh Dickins 已提交
3220
			goto unlock;
3221 3222 3223
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock;
3224 3225
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
3226 3227
			pte_unmap_unlock(vmf->pte, vmf->ptl);
			return handle_userfault(vmf, VM_UFFD_MISSING);
3228
		}
H
Hugh Dickins 已提交
3229 3230 3231
		goto setpte;
	}

N
Nick Piggin 已提交
3232 3233 3234
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
3235
	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
N
Nick Piggin 已提交
3236 3237
	if (!page)
		goto oom;
3238

3239 3240
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
					false))
3241 3242
		goto oom_free_page;

3243 3244
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
3245
	 * preceding stores to the page contents become visible before
3246 3247
	 * the set_pte_at() write.
	 */
3248
	__SetPageUptodate(page);
3249

N
Nick Piggin 已提交
3250
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
3251 3252
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
3253

3254 3255 3256
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
	if (!pte_none(*vmf->pte))
N
Nick Piggin 已提交
3257
		goto release;
H
Hugh Dickins 已提交
3258

3259 3260 3261 3262
	ret = check_stable_address_space(vma->vm_mm);
	if (ret)
		goto release;

3263 3264
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
3265
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3266
		mem_cgroup_cancel_charge(page, memcg, false);
3267
		put_page(page);
3268
		return handle_userfault(vmf, VM_UFFD_MISSING);
3269 3270
	}

3271
	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3272
	page_add_new_anon_rmap(page, vma, vmf->address, false);
3273
	mem_cgroup_commit_charge(page, memcg, false, false);
3274
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
3275
setpte:
3276
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
L
Linus Torvalds 已提交
3277 3278

	/* No need to invalidate - it was non-present before */
3279
	update_mmu_cache(vma, vmf->address, vmf->pte);
3280
unlock:
3281
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3282
	return ret;
3283
release:
3284
	mem_cgroup_cancel_charge(page, memcg, false);
3285
	put_page(page);
3286
	goto unlock;
3287
oom_free_page:
3288
	put_page(page);
3289
oom:
L
Linus Torvalds 已提交
3290 3291 3292
	return VM_FAULT_OOM;
}

3293 3294 3295 3296 3297
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
3298
static vm_fault_t __do_fault(struct vm_fault *vmf)
3299
{
3300
	struct vm_area_struct *vma = vmf->vma;
3301
	vm_fault_t ret;
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
	/*
	 * Preallocate pte before we take page_lock because this might lead to
	 * deadlocks for memcg reclaim which waits for pages under writeback:
	 *				lock_page(A)
	 *				SetPageWriteback(A)
	 *				unlock_page(A)
	 * lock_page(B)
	 *				lock_page(B)
	 * pte_alloc_pne
	 *   shrink_page_list
	 *     wait_on_page_writeback(A)
	 *				SetPageWriteback(B)
	 *				unlock_page(B)
	 *				# flush A, B to clear the writeback
	 */
	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
		if (!vmf->prealloc_pte)
			return VM_FAULT_OOM;
		smp_wmb(); /* See comment in __pte_alloc() */
	}

3325
	ret = vma->vm_ops->fault(vmf);
3326
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3327
			    VM_FAULT_DONE_COW)))
3328
		return ret;
3329

3330
	if (unlikely(PageHWPoison(vmf->page))) {
3331
		if (ret & VM_FAULT_LOCKED)
3332 3333
			unlock_page(vmf->page);
		put_page(vmf->page);
3334
		vmf->page = NULL;
3335 3336 3337 3338
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3339
		lock_page(vmf->page);
3340
	else
3341
		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3342 3343 3344 3345

	return ret;
}

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
/*
 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
 */
static int pmd_devmap_trans_unstable(pmd_t *pmd)
{
	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
}

3357
static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3358
{
3359
	struct vm_area_struct *vma = vmf->vma;
3360

3361
	if (!pmd_none(*vmf->pmd))
3362
		goto map_pte;
3363 3364 3365 3366
	if (vmf->prealloc_pte) {
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_none(*vmf->pmd))) {
			spin_unlock(vmf->ptl);
3367 3368 3369
			goto map_pte;
		}

3370
		mm_inc_nr_ptes(vma->vm_mm);
3371 3372
		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
		spin_unlock(vmf->ptl);
3373
		vmf->prealloc_pte = NULL;
3374
	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3375 3376 3377 3378 3379
		return VM_FAULT_OOM;
	}
map_pte:
	/*
	 * If a huge pmd materialized under us just retry later.  Use
3380 3381 3382 3383 3384 3385 3386 3387
	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
	 * running immediately after a huge pmd fault in a different thread of
	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
	 * All we have to ensure is that it is a regular pmd that we can walk
	 * with pte_offset_map() and we can do that through an atomic read in
	 * C, which is what pmd_trans_unstable() provides.
3388
	 */
3389
	if (pmd_devmap_trans_unstable(vmf->pmd))
3390 3391
		return VM_FAULT_NOPAGE;

3392 3393 3394 3395 3396 3397 3398 3399 3400
	/*
	 * At this point we know that our vmf->pmd points to a page of ptes
	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
	 * be valid and we will re-check to make sure the vmf->pte isn't
	 * pte_none() under vmf->ptl protection when we return to
	 * alloc_set_pte().
	 */
3401 3402
	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
			&vmf->ptl);
3403 3404 3405
	return 0;
}

3406
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3407
static void deposit_prealloc_pte(struct vm_fault *vmf)
3408
{
3409
	struct vm_area_struct *vma = vmf->vma;
3410

