memory.c 105.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
H
Hugh Dickins 已提交
48
#include <linux/ksm.h>
L
Linus Torvalds 已提交
49
#include <linux/rmap.h>
50
#include <linux/export.h>
51
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
52
#include <linux/init.h>
P
Peter Zijlstra 已提交
53
#include <linux/writeback.h>
54
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
55
#include <linux/mmu_notifier.h>
56 57 58
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
59
#include <linux/gfp.h>
60
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
61
#include <linux/string.h>
62
#include <linux/dma-debug.h>
63
#include <linux/debugfs.h>
64
#include <linux/userfaultfd_k.h>
L
Linus Torvalds 已提交
65

A
Alexey Dobriyan 已提交
66
#include <asm/io.h>
L
Linus Torvalds 已提交
67 68 69 70 71 72
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

73 74
#include "internal.h"

75 76
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 78
#endif

A
Andy Whitcroft 已提交
79
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(high_memory);

99 100 101 102 103 104 105 106 107 108 109 110
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
111 112 113 114

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
115
	return 1;
116 117 118
}
__setup("norandmaps", disable_randmaps);

H
Hugh Dickins 已提交
119
unsigned long zero_pfn __read_mostly;
H
Hugh Dickins 已提交
120
unsigned long highest_memmap_pfn __read_mostly;
H
Hugh Dickins 已提交
121

122 123
EXPORT_SYMBOL(zero_pfn);

H
Hugh Dickins 已提交
124 125 126 127 128 129 130 131 132
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
133

K
KAMEZAWA Hiroyuki 已提交
134

135 136
#if defined(SPLIT_RSS_COUNTING)

137
void sync_mm_rss(struct mm_struct *mm)
138 139 140 141
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
142 143 144
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
145 146
		}
	}
147
	current->rss_stat.events = 0;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169
		sync_mm_rss(task->mm);
170
}
171
#else /* SPLIT_RSS_COUNTING */
172 173 174 175 176 177 178 179

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

180 181 182 183
#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

184
static bool tlb_next_batch(struct mmu_gather *tlb)
185 186 187 188 189 190
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
191
		return true;
192 193
	}

194
	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195
		return false;
196

197 198
	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
199
		return false;
200

201
	tlb->batch_count++;
202 203 204 205 206 207 208
	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

209
	return true;
210 211 212 213 214 215 216
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
217
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 219 220
{
	tlb->mm = mm;

221 222
	/* Is it from 0 to ~0? */
	tlb->fullmm     = !(start | (end+1));
223
	tlb->need_flush_all = 0;
224 225 226 227
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;
228
	tlb->batch_count = 0;
229 230 231 232

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
233 234

	__tlb_reset_range(tlb);
235 236
}

237
static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238
{
239 240 241
	if (!tlb->end)
		return;

242
	tlb_flush(tlb);
243
	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 245
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
246
#endif
247
	__tlb_reset_range(tlb);
248 249 250 251 252
}

static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;
253

254
	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255 256 257 258 259 260
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

261 262 263 264 265 266
void tlb_flush_mmu(struct mmu_gather *tlb)
{
	tlb_flush_mmu_tlbonly(tlb);
	tlb_flush_mmu_free(tlb);
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

297
	VM_BUG_ON(!tlb->end);
298 299 300 301 302 303

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
304
		batch = tlb->active;
305
	}
306
	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307 308 309 310 311 312

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

386
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387

L
Linus Torvalds 已提交
388 389 390 391
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
392 393
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
394
{
395
	pgtable_t token = pmd_pgtable(*pmd);
396
	pmd_clear(pmd);
397
	pte_free_tlb(tlb, token, addr);
398
	atomic_long_dec(&tlb->mm->nr_ptes);
L
Linus Torvalds 已提交
399 400
}

401 402 403
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
404 405 406
{
	pmd_t *pmd;
	unsigned long next;
407
	unsigned long start;
L
Linus Torvalds 已提交
408

409
	start = addr;
L
Linus Torvalds 已提交
410 411 412 413 414
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
415
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
416 417
	} while (pmd++, addr = next, addr != end);

418 419 420 421 422 423 424
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
425
	}
426 427 428 429 430
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
431
	pmd_free_tlb(tlb, pmd, start);
432
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
433 434
}

435 436 437
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
438 439 440
{
	pud_t *pud;
	unsigned long next;
441
	unsigned long start;
L
Linus Torvalds 已提交
442

443
	start = addr;
L
Linus Torvalds 已提交
444 445 446 447 448
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
449
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
450 451
	} while (pud++, addr = next, addr != end);

452 453 454 455 456 457 458
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
459
	}
460 461 462 463 464
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
465
	pud_free_tlb(tlb, pud, start);
L
Linus Torvalds 已提交
466 467 468
}

/*
469
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
470
 */
471
void free_pgd_range(struct mmu_gather *tlb,
472 473
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
474 475 476
{
	pgd_t *pgd;
	unsigned long next;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

520
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
521 522 523 524
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
525
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
526
	} while (pgd++, addr = next, addr != end);
527 528
}

529
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530
		unsigned long floor, unsigned long ceiling)
531 532 533 534 535
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

536
		/*
N
npiggin@suse.de 已提交
537 538
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
539
		 */
540
		unlink_anon_vmas(vma);
541 542
		unlink_file_vma(vma);

543
		if (is_vm_hugetlb_page(vma)) {
544
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545
				floor, next? next->vm_start: ceiling);
546 547 548 549 550
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551
			       && !is_vm_hugetlb_page(next)) {
552 553
				vma = next;
				next = vma->vm_next;
554
				unlink_anon_vmas(vma);
555
				unlink_file_vma(vma);
556 557 558 559
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
560 561
		vma = next;
	}
L
Linus Torvalds 已提交
562 563
}

564 565
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
566
{
567
	spinlock_t *ptl;
568
	pgtable_t new = pte_alloc_one(mm, address);
569 570 571
	if (!new)
		return -ENOMEM;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

587
	ptl = pmd_lock(mm, pmd);
588
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
589
		atomic_long_inc(&mm->nr_ptes);
L
Linus Torvalds 已提交
590
		pmd_populate(mm, pmd, new);
591
		new = NULL;
592
	}
593
	spin_unlock(ptl);
594 595
	if (new)
		pte_free(mm, new);
596
	return 0;
L
Linus Torvalds 已提交
597 598
}

599
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
600
{
601 602 603 604
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