3411
	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3412 3413 3414 3415
	/*
	 * We are going to consume the prealloc table,
	 * count that as nr_ptes.
	 */
3416
	mm_inc_nr_ptes(vma->vm_mm);
3417
	vmf->prealloc_pte = NULL;
3418 3419
}

3420
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3421
{
3422 3423 3424
	struct vm_area_struct *vma = vmf->vma;
	bool write = vmf->flags & FAULT_FLAG_WRITE;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3425
	pmd_t entry;
3426 3427
	int i;
	vm_fault_t ret;
3428 3429 3430 3431 3432 3433 3434

	if (!transhuge_vma_suitable(vma, haddr))
		return VM_FAULT_FALLBACK;

	ret = VM_FAULT_FALLBACK;
	page = compound_head(page);

3435 3436 3437 3438
	/*
	 * Archs like ppc64 need additonal space to store information
	 * related to pte entry. Use the preallocated table for that.
	 */
3439
	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3440
		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3441
		if (!vmf->prealloc_pte)
3442 3443 3444 3445
			return VM_FAULT_OOM;
		smp_wmb(); /* See comment in __pte_alloc() */
	}

3446 3447
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd)))
3448 3449 3450 3451 3452 3453 3454
		goto out;

	for (i = 0; i < HPAGE_PMD_NR; i++)
		flush_icache_page(vma, page + i);

	entry = mk_huge_pmd(page, vma->vm_page_prot);
	if (write)
3455
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3456

3457
	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3458
	page_add_file_rmap(page, true);
3459 3460 3461 3462
	/*
	 * deposit and withdraw with pmd lock held
	 */
	if (arch_needs_pgtable_deposit())
3463
		deposit_prealloc_pte(vmf);
3464

3465
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3466

3467
	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3468 3469 3470

	/* fault is handled */
	ret = 0;
3471
	count_vm_event(THP_FILE_MAPPED);
3472
out:
3473
	spin_unlock(vmf->ptl);
3474 3475 3476
	return ret;
}
#else
3477
static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3478 3479 3480 3481 3482 3483
{
	BUILD_BUG();
	return 0;
}
#endif

3484
/**
3485 3486
 * alloc_set_pte - setup new PTE entry for given page and add reverse page
 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3487
 *
3488
 * @vmf: fault environment
3489
 * @memcg: memcg to charge page (only for private mappings)
3490 3491
 * @page: page to map
 *
3492 3493
 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
 * return.
3494 3495 3496
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
3497 3498
 *
 * Return: %0 on success, %VM_FAULT_ code in case of error.
3499
 */
3500
vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3501
		struct page *page)
3502
{
3503 3504
	struct vm_area_struct *vma = vmf->vma;
	bool write = vmf->flags & FAULT_FLAG_WRITE;
3505
	pte_t entry;
3506
	vm_fault_t ret;
3507

3508
	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3509 3510 3511
		/* THP on COW? */
		VM_BUG_ON_PAGE(memcg, page);

3512
		ret = do_set_pmd(vmf, page);
3513
		if (ret != VM_FAULT_FALLBACK)
3514
			return ret;
3515
	}
3516

3517 3518
	if (!vmf->pte) {
		ret = pte_alloc_one_map(vmf);
3519
		if (ret)
3520
			return ret;
3521 3522 3523
	}

	/* Re-check under ptl */
3524 3525
	if (unlikely(!pte_none(*vmf->pte)))
		return VM_FAULT_NOPAGE;
3526

3527 3528 3529 3530
	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3531 3532
	/* copy-on-write page */
	if (write && !(vma->vm_flags & VM_SHARED)) {
3533
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3534
		page_add_new_anon_rmap(page, vma, vmf->address, false);
3535 3536
		mem_cgroup_commit_charge(page, memcg, false, false);
		lru_cache_add_active_or_unevictable(page, vma);
3537
	} else {
3538
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3539
		page_add_file_rmap(page, false);
3540
	}
3541
	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3542 3543

	/* no need to invalidate: a not-present page won't be cached */
3544
	update_mmu_cache(vma, vmf->address, vmf->pte);
3545

3546
	return 0;
3547 3548
}

3549 3550 3551 3552 3553 3554 3555 3556 3557

/**
 * finish_fault - finish page fault once we have prepared the page to fault
 *
 * @vmf: structure describing the fault
 *
 * This function handles all that is needed to finish a page fault once the
 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
 * given page, adds reverse page mapping, handles memcg charges and LRU
3558
 * addition.
3559 3560 3561
 *
 * The function expects the page to be locked and on success it consumes a
 * reference of a page being mapped (for the PTE which maps it).
3562 3563
 *
 * Return: %0 on success, %VM_FAULT_ code in case of error.
3564
 */
3565
vm_fault_t finish_fault(struct vm_fault *vmf)
3566 3567
{
	struct page *page;
3568
	vm_fault_t ret = 0;
3569 3570 3571 3572 3573 3574 3575

	/* Did we COW the page? */
	if ((vmf->flags & FAULT_FLAG_WRITE) &&
	    !(vmf->vma->vm_flags & VM_SHARED))
		page = vmf->cow_page;
	else
		page = vmf->page;
3576 3577 3578 3579 3580 3581 3582 3583 3584

	/*
	 * check even for read faults because we might have lost our CoWed
	 * page
	 */
	if (!(vmf->vma->vm_flags & VM_SHARED))
		ret = check_stable_address_space(vmf->vma->vm_mm);
	if (!ret)
		ret = alloc_set_pte(vmf, vmf->memcg, page);
3585 3586 3587 3588 3589
	if (vmf->pte)
		pte_unmap_unlock(vmf->pte, vmf->ptl);
	return ret;
}

3590 3591
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
3592 3593 3594

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
3595
{
3596
	*val = fault_around_bytes;
3597 3598 3599
	return 0;
}

3600
/*
3601 3602
 * fault_around_bytes must be rounded down to the nearest page order as it's
 * what do_fault_around() expects to see.
3603
 */
3604
static int fault_around_bytes_set(void *data, u64 val)
3605
{
3606
	if (val / PAGE_SIZE > PTRS_PER_PTE)
3607
		return -EINVAL;
3608 3609 3610 3611
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3612 3613
	return 0;
}
3614
DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3615
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3616 3617 3618

static int __init fault_around_debugfs(void)
{
3619 3620
	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
				   &fault_around_bytes_fops);
3621 3622 3623 3624
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
3625

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
3641 3642 3643
 * fault_around_bytes defines how many bytes we'll try to map.
 * do_fault_around() expects it to be set to a power of two less than or equal
 * to PTRS_PER_PTE.
3644
 *
3645 3646 3647 3648
 * The virtual address of the area that we map is naturally aligned to
 * fault_around_bytes rounded down to the machine page size
 * (and therefore to page order).  This way it's easier to guarantee
 * that we don't cross page table boundaries.
3649
 */
3650
static vm_fault_t do_fault_around(struct vm_fault *vmf)
3651
{
3652
	unsigned long address = vmf->address, nr_pages, mask;
3653
	pgoff_t start_pgoff = vmf->pgoff;
3654
	pgoff_t end_pgoff;
3655 3656
	int off;
	vm_fault_t ret = 0;
3657

3658
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3659 3660
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

3661 3662
	vmf->address = max(address & mask, vmf->vma->vm_start);
	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3663
	start_pgoff -= off;
3664 3665

	/*
3666 3667
	 *  end_pgoff is either the end of the page table, the end of
	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3668
	 */
3669
	end_pgoff = start_pgoff -
3670
		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3671
		PTRS_PER_PTE - 1;
3672
	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3673
			start_pgoff + nr_pages - 1);
3674

3675
	if (pmd_none(*vmf->pmd)) {
3676
		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3677
		if (!vmf->prealloc_pte)
3678
			goto out;
3679
		smp_wmb(); /* See comment in __pte_alloc() */
3680 3681
	}

3682
	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3683 3684

	/* Huge page is mapped? Page fault is solved */
3685
	if (pmd_trans_huge(*vmf->pmd)) {
3686 3687 3688 3689 3690
		ret = VM_FAULT_NOPAGE;
		goto out;
	}

	/* ->map_pages() haven't done anything useful. Cold page cache? */
3691
	if (!vmf->pte)
3692 3693 3694
		goto out;

	/* check if the page fault is solved */
3695 3696
	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
	if (!pte_none(*vmf->pte))
3697
		ret = VM_FAULT_NOPAGE;
3698
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3699
out:
3700 3701
	vmf->address = address;
	vmf->pte = NULL;
3702
	return ret;
3703 3704
}

3705
static vm_fault_t do_read_fault(struct vm_fault *vmf)
3706
{
3707
	struct vm_area_struct *vma = vmf->vma;
3708
	vm_fault_t ret = 0;
3709 3710 3711 3712 3713 3714

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
3715
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3716
		ret = do_fault_around(vmf);
3717 3718
		if (ret)
			return ret;
3719
	}
3720

3721
	ret = __do_fault(vmf);
3722 3723 3724
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

3725
	ret |= finish_fault(vmf);
3726
	unlock_page(vmf->page);
3727
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3728
		put_page(vmf->page);
3729 3730 3731
	return ret;
}

3732
static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3733
{
3734
	struct vm_area_struct *vma = vmf->vma;
3735
	vm_fault_t ret;
3736 3737 3738 3739

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

3740 3741
	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
	if (!vmf->cow_page)
3742 3743
		return VM_FAULT_OOM;

3744
	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3745
				&vmf->memcg, false)) {
3746
		put_page(vmf->cow_page);
3747 3748 3749
		return VM_FAULT_OOM;
	}

3750
	ret = __do_fault(vmf);
3751 3752
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;
3753 3754
	if (ret & VM_FAULT_DONE_COW)
		return ret;
3755

3756
	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3757
	__SetPageUptodate(vmf->cow_page);
3758

3759
	ret |= finish_fault(vmf);
3760 3761
	unlock_page(vmf->page);
	put_page(vmf->page);
3762 3763
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;
3764 3765
	return ret;
uncharge_out:
3766
	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3767
	put_page(vmf->cow_page);
3768 3769 3770
	return ret;
}

3771
static vm_fault_t do_shared_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3772
{
3773
	struct vm_area_struct *vma = vmf->vma;
3774
	vm_fault_t ret, tmp;
3775

3776
	ret = __do_fault(vmf);
3777
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3778
		return ret;
L
Linus Torvalds 已提交
3779 3780

	/*
3781 3782
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3783
	 */
3784
	if (vma->vm_ops->page_mkwrite) {
3785
		unlock_page(vmf->page);
3786
		tmp = do_page_mkwrite(vmf);
3787 3788
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3789
			put_page(vmf->page);
3790
			return tmp;
3791
		}
3792 3793
	}