605 606
	smp_wmb(); /* See comment in __pte_alloc */

607
	spin_lock(&init_mm.page_table_lock);
608
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
609
		pmd_populate_kernel(&init_mm, pmd, new);
610
		new = NULL;
611
	}
612
	spin_unlock(&init_mm.page_table_lock);
613 614
	if (new)
		pte_free_kernel(&init_mm, new);
615
	return 0;
L
Linus Torvalds 已提交
616 617
}

K
KAMEZAWA Hiroyuki 已提交
618 619 620 621 622 623
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624
{
K
KAMEZAWA Hiroyuki 已提交
625 626
	int i;

627
	if (current->mm == mm)
628
		sync_mm_rss(mm);
K
KAMEZAWA Hiroyuki 已提交
629 630 631
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
632 633
}

N
Nick Piggin 已提交
634
/*
635 636 637
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
N
Nick Piggin 已提交
638 639 640
 *
 * The calling function must still handle the error.
 */
641 642
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
N
Nick Piggin 已提交
643
{
644 645 646 647 648
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
649 650 651 652 653 654 655 656 657 658 659 660 661 662
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
663 664
			printk(KERN_ALERT
				"BUG: Bad page map: %lu messages suppressed\n",
665 666 667 668 669 670 671
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
672 673 674 675

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

676 677
	printk(KERN_ALERT
		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678 679
		current->comm,
		(long long)pte_val(pte), (long long)pmd_val(*pmd));
680
	if (page)
681
		dump_page(page, "bad pte");
682
	printk(KERN_ALERT
683 684 685 686 687
		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
688 689 690 691 692
	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
N
Nick Piggin 已提交
693
	dump_stack();
694
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
N
Nick Piggin 已提交
695 696
}

H
Hugh Dickins 已提交
697
/*
N
Nick Piggin 已提交
698
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
699
 *
N
Nick Piggin 已提交
700 701 702
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
703
 *
N
Nick Piggin 已提交
704 705 706 707 708 709 710 711
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
712
 *
J
Jared Hulbert 已提交
713 714
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
N
Nick Piggin 已提交
715 716
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
717 718 719
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
N
Nick Piggin 已提交
720 721 722 723 724 725
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
726 727
 *
 *
N
Nick Piggin 已提交
728
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
729 730 731 732 733 734 735 736 737
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
H
Hugh Dickins 已提交
738
 */
N
Nick Piggin 已提交
739 740 741 742 743 744 745
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
H
Hugh Dickins 已提交
746
{
747
	unsigned long pfn = pte_pfn(pte);
N
Nick Piggin 已提交
748 749

	if (HAVE_PTE_SPECIAL) {
750
		if (likely(!pte_special(pte)))
751
			goto check_pfn;
752 753
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
754 755
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
H
Hugh Dickins 已提交
756
		if (!is_zero_pfn(pfn))
757
			print_bad_pte(vma, addr, pte, NULL);
N
Nick Piggin 已提交
758 759 760 761 762
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

J
Jared Hulbert 已提交
763 764 765 766 767 768
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
N
Nick Piggin 已提交
769 770
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
771 772 773 774 775
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
776 777
	}

778 779
	if (is_zero_pfn(pfn))
		return NULL;
780 781 782 783 784
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
785 786

	/*
N
Nick Piggin 已提交
787 788
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
789
	 */
J
Jared Hulbert 已提交
790
out:
791
	return pfn_to_page(pfn);
H
Hugh Dickins 已提交
792 793
}

L
Linus Torvalds 已提交
794 795 796 797 798 799
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

H
Hugh Dickins 已提交
800
static inline unsigned long
L
Linus Torvalds 已提交
801
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
N
Nick Piggin 已提交
802
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
H
Hugh Dickins 已提交
803
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
804
{
N
Nick Piggin 已提交
805
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
806 807 808 809 810
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

829
			rss[mm_counter(page)]++;
830 831 832 833 834 835 836 837 838 839 840 841

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
842
			}
L
Linus Torvalds 已提交
843
		}
844
		goto out_set_pte;
L
Linus Torvalds 已提交
845 846 847 848 849 850
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
851
	if (is_cow_mapping(vm_flags)) {
L
Linus Torvalds 已提交
852
		ptep_set_wrprotect(src_mm, addr, src_pte);
853
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
854 855 856 857 858 859 860 861 862
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
863 864 865 866

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
H
Hugh Dickins 已提交
867
		page_dup_rmap(page);
868
		rss[mm_counter(page)]++;
869
	}
870 871 872

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
H
Hugh Dickins 已提交
873
	return 0;
L
Linus Torvalds 已提交
874 875
}

876
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 878
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
879
{
880
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
881
	pte_t *src_pte, *dst_pte;
H
Hugh Dickins 已提交
882
	spinlock_t *src_ptl, *dst_ptl;
883
	int progress = 0;
K
KAMEZAWA Hiroyuki 已提交
884
	int rss[NR_MM_COUNTERS];
H
Hugh Dickins 已提交
885
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
886 887

again:
K
KAMEZAWA Hiroyuki 已提交
888 889
	init_rss_vec(rss);

H
Hugh Dickins 已提交
890
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
891 892
	if (!dst_pte)
		return -ENOMEM;
P
Peter Zijlstra 已提交
893
	src_pte = pte_offset_map(src_pmd, addr);
H
Hugh Dickins 已提交
894
	src_ptl = pte_lockptr(src_mm, src_pmd);
I
Ingo Molnar 已提交
895
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
896 897
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
898
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
899 900 901 902 903 904

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
905 906 907
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
908
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
909 910
				break;
		}
L
Linus Torvalds 已提交
911 912 913 914
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
H
Hugh Dickins 已提交
915 916 917 918
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
919 920 921
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

922
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
923
	spin_unlock(src_ptl);
P
Peter Zijlstra 已提交
924
	pte_unmap(orig_src_pte);
K
KAMEZAWA Hiroyuki 已提交
925
	add_mm_rss_vec(dst_mm, rss);
926
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
H
Hugh Dickins 已提交
927
	cond_resched();
H
Hugh Dickins 已提交
928 929 930 931 932 933

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
952 953
		if (pmd_trans_huge(*src_pmd)) {
			int err;
954
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
955 956 957 958 959 960 961 962
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
1001 1002 1003
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	bool is_cow;
A
Andrea Arcangeli 已提交
1004
	int ret;
L
Linus Torvalds 已提交
1005

1006 1007 1008 1009 1010 1011
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
1012 1013 1014
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
1015

L
Linus Torvalds 已提交
1016 1017 1018
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