3794
	ret |= finish_fault(vmf);
3795 3796
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
					VM_FAULT_RETRY))) {
3797 3798
		unlock_page(vmf->page);
		put_page(vmf->page);
3799
		return ret;
L
Linus Torvalds 已提交
3800
	}
3801

3802
	ret |= fault_dirty_shared_page(vmf);
3803
	return ret;
3804
}
3805

3806 3807 3808 3809 3810
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
3811 3812
 * If mmap_sem is released, vma may become invalid (for example
 * by other thread calling munmap()).
3813
 */
3814
static vm_fault_t do_fault(struct vm_fault *vmf)
3815
{
3816
	struct vm_area_struct *vma = vmf->vma;
3817
	struct mm_struct *vm_mm = vma->vm_mm;
3818
	vm_fault_t ret;
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	/*
	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
	 */
	if (!vma->vm_ops->fault) {
		/*
		 * If we find a migration pmd entry or a none pmd entry, which
		 * should never happen, return SIGBUS
		 */
		if (unlikely(!pmd_present(*vmf->pmd)))
			ret = VM_FAULT_SIGBUS;
		else {
			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
						       vmf->pmd,
						       vmf->address,
						       &vmf->ptl);
			/*
			 * Make sure this is not a temporary clearing of pte
			 * by holding ptl and checking again. A R/M/W update
			 * of pte involves: take ptl, clearing the pte so that
			 * we don't have concurrent modification by hardware
			 * followed by an update.
			 */
			if (unlikely(pte_none(*vmf->pte)))
				ret = VM_FAULT_SIGBUS;
			else
				ret = VM_FAULT_NOPAGE;

			pte_unmap_unlock(vmf->pte, vmf->ptl);
		}
	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3850 3851 3852 3853 3854 3855 3856 3857
		ret = do_read_fault(vmf);
	else if (!(vma->vm_flags & VM_SHARED))
		ret = do_cow_fault(vmf);
	else
		ret = do_shared_fault(vmf);

	/* preallocated pagetable is unused: free it */
	if (vmf->prealloc_pte) {
3858
		pte_free(vm_mm, vmf->prealloc_pte);
3859
		vmf->prealloc_pte = NULL;
3860 3861
	}
	return ret;
3862 3863
}

3864
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3865 3866
				unsigned long addr, int page_nid,
				int *flags)
3867 3868 3869 3870
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3871
	if (page_nid == numa_node_id()) {
3872
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3873 3874
		*flags |= TNF_FAULT_LOCAL;
	}
3875 3876 3877 3878

	return mpol_misplaced(page, vma, addr);
}

3879
static vm_fault_t do_numa_page(struct vm_fault *vmf)
3880
{
3881
	struct vm_area_struct *vma = vmf->vma;
3882
	struct page *page = NULL;
3883
	int page_nid = NUMA_NO_NODE;
3884
	int last_cpupid;
3885
	int target_nid;
3886
	bool migrated = false;
3887
	pte_t pte, old_pte;
3888
	bool was_writable = pte_savedwrite(vmf->orig_pte);
3889
	int flags = 0;
3890 3891

	/*
3892 3893 3894 3895
	 * The "pte" at this point cannot be used safely without
	 * validation through pte_unmap_same(). It's of NUMA type but
	 * the pfn may be screwed if the read is non atomic.
	 */
3896 3897
	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
	spin_lock(vmf->ptl);
3898
	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3899
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3900 3901 3902
		goto out;
	}

3903 3904 3905 3906
	/*
	 * Make it present again, Depending on how arch implementes non
	 * accessible ptes, some can allow access by kernel mode.
	 */
3907 3908
	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
	pte = pte_modify(old_pte, vma->vm_page_prot);
3909
	pte = pte_mkyoung(pte);
3910 3911
	if (was_writable)
		pte = pte_mkwrite(pte);
3912
	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3913
	update_mmu_cache(vma, vmf->address, vmf->pte);
3914

3915
	page = vm_normal_page(vma, vmf->address, pte);
3916
	if (!page) {
3917
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3918 3919 3920
		return 0;
	}

3921 3922
	/* TODO: handle PTE-mapped THP */
	if (PageCompound(page)) {
3923
		pte_unmap_unlock(vmf->pte, vmf->ptl);
3924 3925 3926
		return 0;
	}

3927
	/*
3928 3929 3930 3931 3932 3933
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3934
	 */
3935
	if (!pte_write(pte))
3936 3937
		flags |= TNF_NO_GROUP;

3938 3939 3940 3941 3942 3943 3944
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3945
	last_cpupid = page_cpupid_last(page);
3946
	page_nid = page_to_nid(page);
3947
	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3948
			&flags);
3949
	pte_unmap_unlock(vmf->pte, vmf->ptl);
3950
	if (target_nid == NUMA_NO_NODE) {
3951 3952 3953 3954 3955
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3956
	migrated = migrate_misplaced_page(page, vma, target_nid);
3957
	if (migrated) {
3958
		page_nid = target_nid;
3959
		flags |= TNF_MIGRATED;
3960 3961
	} else
		flags |= TNF_MIGRATE_FAIL;
3962 3963

out:
3964
	if (page_nid != NUMA_NO_NODE)
3965
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3966 3967 3968
	return 0;
}

3969
static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3970
{
3971
	if (vma_is_anonymous(vmf->vma))
3972
		return do_huge_pmd_anonymous_page(vmf);
3973
	if (vmf->vma->vm_ops->huge_fault)
3974
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3975 3976 3977
	return VM_FAULT_FALLBACK;
}