1019
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1020 1021 1022 1023
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
1024
		ret = track_pfn_copy(vma);
1025 1026 1027 1028
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1029 1030 1031 1032 1033 1034
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1035 1036 1037 1038 1039 1040
	is_cow = is_cow_mapping(vma->vm_flags);
	mmun_start = addr;
	mmun_end   = end;
	if (is_cow)
		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
						    mmun_end);
A
Andrea Arcangeli 已提交
1041 1042

	ret = 0;
L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
A
Andrea Arcangeli 已提交
1049 1050 1051 1052 1053
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1054
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1055

1056 1057
	if (is_cow)
		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1058
	return ret;
L
Linus Torvalds 已提交
1059 1060
}

1061
static unsigned long zap_pte_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1062
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1063
				unsigned long addr, unsigned long end,
1064
				struct zap_details *details)
L
Linus Torvalds 已提交
1065
{
N
Nick Piggin 已提交
1066
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1067
	int force_flush = 0;
K
KAMEZAWA Hiroyuki 已提交
1068
	int rss[NR_MM_COUNTERS];
1069
	spinlock_t *ptl;
1070
	pte_t *start_pte;
1071
	pte_t *pte;
1072
	swp_entry_t entry;
K
KAMEZAWA Hiroyuki 已提交
1073

P
Peter Zijlstra 已提交
1074
again:
1075
	init_rss_vec(rss);
1076 1077
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1078
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1079 1080
	do {
		pte_t ptent = *pte;
1081
		if (pte_none(ptent)) {
L
Linus Torvalds 已提交
1082
			continue;
1083
		}
1084

L
Linus Torvalds 已提交
1085
		if (pte_present(ptent)) {
H
Hugh Dickins 已提交
1086
			struct page *page;
1087

1088
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
			}
N
Nick Piggin 已提交
1099
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1100
							tlb->fullmm);
L
Linus Torvalds 已提交
1101 1102 1103
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1104 1105

			if (!PageAnon(page)) {
1106 1107
				if (pte_dirty(ptent)) {
					force_flush = 1;
1108
					set_page_dirty(page);
1109
				}
1110
				if (pte_young(ptent) &&
1111
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1112
					mark_page_accessed(page);
1113
			}
1114
			rss[mm_counter(page)]--;
1115
			page_remove_rmap(page, false);
1116 1117
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1118 1119
			if (unlikely(!__tlb_remove_page(tlb, page))) {
				force_flush = 1;
1120
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1121
				break;
1122
			}
L
Linus Torvalds 已提交
1123 1124
			continue;
		}
1125
		/* If details->check_mapping, we leave swap entries. */
L
Linus Torvalds 已提交
1126 1127
		if (unlikely(details))
			continue;
K
KAMEZAWA Hiroyuki 已提交
1128

1129 1130 1131 1132 1133
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1134

1135
			page = migration_entry_to_page(entry);
1136
			rss[mm_counter(page)]--;
K
KAMEZAWA Hiroyuki 已提交
1137
		}
1138 1139
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1140
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141
	} while (pte++, addr += PAGE_SIZE, addr != end);
1142

K
KAMEZAWA Hiroyuki 已提交
1143
	add_mm_rss_vec(mm, rss);
1144
	arch_leave_lazy_mmu_mode();
1145

1146
	/* Do the actual TLB flush before dropping ptl */
1147
	if (force_flush)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu_free(tlb);
1160 1161

		if (addr != end)
P
Peter Zijlstra 已提交
1162 1163 1164
			goto again;
	}

1165
	return addr;
L
Linus Torvalds 已提交
1166 1167
}

1168
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1169
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1170
				unsigned long addr, unsigned long end,
1171
				struct zap_details *details)
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177 1178
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1179
		if (pmd_trans_huge(*pmd)) {
1180
			if (next - addr != HPAGE_PMD_SIZE) {
1181 1182 1183 1184 1185 1186 1187 1188 1189
#ifdef CONFIG_DEBUG_VM
				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
						__func__, addr, end,
						vma->vm_start,
						vma->vm_end);
					BUG();
				}
#endif
1190
				split_huge_pmd(vma, pmd, addr);
S
Shaohua Li 已提交
1191
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1192
				goto next;
1193 1194
			/* fall through */
		}
1195 1196 1197 1198 1199 1200 1201 1202 1203
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1204
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1205
next:
1206 1207
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1208 1209

	return addr;
L
Linus Torvalds 已提交
1210 1211
}

1212
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1213
				struct vm_area_struct *vma, pgd_t *pgd,
L
Linus Torvalds 已提交
1214
				unsigned long addr, unsigned long end,
1215
				struct zap_details *details)
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220 1221 1222
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
1223
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1224
			continue;
1225 1226
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
1227 1228

	return addr;
L
Linus Torvalds 已提交
1229 1230
}

A
Al Viro 已提交
1231 1232 1233 1234
static void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1235 1236 1237 1238
{
	pgd_t *pgd;
	unsigned long next;

1239
	if (details && !details->check_mapping)
L
Linus Torvalds 已提交
1240 1241 1242 1243 1244 1245 1246
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1247
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1248
			continue;
1249 1250
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1251 1252
	tlb_end_vma(tlb, vma);
}
1253

1254 1255 1256

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1257
		unsigned long end_addr,
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1269 1270 1271
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1272
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1273
		untrack_pfn(vma, 0, 0);
1274 1275 1276 1277 1278 1279 1280

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1281
			 * cleanup path of mmap_region. When
1282
			 * hugetlbfs ->mmap method fails,
1283
			 * mmap_region() nullifies vma->vm_file
1284 1285 1286 1287
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1288
			if (vma->vm_file) {
1289
				i_mmap_lock_write(vma->vm_file->f_mapping);
1290
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1292
			}
1293 1294 1295
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1296 1297 1298 1299
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1300
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1301 1302 1303 1304
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1305
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
A
Al Viro 已提交
1316
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1317
		struct vm_area_struct *vma, unsigned long start_addr,
1318
		unsigned long end_addr)
L
Linus Torvalds 已提交
1319
{
A
Andrea Arcangeli 已提交
1320
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
1321

A
Andrea Arcangeli 已提交
1322
	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1323
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1324
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
A
Andrea Arcangeli 已提交
1325
	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
L
Linus Torvalds 已提交
1326 1327 1328 1329 1330
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1331
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1332
 * @size: number of bytes to zap
1333
 * @details: details of shared cache invalidation
1334 1335
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1336
 */
1337
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
L
Linus Torvalds 已提交
1338 1339 1340
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1341
	struct mmu_gather tlb;
1342
	unsigned long end = start + size;
L
Linus Torvalds 已提交
1343 1344

	lru_add_drain();
1345
	tlb_gather_mmu(&tlb, mm, start, end);
1346
	update_hiwater_rss(mm);
1347 1348
	mmu_notifier_invalidate_range_start(mm, start, end);
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1349
		unmap_single_vma(&tlb, vma, start, end, details);
1350 1351
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_finish_mmu(&tlb, start, end);
L
Linus Torvalds 已提交
1352 1353
}

1354 1355 1356 1357 1358
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1359
 * @details: details of shared cache invalidation
1360 1361
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1362
 */
1363
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1364 1365 1366
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1367
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1368 1369 1370
	unsigned long end = address + size;

	lru_add_drain();
1371
	tlb_gather_mmu(&tlb, mm, address, end);
1372
	update_hiwater_rss(mm);
1373
	mmu_notifier_invalidate_range_start(mm, address, end);
1374
	unmap_single_vma(&tlb, vma, address, end, details);
1375
	mmu_notifier_invalidate_range_end(mm, address, end);
P
Peter Zijlstra 已提交
1376
	tlb_finish_mmu(&tlb, address, end);
L
Linus Torvalds 已提交
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
1397
	zap_page_range_single(vma, address, size, NULL);
1398 1399 1400 1401
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1402
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
H
Harvey Harrison 已提交
1403
			spinlock_t **ptl)
1404 1405 1406 1407
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
1408
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1409 1410
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
1411
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1412
		}
1413 1414 1415 1416
	}
	return NULL;
}

1417 1418 1419 1420 1421 1422 1423
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1424 1425
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1426
{
N
Nick Piggin 已提交
1427
	struct mm_struct *mm = vma->vm_mm;
1428
	int retval;
1429
	pte_t *pte;
1430 1431
	spinlock_t *ptl;

1432
	retval = -EINVAL;
1433
	if (PageAnon(page))
1434
		goto out;
1435 1436
	retval = -ENOMEM;
	flush_dcache_page(page);
1437
	pte = get_locked_pte(mm, addr, &ptl);
1438
	if (!pte)
1439
		goto out;
1440 1441 1442 1443 1444 1445
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1446
	inc_mm_counter_fast(mm, mm_counter_file(page));
1447 1448 1449 1450
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1451 1452
	pte_unmap_unlock(pte, ptl);
	return retval;
1453 1454 1455 1456 1457 1458
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1459 1460 1461 1462 1463 1464
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1465 1466 1467 1468 1469 1470
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
N
Nick Piggin 已提交
1471
 * (see split_page()).
1472 1473 1474 1475 1476 1477 1478 1479
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1480 1481 1482 1483 1484
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1485
 */
N
Nick Piggin 已提交
1486 1487
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1488 1489 1490 1491 1492
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1493 1494 1495 1496 1497
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1498
	return insert_page(vma, addr, page, vma->vm_page_prot);
1499
}
1500
EXPORT_SYMBOL(vm_insert_page);
1501

N
Nick Piggin 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t prot)
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	entry = pte_mkspecial(pfn_pte(pfn, prot));
	set_pte_at(mm, addr, pte, entry);
1521
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1522 1523 1524 1525 1526 1527 1528 1529

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

N
Nick Piggin 已提交
1530 1531 1532 1533 1534 1535
/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
1536
 * Similar to vm_insert_page, this allows drivers to insert individual pages
N
Nick Piggin 已提交
1537 1538 1539 1540
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
N
Nick Piggin 已提交
1541 1542 1543 1544 1545
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
N
Nick Piggin 已提交
1546 1547
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
1548
			unsigned long pfn)
N
Nick Piggin 已提交
1549
{
1550
	int ret;
1551
	pgprot_t pgprot = vma->vm_page_prot;
N
Nick Piggin 已提交
1552 1553 1554 1555 1556 1557
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
J
Jared Hulbert 已提交
1558 1559 1560 1561 1562
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
N
Nick Piggin 已提交
1563

N
Nick Piggin 已提交
1564 1565
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
1566
	if (track_pfn_insert(vma, &pgprot, pfn))
1567 1568
		return -EINVAL;

1569
	ret = insert_pfn(vma, addr, pfn, pgprot);
1570 1571

	return ret;
N
Nick Piggin 已提交
1572 1573
}
EXPORT_SYMBOL(vm_insert_pfn);
N
Nick Piggin 已提交
1574

N
Nick Piggin 已提交
1575 1576 1577 1578
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
N
Nick Piggin 已提交
1579

N
Nick Piggin 已提交
1580 1581
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
N
Nick Piggin 已提交
1582

N
Nick Piggin 已提交
1583 1584 1585 1586
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
H
Hugh Dickins 已提交
1587 1588
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1589 1590 1591 1592 1593 1594 1595 1596
	 */
	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
		struct page *page;

		page = pfn_to_page(pfn);
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
N
Nick Piggin 已提交
1597
}
N
Nick Piggin 已提交
1598
EXPORT_SYMBOL(vm_insert_mixed);
N
Nick Piggin 已提交
1599

L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
H
Hugh Dickins 已提交
1610
	spinlock_t *ptl;
L
Linus Torvalds 已提交
1611

H
Hugh Dickins 已提交
1612
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1613 1614
	if (!pte)
		return -ENOMEM;
1615
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1616 1617
	do {
		BUG_ON(!pte_none(*pte));
N
Nick Piggin 已提交
1618
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1619 1620
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1621
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
1622
	pte_unmap_unlock(pte - 1, ptl);
L
Linus Torvalds 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1637
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1682
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689 1690
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1691 1692 1693
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1694 1695 1696 1697
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
L
Linus Torvalds 已提交
1698 1699 1700 1701
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1702
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1703
	 */
1704 1705 1706
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
L
Linus Torvalds 已提交
1707
		vma->vm_pgoff = pfn;
1708 1709 1710 1711
	}

	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	if (err)
1712
		return -EINVAL;
L
Linus Torvalds 已提交
1713

1714
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1727 1728

	if (err)
1729
		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1730

L
Linus Torvalds 已提交
1731 1732 1733 1734
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1782 1783 1784 1785 1786 1787
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1788
	pgtable_t token;
1789
	spinlock_t *uninitialized_var(ptl);
1790 1791 1792 1793 1794 1795 1796 1797 1798

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1799 1800
	arch_enter_lazy_mmu_mode();

1801
	token = pmd_pgtable(*pmd);
1802 1803

	do {
1804
		err = fn(pte++, token, addr, data);
1805 1806
		if (err)
			break;
1807
	} while (addr += PAGE_SIZE, addr != end);
1808