3978
/* `inline' is required to avoid gcc 4.1.2 build error */
3979
static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3980
{
3981
	if (vma_is_anonymous(vmf->vma)) {
3982
		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
3983
			return handle_userfault(vmf, VM_UFFD_WP);
3984
		return do_huge_pmd_wp_page(vmf, orig_pmd);
3985
	}
3986 3987 3988 3989 3990 3991
	if (vmf->vma->vm_ops->huge_fault) {
		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);

		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
	}
3992

3993
	/* COW or write-notify handled on pte level: split pmd. */
3994
	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3995

3996 3997 3998
	return VM_FAULT_FALLBACK;
}

3999
static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4000
{
4001 4002
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4003 4004
	/* No support for anonymous transparent PUD pages yet */
	if (vma_is_anonymous(vmf->vma))
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
		goto split;
	if (vmf->vma->vm_ops->huge_fault) {
		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);

		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
	}
split:
	/* COW or write-notify not handled on PUD level: split pud.*/
	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4015 4016 4017 4018
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
	return VM_FAULT_FALLBACK;
}

4019
static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4020 4021 4022 4023 4024 4025
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/* No support for anonymous transparent PUD pages yet */
	if (vma_is_anonymous(vmf->vma))
		return VM_FAULT_FALLBACK;
	if (vmf->vma->vm_ops->huge_fault)
4026
		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4027 4028 4029 4030
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
	return VM_FAULT_FALLBACK;
}

L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
4040 4041
 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
 * concurrent faults).
4042
 *
4043 4044
 * The mmap_sem may have been released depending on flags and our return value.
 * See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
4045
 */
4046
static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
4047 4048 4049
{
	pte_t entry;

4050
	if (unlikely(pmd_none(*vmf->pmd))) {
4051 4052 4053 4054 4055 4056
		/*
		 * Leave __pte_alloc() until later: because vm_ops->fault may
		 * want to allocate huge page, and if we expose page table
		 * for an instant, it will be difficult to retract from
		 * concurrent faults and from rmap lookups.
		 */
4057
		vmf->pte = NULL;
4058 4059
	} else {
		/* See comment in pte_alloc_one_map() */
4060
		if (pmd_devmap_trans_unstable(vmf->pmd))
4061 4062 4063 4064 4065 4066 4067
			return 0;
		/*
		 * A regular pmd is established and it can't morph into a huge
		 * pmd from under us anymore at this point because we hold the
		 * mmap_sem read mode and khugepaged takes it in write mode.
		 * So now it's safe to run pte_offset_map().
		 */
4068
		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4069
		vmf->orig_pte = *vmf->pte;
4070 4071 4072 4073

		/*
		 * some architectures can have larger ptes than wordsize,
		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4074 4075 4076
		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
		 * accesses.  The code below just needs a consistent view
		 * for the ifs and we later double check anyway with the
4077 4078 4079
		 * ptl lock held. So here a barrier will do.
		 */
		barrier();
4080
		if (pte_none(vmf->orig_pte)) {
4081 4082
			pte_unmap(vmf->pte);
			vmf->pte = NULL;
4083
		}
L
Linus Torvalds 已提交
4084 4085
	}

4086 4087 4088
	if (!vmf->pte) {
		if (vma_is_anonymous(vmf->vma))
			return do_anonymous_page(vmf);
4089
		else
4090
			return do_fault(vmf);
4091 4092
	}

4093 4094
	if (!pte_present(vmf->orig_pte))
		return do_swap_page(vmf);
4095

4096 4097
	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
		return do_numa_page(vmf);
4098

4099 4100
	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
	spin_lock(vmf->ptl);
4101
	entry = vmf->orig_pte;
4102
	if (unlikely(!pte_same(*vmf->pte, entry)))
4103
		goto unlock;
4104
	if (vmf->flags & FAULT_FLAG_WRITE) {
4105
		if (!pte_write(entry))
4106
			return do_wp_page(vmf);
L
Linus Torvalds 已提交
4107 4108 4109
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
4110 4111 4112
	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
				vmf->flags & FAULT_FLAG_WRITE)) {
		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4113 4114 4115 4116 4117 4118 4119
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
4120 4121
		if (vmf->flags & FAULT_FLAG_WRITE)
			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4122
	}
4123
unlock:
4124
	pte_unmap_unlock(vmf->pte, vmf->ptl);
N
Nick Piggin 已提交
4125
	return 0;
L
Linus Torvalds 已提交
4126 4127 4128 4129
}

/*
 * By the time we get here, we already hold the mm semaphore
4130 4131 4132
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
4133
 */
4134 4135
static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
4136
{
4137
	struct vm_fault vmf = {
4138
		.vma = vma,
4139
		.address = address & PAGE_MASK,
4140
		.flags = flags,
4141
		.pgoff = linear_page_index(vma, address),
4142
		.gfp_mask = __get_fault_gfp_mask(vma),
4143
	};
4144
	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4145
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
4146
	pgd_t *pgd;
4147
	p4d_t *p4d;
4148
	vm_fault_t ret;
L
Linus Torvalds 已提交
4149 4150

	pgd = pgd_offset(mm, address);
4151 4152 4153
	p4d = p4d_alloc(mm, pgd, address);
	if (!p4d)
		return VM_FAULT_OOM;
4154