1809 1810
	arch_leave_lazy_mmu_mode();

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

A
Andi Kleen 已提交
1824 1825
	BUG_ON(pud_huge(*pud));

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
1867
	unsigned long end = addr + size;
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1878

1879 1880 1881 1882
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

1883
/*
1884 1885 1886 1887 1888
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
1889
 * and do_anonymous_page can safely check later on).
1890
 */
H
Hugh Dickins 已提交
1891
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1892 1893 1894 1895 1896
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
H
Hugh Dickins 已提交
1897 1898
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
1899
		same = pte_same(*page_table, orig_pte);
H
Hugh Dickins 已提交
1900
		spin_unlock(ptl);
1901 1902 1903 1904 1905 1906
	}
#endif
	pte_unmap(page_table);
	return same;
}

1907
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1908
{
1909 1910
	debug_dma_assert_idle(src);

1911 1912 1913 1914 1915 1916 1917
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
1918
		void *kaddr = kmap_atomic(dst);
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1928
			clear_page(kaddr);
1929
		kunmap_atomic(kaddr);
1930
		flush_dcache_page(dst);
N
Nick Piggin 已提交
1931 1932
	} else
		copy_user_highpage(dst, src, va, vma);
1933 1934
}

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
	       unsigned long address)
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = page->index;
	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1964
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1965
	vmf.page = page;
1966
	vmf.cow_page = NULL;
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
static inline int wp_page_reuse(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			struct page *page, int page_mkwrite,
			int dirty_shared)
	__releases(ptl)
{
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, address, pte_pfn(orig_pte));
	entry = pte_mkyoung(orig_pte);
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
		update_mmu_cache(vma, address, page_table);
	pte_unmap_unlock(page_table, ptl);

	if (dirty_shared) {
		struct address_space *mapping;
		int dirtied;

		if (!page_mkwrite)
			lock_page(page);

		dirtied = set_page_dirty(page);
		VM_BUG_ON_PAGE(PageAnon(page), page);
		mapping = page->mapping;
		unlock_page(page);
		page_cache_release(page);

		if ((dirtied || page_mkwrite) && mapping) {
			/*
			 * Some device drivers do not set page.mapping
			 * but still dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		if (!page_mkwrite)
			file_update_time(vma->vm_file);
	}

	return VM_FAULT_WRITE;
}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *page_table, pmd_t *pmd,
			pte_t orig_pte, struct page *old_page)
{
	struct page *new_page = NULL;
	spinlock_t *ptl = NULL;
	pte_t entry;
	int page_copied = 0;
	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
	struct mem_cgroup *memcg;

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}

2084
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2085 2086
		goto oom_free_new;

2087 2088
	__SetPageUptodate(new_page);

2089 2090 2091 2092 2093 2094 2095 2096 2097
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
2098 2099
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush_notify(vma, address, page_table);
2115
		page_add_new_anon_rmap(new_page, vma, address, false);
2116
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2148
			page_remove_rmap(old_page, false);
2149 2150 2151 2152 2153 2154
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2155
		mem_cgroup_cancel_charge(new_page, memcg, false);
2156 2157 2158 2159 2160 2161 2162
	}

	if (new_page)
		page_cache_release(new_page);

	pte_unmap_unlock(page_table, ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2163 2164
	/* THP pages are never mlocked */
	if (old_page && !PageTransCompound(old_page)) {
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
			munlock_vma_page(old_page);
			unlock_page(old_page);
		}
		page_cache_release(old_page);
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
	page_cache_release(new_page);
oom:
	if (old_page)
		page_cache_release(old_page);
	return VM_FAULT_OOM;
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
static int wp_pfn_shared(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			pmd_t *pmd)
{
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
		struct vm_fault vmf = {
			.page = NULL,
			.pgoff = linear_page_index(vma, address),
			.virtual_address = (void __user *)(address & PAGE_MASK),
			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
		};
		int ret;

		pte_unmap_unlock(page_table, ptl);
		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
		if (ret & VM_FAULT_ERROR)
			return ret;
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		/*
		 * We might have raced with another page fault while we
		 * released the pte_offset_map_lock.
		 */
		if (!pte_same(*page_table, orig_pte)) {
			pte_unmap_unlock(page_table, ptl);
			return 0;
		}
	}
	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
			     NULL, 0, 0);
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
			  unsigned long address, pte_t *page_table,
			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
			  struct page *old_page)
	__releases(ptl)
{
	int page_mkwrite = 0;

	page_cache_get(old_page);

	/*
	 * Only catch write-faults on shared writable pages,
	 * read-only shared pages can get COWed by
	 * get_user_pages(.write=1, .force=1).
	 */
	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
		int tmp;

		pte_unmap_unlock(page_table, ptl);
		tmp = do_page_mkwrite(vma, old_page, address);
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
			page_cache_release(old_page);
			return tmp;
		}
		/*
		 * Since we dropped the lock we need to revalidate
		 * the PTE as someone else may have changed it.  If
		 * they did, we just return, as we can count on the
		 * MMU to tell us if they didn't also make it writable.
		 */
		page_table = pte_offset_map_lock(mm, pmd, address,
						 &ptl);
		if (!pte_same(*page_table, orig_pte)) {
			unlock_page(old_page);
			pte_unmap_unlock(page_table, ptl);
			page_cache_release(old_page);
			return 0;
		}
		page_mkwrite = 1;
	}

	return wp_page_reuse(mm, vma, address, page_table, ptl,
			     orig_pte, old_page, page_mkwrite, 1);
}

L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2281 2282 2283
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2284
 */
2285 2286
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2287
		spinlock_t *ptl, pte_t orig_pte)
2288
	__releases(ptl)
L
Linus Torvalds 已提交
2289
{
2290
	struct page *old_page;
L
Linus Torvalds 已提交
2291

2292
	old_page = vm_normal_page(vma, address, orig_pte);
2293 2294
	if (!old_page) {
		/*
2295 2296
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2297 2298
		 *
		 * We should not cow pages in a shared writeable mapping.
2299
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2300 2301 2302
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2303 2304
			return wp_pfn_shared(mm, vma, address, page_table, ptl,
					     orig_pte, pmd);
2305 2306 2307 2308

		pte_unmap_unlock(page_table, ptl);
		return wp_page_copy(mm, vma, address, page_table, pmd,
				    orig_pte, old_page);
2309
	}
L
Linus Torvalds 已提交
2310

2311
	/*
P
Peter Zijlstra 已提交
2312 2313
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2314
	 */
H
Hugh Dickins 已提交
2315
	if (PageAnon(old_page) && !PageKsm(old_page)) {
2316 2317 2318 2319 2320 2321 2322 2323
		if (!trylock_page(old_page)) {
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
2324 2325 2326
				pte_unmap_unlock(page_table, ptl);
				page_cache_release(old_page);
				return 0;
2327 2328
			}
			page_cache_release(old_page);
P
Peter Zijlstra 已提交
2329
		}
2330
		if (reuse_swap_page(old_page)) {
2331 2332 2333 2334 2335 2336
			/*
			 * The page is all ours.  Move it to our anon_vma so
			 * the rmap code will not search our parent or siblings.
			 * Protected against the rmap code by the page lock.
			 */
			page_move_anon_rmap(old_page, vma, address);
2337
			unlock_page(old_page);
2338 2339
			return wp_page_reuse(mm, vma, address, page_table, ptl,
					     orig_pte, old_page, 0, 0);
2340
		}
2341
		unlock_page(old_page);
P
Peter Zijlstra 已提交
2342
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2343
					(VM_WRITE|VM_SHARED))) {
2344 2345
		return wp_page_shared(mm, vma, address, page_table, pmd,
				      ptl, orig_pte, old_page);
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
N
Nick Piggin 已提交
2351
	page_cache_get(old_page);
2352

2353
	pte_unmap_unlock(page_table, ptl);
2354 2355
	return wp_page_copy(mm, vma, address, page_table, pmd,
			    orig_pte, old_page);
L
Linus Torvalds 已提交
2356 2357
}

2358
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2359 2360 2361
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2362
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2363 2364
}

2365
static inline void unmap_mapping_range_tree(struct rb_root *root,
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2371
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2372 2373 2374
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2375
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2376 2377 2378 2379 2380 2381 2382 2383
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2384
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2385 2386
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2387
				details);
L
Linus Torvalds 已提交
2388 2389 2390 2391
	}
}

/**
2392 2393 2394 2395
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
 * address_space corresponding to the specified page range in the underlying
 * file.
 *
M
Martin Waitz 已提交
2396
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2397 2398
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2399
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

R
Ross Zwisler 已提交
2429 2430

	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2431
	i_mmap_lock_write(mapping);
2432
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
L
Linus Torvalds 已提交
2433
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2434
	i_mmap_unlock_write(mapping);
L
Linus Torvalds 已提交
2435 2436 2437 2438
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2439 2440
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2441 2442 2443 2444
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2445
 */
2446 2447
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2448
		unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
2449
{
2450
	spinlock_t *ptl;
2451
	struct page *page, *swapcache;
2452
	struct mem_cgroup *memcg;
2453
	swp_entry_t entry;
L
Linus Torvalds 已提交
2454
	pte_t pte;
2455
	int locked;
2456
	int exclusive = 0;
N
Nick Piggin 已提交
2457
	int ret = 0;
L
Linus Torvalds 已提交
2458

H
Hugh Dickins 已提交
2459
	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2460
		goto out;
2461 2462

	entry = pte_to_swp_entry(orig_pte);
2463 2464 2465 2466 2467 2468 2469
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
H
Hugh Dickins 已提交
2470
			ret = VM_FAULT_SIGBUS;
2471
		}
2472 2473
		goto out;
	}
2474
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
L
Linus Torvalds 已提交
2475 2476
	page = lookup_swap_cache(entry);
	if (!page) {
2477 2478
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
L
Linus Torvalds 已提交
2479 2480
		if (!page) {
			/*
2481 2482
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
2483
			 */
2484
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
L
Linus Torvalds 已提交
2485 2486
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
2487
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2488
			goto unlock;
L
Linus Torvalds 已提交
2489 2490 2491 2492
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2493
		count_vm_event(PGMAJFAULT);
2494
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2495
	} else if (PageHWPoison(page)) {
2496 2497 2498 2499
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2500 2501
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2502
		swapcache = page;
2503
		goto out_release;
L
Linus Torvalds 已提交
2504 2505
	}

2506
	swapcache = page;
2507
	locked = lock_page_or_retry(page, mm, flags);
R
Rik van Riel 已提交
2508

2509
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2510 2511 2512 2513
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2514

A
Andrea Arcangeli 已提交
2515
	/*
2516 2517 2518 2519
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
A
Andrea Arcangeli 已提交
2520
	 */
2521
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
A
Andrea Arcangeli 已提交
2522 2523
		goto out_page;

2524 2525 2526 2527 2528
	page = ksm_might_need_to_copy(page, vma, address);
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
H
Hugh Dickins 已提交
2529 2530
	}

2531
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2532
		ret = VM_FAULT_OOM;
2533
		goto out_page;
2534 2535
	}

L
Linus Torvalds 已提交
2536
	/*
2537
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
2538
	 */
2539
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2540
	if (unlikely(!pte_same(*page_table, orig_pte)))
2541 2542 2543 2544 2545
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
2546 2547
	}

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
2557

2558
	inc_mm_counter_fast(mm, MM_ANONPAGES);
K
KAMEZAWA Hiroyuki 已提交
2559
	dec_mm_counter_fast(mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
2560
	pte = mk_pte(page, vma->vm_page_prot);
2561
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
L
Linus Torvalds 已提交
2562
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2563
		flags &= ~FAULT_FLAG_WRITE;
2564
		ret |= VM_FAULT_WRITE;
2565
		exclusive = RMAP_EXCLUSIVE;
L
Linus Torvalds 已提交
2566 2567
	}
	flush_icache_page(vma, page);
2568 2569
	if (pte_swp_soft_dirty(orig_pte))
		pte = pte_mksoft_dirty(pte);
L
Linus Torvalds 已提交
2570
	set_pte_at(mm, address, page_table, pte);
2571
	if (page == swapcache) {
2572
		do_page_add_anon_rmap(page, vma, address, exclusive);
2573
		mem_cgroup_commit_charge(page, memcg, true, false);
2574
	} else { /* ksm created a completely new copy */
2575
		page_add_new_anon_rmap(page, vma, address, false);
2576
		mem_cgroup_commit_charge(page, memcg, false, false);
2577 2578
		lru_cache_add_active_or_unevictable(page, vma);
	}
L
Linus Torvalds 已提交
2579

2580
	swap_free(entry);
N
Nick Piggin 已提交
2581
	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2582
		try_to_free_swap(page);
2583
	unlock_page(page);
2584
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2596