4155
	vmf.pud = pud_alloc(mm, p4d, address);
4156
	if (!vmf.pud)
4157
		return VM_FAULT_OOM;
4158
retry_pud:
4159
	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
		ret = create_huge_pud(&vmf);
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
	} else {
		pud_t orig_pud = *vmf.pud;

		barrier();
		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {

			/* NUMA case for anonymous PUDs would go here */

4171
			if (dirty && !pud_write(orig_pud)) {
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
				ret = wp_huge_pud(&vmf, orig_pud);
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
			} else {
				huge_pud_set_accessed(&vmf, orig_pud);
				return 0;
			}
		}
	}

	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4183
	if (!vmf.pmd)
4184
		return VM_FAULT_OOM;
4185 4186 4187 4188 4189

	/* Huge pud page fault raced with pmd_alloc? */
	if (pud_trans_unstable(vmf.pud))
		goto retry_pud;

4190
	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4191
		ret = create_huge_pmd(&vmf);
4192 4193
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
4194
	} else {
4195
		pmd_t orig_pmd = *vmf.pmd;
4196

4197
		barrier();
4198 4199 4200 4201 4202 4203 4204
		if (unlikely(is_swap_pmd(orig_pmd))) {
			VM_BUG_ON(thp_migration_supported() &&
					  !is_pmd_migration_entry(orig_pmd));
			if (is_pmd_migration_entry(orig_pmd))
				pmd_migration_entry_wait(mm, vmf.pmd);
			return 0;
		}
4205
		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4206
			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4207
				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4208

4209
			if (dirty && !pmd_write(orig_pmd)) {
4210
				ret = wp_huge_pmd(&vmf, orig_pmd);
4211 4212
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
4213
			} else {
4214
				huge_pmd_set_accessed(&vmf, orig_pmd);
4215
				return 0;
4216
			}
4217 4218 4219
		}
	}

4220
	return handle_pte_fault(&vmf);
L
Linus Torvalds 已提交
4221 4222
}

4223 4224 4225 4226 4227 4228
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
4229
vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4230
		unsigned int flags)
4231
{
4232
	vm_fault_t ret;
4233 4234 4235 4236

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
4237
	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4238 4239 4240 4241

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

4242 4243 4244 4245 4246
	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
					    flags & FAULT_FLAG_INSTRUCTION,
					    flags & FAULT_FLAG_REMOTE))
		return VM_FAULT_SIGSEGV;

4247 4248 4249 4250 4251
	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
4252
		mem_cgroup_enter_user_fault();
4253

4254 4255 4256 4257
	if (unlikely(is_vm_hugetlb_page(vma)))
		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
	else
		ret = __handle_mm_fault(vma, address, flags);
4258

4259
	if (flags & FAULT_FLAG_USER) {
4260
		mem_cgroup_exit_user_fault();
4261 4262 4263 4264 4265 4266 4267 4268
		/*
		 * The task may have entered a memcg OOM situation but
		 * if the allocation error was handled gracefully (no
		 * VM_FAULT_OOM), there is no need to kill anything.
		 * Just clean up the OOM state peacefully.
		 */
		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
			mem_cgroup_oom_synchronize(false);
4269
	}
4270

4271 4272
	return ret;
}
4273
EXPORT_SYMBOL_GPL(handle_mm_fault);
4274

4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
#ifndef __PAGETABLE_P4D_FOLDED
/*
 * Allocate p4d page table.
 * We've already handled the fast-path in-line.
 */
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
	p4d_t *new = p4d_alloc_one(mm, address);
	if (!new)
		return -ENOMEM;

	smp_wmb(); /* See comment in __pte_alloc */

	spin_lock(&mm->page_table_lock);
	if (pgd_present(*pgd))		/* Another has populated it */
		p4d_free(mm, new);
	else
		pgd_populate(mm, pgd, new);
	spin_unlock(&mm->page_table_lock);
	return 0;
}
#endif /* __PAGETABLE_P4D_FOLDED */

L
Linus Torvalds 已提交
4298 4299 4300
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
4301
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
4302
 */
4303
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
L
Linus Torvalds 已提交
4304
{
4305 4306
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
4307
		return -ENOMEM;
L
Linus Torvalds 已提交
4308

4309 4310
	smp_wmb(); /* See comment in __pte_alloc */

4311
	spin_lock(&mm->page_table_lock);
4312
#ifndef __ARCH_HAS_5LEVEL_HACK
4313 4314
	if (!p4d_present(*p4d)) {
		mm_inc_nr_puds(mm);
4315
		p4d_populate(mm, p4d, new);
4316
	} else	/* Another has populated it */
4317
		pud_free(mm, new);
4318 4319 4320
#else
	if (!pgd_present(*p4d)) {
		mm_inc_nr_puds(mm);
4321
		pgd_populate(mm, p4d, new);
4322 4323
	} else	/* Another has populated it */
		pud_free(mm, new);
4324
#endif /* __ARCH_HAS_5LEVEL_HACK */
4325
	spin_unlock(&mm->page_table_lock);
4326
	return 0;
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
4333
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
4334
 */
4335
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
4336
{
4337
	spinlock_t *ptl;
4338 4339
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
4340
		return -ENOMEM;
L
Linus Torvalds 已提交
4341

4342 4343
	smp_wmb(); /* See comment in __pte_alloc */

4344
	ptl = pud_lock(mm, pud);
4345 4346
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
4347
		pud_populate(mm, pud, new);
4348
	} else	/* Another has populated it */
4349
		pmd_free(mm, new);
4350
	spin_unlock(ptl);
4351
	return 0;
4352
}
L
Linus Torvalds 已提交
4353 4354
#endif /* __PAGETABLE_PMD_FOLDED */

R
Ross Zwisler 已提交
4355
static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4356
			    struct mmu_notifier_range *range,
4357
			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4358 4359
{
	pgd_t *pgd;
4360
	p4d_t *p4d;
4361 4362 4363 4364 4365 4366 4367 4368
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

4369 4370 4371 4372 4373
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
		goto out;

	pud = pud_offset(p4d, address);
4374 4375 4376 4377
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
4378
	VM_BUG_ON(pmd_trans_huge(*pmd));
4379

R
Ross Zwisler 已提交
4380 4381 4382 4383
	if (pmd_huge(*pmd)) {
		if (!pmdpp)
			goto out;

4384
		if (range) {
4385
			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4386 4387
						NULL, mm, address & PMD_MASK,
						(address & PMD_MASK) + PMD_SIZE);
4388
			mmu_notifier_invalidate_range_start(range);
4389
		}
R
Ross Zwisler 已提交
4390 4391 4392 4393 4394 4395
		*ptlp = pmd_lock(mm, pmd);
		if (pmd_huge(*pmd)) {
			*pmdpp = pmd;
			return 0;
		}
		spin_unlock(*ptlp);
4396 4397
		if (range)
			mmu_notifier_invalidate_range_end(range);
R
Ross Zwisler 已提交
4398 4399 4400
	}

	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4401 4402
		goto out;

4403
	if (range) {
4404
		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4405 4406
					address & PAGE_MASK,
					(address & PAGE_MASK) + PAGE_SIZE);
4407
		mmu_notifier_invalidate_range_start(range);
4408
	}
4409 4410 4411 4412 4413 4414 4415
	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
4416 4417
	if (range)
		mmu_notifier_invalidate_range_end(range);
4418 4419 4420 4421
out:
	return -EINVAL;
}

4422 4423
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
4424 4425 4426 4427 4428
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
4429
			   !(res = __follow_pte_pmd(mm, address, NULL,
4430
						    ptepp, NULL, ptlp)));
R
Ross Zwisler 已提交
4431 4432 4433 4434
	return res;
}

int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4435 4436
		   struct mmu_notifier_range *range,
		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
R
Ross Zwisler 已提交
4437 4438 4439 4440 4441
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
4442
			   !(res = __follow_pte_pmd(mm, address, range,
4443
						    ptepp, pmdpp, ptlp)));
4444 4445
	return res;
}
R
Ross Zwisler 已提交
4446
EXPORT_SYMBOL(follow_pte_pmd);
4447

4448 4449 4450 4451 4452 4453 4454 4455
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
4456
 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

4477
#ifdef CONFIG_HAVE_IOREMAP_PROT
4478 4479 4480
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
4481
{
4482
	int ret = -EINVAL;
4483 4484 4485
	pte_t *ptep, pte;
	spinlock_t *ptl;

4486 4487
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
4488

4489
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4490
		goto out;
4491
	pte = *ptep;
4492

4493
	if ((flags & FOLL_WRITE) && !pte_write(pte))
4494 4495 4496
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
4497
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4498

4499
	ret = 0;
4500 4501 4502
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
4503
	return ret;
4504 4505 4506 4507 4508 4509 4510
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
4511
	void __iomem *maddr;
4512 4513
	int offset = addr & (PAGE_SIZE-1);

4514
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4515 4516
		return -EINVAL;

4517
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4518 4519 4520
	if (!maddr)
		return -ENOMEM;

4521 4522 4523 4524 4525 4526 4527 4528
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
4529
EXPORT_SYMBOL_GPL(generic_access_phys);
4530 4531
#endif

4532
/*
4533 4534
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
4535
 */
4536
int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4537
		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4538 4539 4540
{
	struct vm_area_struct *vma;
	void *old_buf = buf;
4541
	int write = gup_flags & FOLL_WRITE;
4542

4543 4544 4545
	if (down_read_killable(&mm->mmap_sem))
		return 0;

S
Simon Arlott 已提交
4546
	/* ignore errors, just check how much was successfully transferred */
4547 4548 4549
	while (len) {
		int bytes, ret, offset;
		void *maddr;
4550
		struct page *page = NULL;
4551

4552
		ret = get_user_pages_remote(tsk, mm, addr, 1,
4553
				gup_flags, &page, &vma, NULL);
4554
		if (ret <= 0) {
4555 4556 4557
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
4558 4559 4560 4561 4562
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
4563
			if (!vma || vma->vm_start > addr)
4564 4565 4566 4567 4568 4569 4570
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
4571
#endif
4572
		} else {
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
4588
			put_page(page);
4589 4590 4591 4592 4593 4594 4595 4596 4597
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
4598

4599
/**
4600
 * access_remote_vm - access another process' address space
4601 4602 4603 4604
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
4605
 * @gup_flags:	flags modifying lookup behaviour
4606 4607
 *
 * The caller must hold a reference on @mm.
4608 4609
 *
 * Return: number of bytes copied from source to destination.
4610 4611
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4612
		void *buf, int len, unsigned int gup_flags)
4613
{
4614
	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4615 4616
}

4617 4618 4619 4620 4621 4622
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
4623
		void *buf, int len, unsigned int gup_flags)
4624 4625 4626 4627 4628 4629 4630 4631
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

4632
	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4633

4634 4635 4636 4637
	mmput(mm);

	return ret;
}
4638
EXPORT_SYMBOL_GPL(access_process_vm);
4639

4640 4641 4642 4643 4644 4645 4646 4647
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