2597
	if (flags & FAULT_FLAG_WRITE) {
2598 2599 2600
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
2601 2602 2603 2604
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2605
	update_mmu_cache(vma, address, page_table);
2606
unlock:
2607
	pte_unmap_unlock(page_table, ptl);
L
Linus Torvalds 已提交
2608 2609
out:
	return ret;
2610
out_nomap:
2611
	mem_cgroup_cancel_charge(page, memcg, false);
2612
	pte_unmap_unlock(page_table, ptl);
2613
out_page:
2614
	unlock_page(page);
2615
out_release:
2616
	page_cache_release(page);
2617
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2618 2619 2620
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2621
	return ret;
L
Linus Torvalds 已提交
2622 2623
}

2624
/*
2625 2626
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2627 2628 2629 2630 2631 2632
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2643

2644
		return expand_downwards(vma, address - PAGE_SIZE);
2645
	}
2646 2647 2648 2649 2650 2651 2652
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

2653
		return expand_upwards(vma, address + PAGE_SIZE);
2654
	}
2655 2656 2657
	return 0;
}

L
Linus Torvalds 已提交
2658
/*
2659 2660 2661
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2662
 */
2663 2664
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2665
		unsigned int flags)
L
Linus Torvalds 已提交
2666
{
2667
	struct mem_cgroup *memcg;
2668 2669
	struct page *page;
	spinlock_t *ptl;
L
Linus Torvalds 已提交
2670 2671
	pte_t entry;

2672 2673
	pte_unmap(page_table);

2674 2675 2676 2677
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2678 2679
	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
2680
		return VM_FAULT_SIGSEGV;
2681

2682
	/* Use the zero-page for reads */
2683
	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
H
Hugh Dickins 已提交
2684 2685
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
2686
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2687 2688
		if (!pte_none(*page_table))
			goto unlock;
2689 2690 2691 2692 2693 2694
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
			pte_unmap_unlock(page_table, ptl);
			return handle_userfault(vma, address, flags,
						VM_UFFD_MISSING);
		}
H
Hugh Dickins 已提交
2695 2696 2697
		goto setpte;
	}

N
Nick Piggin 已提交
2698 2699 2700 2701 2702 2703
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
2704

2705
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2706 2707
		goto oom_free_page;

2708 2709 2710 2711 2712
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
N
Nick Piggin 已提交
2713
	__SetPageUptodate(page);
2714

N
Nick Piggin 已提交
2715
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
2716 2717
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
2718

N
Nick Piggin 已提交
2719
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2720
	if (!pte_none(*page_table))
N
Nick Piggin 已提交
2721
		goto release;
H
Hugh Dickins 已提交
2722

2723 2724 2725
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(page_table, ptl);
2726
		mem_cgroup_cancel_charge(page, memcg, false);
2727 2728 2729 2730 2731
		page_cache_release(page);
		return handle_userfault(vma, address, flags,
					VM_UFFD_MISSING);
	}

2732
	inc_mm_counter_fast(mm, MM_ANONPAGES);
2733
	page_add_new_anon_rmap(page, vma, address, false);
2734
	mem_cgroup_commit_charge(page, memcg, false, false);
2735
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
2736
setpte:
2737
	set_pte_at(mm, address, page_table, entry);
L
Linus Torvalds 已提交
2738 2739

	/* No need to invalidate - it was non-present before */
2740
	update_mmu_cache(vma, address, page_table);
2741
unlock:
2742
	pte_unmap_unlock(page_table, ptl);
N
Nick Piggin 已提交
2743
	return 0;
2744
release:
2745
	mem_cgroup_cancel_charge(page, memcg, false);
2746 2747
	page_cache_release(page);
	goto unlock;
2748
oom_free_page:
2749
	page_cache_release(page);
2750
oom:
L
Linus Torvalds 已提交
2751 2752 2753
	return VM_FAULT_OOM;
}

2754 2755 2756 2757 2758
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
2759
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2760 2761
			pgoff_t pgoff, unsigned int flags,
			struct page *cow_page, struct page **page)
2762 2763 2764 2765 2766 2767 2768 2769
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;
2770
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2771
	vmf.cow_page = cow_page;
2772 2773 2774 2775

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;
2776 2777
	if (!vmf.page)
		goto out;
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
		page_cache_release(vmf.page);
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

2791
 out:
2792 2793 2794 2795
	*page = vmf.page;
	return ret;
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
/**
 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 *
 * @vma: virtual memory area
 * @address: user virtual address
 * @page: page to map
 * @pte: pointer to target page table entry
 * @write: true, if new entry is writable
 * @anon: true, if it's anonymous page
 *
 * Caller must hold page table lock relevant for @pte.
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
 */
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		struct page *page, pte_t *pte, bool write, bool anon)
{
	pte_t entry;

	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (anon) {
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2822
		page_add_new_anon_rmap(page, vma, address, false);
2823
	} else {
2824
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2825 2826 2827 2828 2829 2830 2831 2832
		page_add_file_rmap(page);
	}
	set_pte_at(vma->vm_mm, address, pte, entry);

	/* no need to invalidate: a not-present page won't be cached */
	update_mmu_cache(vma, address, pte);
}

2833 2834
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
2835 2836 2837

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
2838
{
2839
	*val = fault_around_bytes;
2840 2841 2842
	return 0;
}

2843 2844 2845 2846 2847
/*
 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
 * rounded down to nearest page order. It's what do_fault_around() expects to
 * see.
 */
2848
static int fault_around_bytes_set(void *data, u64 val)
2849
{
2850
	if (val / PAGE_SIZE > PTRS_PER_PTE)
2851
		return -EINVAL;
2852 2853 2854 2855
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2856 2857
	return 0;
}
2858 2859
DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2860 2861 2862 2863 2864

static int __init fault_around_debugfs(void)
{
	void *ret;

2865 2866
	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
			&fault_around_bytes_fops);
2867
	if (!ret)
2868
		pr_warn("Failed to create fault_around_bytes in debugfs");
2869 2870 2871 2872
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
 * fault_around_pages() defines how many pages we'll try to map.
 * do_fault_around() expects it to return a power of two less than or equal to
 * PTRS_PER_PTE.
 *
 * The virtual address of the area that we map is naturally aligned to the
 * fault_around_pages() value (and therefore to page order).  This way it's
 * easier to guarantee that we don't cross page table boundaries.
 */
2897 2898 2899
static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pgoff_t pgoff, unsigned int flags)
{
2900
	unsigned long start_addr, nr_pages, mask;
2901 2902 2903 2904
	pgoff_t max_pgoff;
	struct vm_fault vmf;
	int off;