4648
	/*
4649
	 * we might be running from an atomic context so we cannot sleep
4650
	 */
4651
	if (!down_read_trylock(&mm->mmap_sem))
4652 4653
		return;

4654 4655 4656
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
4657
		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4658
		if (buf) {
A
Andy Shevchenko 已提交
4659
			char *p;
4660

4661
			p = file_path(f, buf, PAGE_SIZE);
4662 4663
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
4664
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4665 4666 4667 4668 4669
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
4670
	up_read(&mm->mmap_sem);
4671
}
4672

4673
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4674
void __might_fault(const char *file, int line)
4675
{
4676 4677 4678 4679 4680 4681
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
A
Al Viro 已提交
4682
	if (uaccess_kernel())
4683
		return;
4684
	if (pagefault_disabled())
4685
		return;
4686 4687
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4688
	if (current->mm)
4689
		might_lock_read(&current->mm->mmap_sem);
4690
#endif
4691
}
4692
EXPORT_SYMBOL(__might_fault);
4693
#endif
4694 4695

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4696 4697 4698 4699 4700 4701 4702 4703 4704
/*
 * Process all subpages of the specified huge page with the specified
 * operation.  The target subpage will be processed last to keep its
 * cache lines hot.
 */
static inline void process_huge_page(
	unsigned long addr_hint, unsigned int pages_per_huge_page,
	void (*process_subpage)(unsigned long addr, int idx, void *arg),
	void *arg)
4705
{
4706 4707 4708
	int i, n, base, l;
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4709

4710
	/* Process target subpage last to keep its cache lines hot */
4711
	might_sleep();
4712 4713
	n = (addr_hint - addr) / PAGE_SIZE;
	if (2 * n <= pages_per_huge_page) {
4714
		/* If target subpage in first half of huge page */
4715 4716
		base = 0;
		l = n;
4717
		/* Process subpages at the end of huge page */
4718 4719
		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
			cond_resched();
4720
			process_subpage(addr + i * PAGE_SIZE, i, arg);
4721 4722
		}
	} else {
4723
		/* If target subpage in second half of huge page */
4724 4725
		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
		l = pages_per_huge_page - n;
4726
		/* Process subpages at the begin of huge page */
4727 4728
		for (i = 0; i < base; i++) {
			cond_resched();
4729
			process_subpage(addr + i * PAGE_SIZE, i, arg);
4730 4731 4732
		}
	}
	/*
4733 4734
	 * Process remaining subpages in left-right-left-right pattern
	 * towards the target subpage
4735 4736 4737 4738 4739 4740
	 */
	for (i = 0; i < l; i++) {
		int left_idx = base + i;
		int right_idx = base + 2 * l - 1 - i;

		cond_resched();
4741
		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4742
		cond_resched();
4743
		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4744 4745 4746
	}
}

4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}

static void clear_subpage(unsigned long addr, int idx, void *arg)
{
	struct page *page = arg;

	clear_user_highpage(page + idx, addr);
}

void clear_huge_page(struct page *page,
		     unsigned long addr_hint, unsigned int pages_per_huge_page)
{
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
struct copy_subpage_arg {
	struct page *dst;
	struct page *src;
	struct vm_area_struct *vma;
};

static void copy_subpage(unsigned long addr, int idx, void *arg)
{
	struct copy_subpage_arg *copy_arg = arg;

	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
			   addr, copy_arg->vma);
}

4816
void copy_user_huge_page(struct page *dst, struct page *src,
4817
			 unsigned long addr_hint, struct vm_area_struct *vma,
4818 4819
			 unsigned int pages_per_huge_page)
{
4820 4821 4822 4823 4824 4825 4826
	unsigned long addr = addr_hint &
		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
	struct copy_subpage_arg arg = {
		.dst = dst,
		.src = src,
		.vma = vma,
	};
4827 4828 4829 4830 4831 4832 4833

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

4834
	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4835
}
4836 4837 4838

long copy_huge_page_from_user(struct page *dst_page,
				const void __user *usr_src,
4839 4840
				unsigned int pages_per_huge_page,
				bool allow_pagefault)
4841 4842 4843 4844 4845 4846 4847
{
	void *src = (void *)usr_src;
	void *page_kaddr;
	unsigned long i, rc = 0;
	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;

	for (i = 0; i < pages_per_huge_page; i++) {
4848 4849 4850 4851
		if (allow_pagefault)
			page_kaddr = kmap(dst_page + i);
		else
			page_kaddr = kmap_atomic(dst_page + i);
4852 4853 4854
		rc = copy_from_user(page_kaddr,
				(const void __user *)(src + i * PAGE_SIZE),
				PAGE_SIZE);
4855 4856 4857 4858
		if (allow_pagefault)
			kunmap(dst_page + i);
		else
			kunmap_atomic(page_kaddr);
4859 4860 4861 4862 4863 4864 4865 4866 4867

		ret_val -= (PAGE_SIZE - rc);
		if (rc)
			break;

		cond_resched();
	}
	return ret_val;
}
4868
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4869

4870
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4871 4872 4873 4874 4875 4876 4877 4878 4879

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

4880
bool ptlock_alloc(struct page *page)
4881 4882 4883
{
	spinlock_t *ptl;

4884
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4885 4886
	if (!ptl)
		return false;
4887
	page->ptl = ptl;
4888 4889 4890
	return true;
}

4891
void ptlock_free(struct page *page)
4892
{
4893
	kmem_cache_free(page_ptl_cachep, page->ptl);
4894 4895
}
#endif
反馈
建议
客服 返回
顶部