2905
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2906 2907 2908
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

	start_addr = max(address & mask, vma->vm_start);
2909 2910 2911 2912 2913 2914
	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	pte -= off;
	pgoff -= off;

	/*
	 *  max_pgoff is either end of page table or end of vma
2915
	 *  or fault_around_pages() from pgoff, depending what is nearest.
2916 2917 2918 2919
	 */
	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
		PTRS_PER_PTE - 1;
	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2920
			pgoff + nr_pages - 1);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

	/* Check if it makes any sense to call ->map_pages */
	while (!pte_none(*pte)) {
		if (++pgoff > max_pgoff)
			return;
		start_addr += PAGE_SIZE;
		if (start_addr >= vma->vm_end)
			return;
		pte++;
	}

	vmf.virtual_address = (void __user *) start_addr;
	vmf.pte = pte;
	vmf.pgoff = pgoff;
	vmf.max_pgoff = max_pgoff;
	vmf.flags = flags;
2937
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2938 2939 2940
	vma->vm_ops->map_pages(vma, &vmf);
}

2941 2942 2943 2944 2945 2946
static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page;
	spinlock_t *ptl;
2947
	pte_t *pte;
2948 2949 2950 2951 2952 2953 2954
	int ret = 0;

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
2955
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2956 2957 2958 2959 2960 2961
		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
		do_fault_around(vma, address, pte, pgoff, flags);
		if (!pte_same(*pte, orig_pte))
			goto unlock_out;
		pte_unmap_unlock(pte, ptl);
	}
2962

2963
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
	}
2974
	do_set_pte(vma, address, fault_page, pte, false, false);
2975
	unlock_page(fault_page);
2976 2977
unlock_out:
	pte_unmap_unlock(pte, ptl);
2978 2979 2980
	return ret;
}

2981 2982 2983 2984 2985
static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page, *new_page;
2986
	struct mem_cgroup *memcg;
2987
	spinlock_t *ptl;
2988
	pte_t *pte;
2989 2990 2991 2992 2993 2994 2995 2996 2997
	int ret;

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
	if (!new_page)
		return VM_FAULT_OOM;

2998
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
2999 3000 3001 3002
		page_cache_release(new_page);
		return VM_FAULT_OOM;
	}

3003
	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3004 3005 3006
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;

3007 3008
	if (fault_page)
		copy_user_highpage(new_page, fault_page, address, vma);
3009 3010 3011 3012 3013
	__SetPageUptodate(new_page);

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
3014 3015 3016 3017 3018 3019
		if (fault_page) {
			unlock_page(fault_page);
			page_cache_release(fault_page);
		} else {
			/*
			 * The fault handler has no page to lock, so it holds
3020
			 * i_mmap_lock for read to protect against truncate.
3021
			 */
3022
			i_mmap_unlock_read(vma->vm_file->f_mapping);
3023
		}
3024 3025
		goto uncharge_out;
	}
3026
	do_set_pte(vma, address, new_page, pte, true, true);
3027
	mem_cgroup_commit_charge(new_page, memcg, false, false);
3028
	lru_cache_add_active_or_unevictable(new_page, vma);
3029
	pte_unmap_unlock(pte, ptl);
3030 3031 3032 3033 3034 3035
	if (fault_page) {
		unlock_page(fault_page);
		page_cache_release(fault_page);
	} else {
		/*
		 * The fault handler has no page to lock, so it holds
3036
		 * i_mmap_lock for read to protect against truncate.
3037
		 */
3038
		i_mmap_unlock_read(vma->vm_file->f_mapping);
3039
	}
3040 3041
	return ret;
uncharge_out:
3042
	mem_cgroup_cancel_charge(new_page, memcg, false);
3043 3044 3045 3046
	page_cache_release(new_page);
	return ret;
}

3047
static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048
		unsigned long address, pmd_t *pmd,
3049
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
3050
{
3051 3052
	struct page *fault_page;
	struct address_space *mapping;
3053
	spinlock_t *ptl;
3054
	pte_t *pte;
3055 3056
	int dirtied = 0;
	int ret, tmp;
3057

3058
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3059
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3060
		return ret;
L
Linus Torvalds 已提交
3061 3062

	/*
3063 3064
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3065
	 */
3066 3067 3068 3069 3070
	if (vma->vm_ops->page_mkwrite) {
		unlock_page(fault_page);
		tmp = do_page_mkwrite(vma, fault_page, address);
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3071
			page_cache_release(fault_page);
3072
			return tmp;
3073
		}
3074 3075
	}

3076 3077 3078 3079 3080 3081
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
L
Linus Torvalds 已提交
3082
	}
3083
	do_set_pte(vma, address, fault_page, pte, true, false);
3084
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3085

3086 3087
	if (set_page_dirty(fault_page))
		dirtied = 1;
3088 3089 3090 3091 3092 3093
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
3094
	mapping = page_rmapping(fault_page);
3095 3096 3097 3098 3099 3100 3101
	unlock_page(fault_page);
	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping but still
		 * dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
3102
	}
3103

3104
	if (!vma->vm_ops->page_mkwrite)
3105
		file_update_time(vma->vm_file);
N
Nick Piggin 已提交
3106

3107
	return ret;
3108
}
3109

3110 3111 3112 3113 3114 3115
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3116
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3117
		unsigned long address, pte_t *page_table, pmd_t *pmd,
3118
		unsigned int flags, pte_t orig_pte)
3119 3120
{
	pgoff_t pgoff = (((address & PAGE_MASK)
3121
			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3122

3123
	pte_unmap(page_table);
3124 3125 3126
	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
	if (!vma->vm_ops->fault)
		return VM_FAULT_SIGBUS;
3127 3128 3129
	if (!(flags & FAULT_FLAG_WRITE))
		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3130 3131 3132
	if (!(vma->vm_flags & VM_SHARED))
		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3133
	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3134 3135
}

3136
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3137 3138
				unsigned long addr, int page_nid,
				int *flags)
3139 3140 3141 3142
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3143
	if (page_nid == numa_node_id()) {
3144
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3145 3146
		*flags |= TNF_FAULT_LOCAL;
	}
3147 3148 3149 3150

	return mpol_misplaced(page, vma, addr);
}

3151
static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3152 3153
		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
3154
	struct page *page = NULL;
3155
	spinlock_t *ptl;
3156
	int page_nid = -1;
3157
	int last_cpupid;
3158
	int target_nid;
3159
	bool migrated = false;
3160
	bool was_writable = pte_write(pte);
3161
	int flags = 0;
3162

3163 3164 3165
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

3166 3167 3168 3169 3170
	/*
	* The "pte" at this point cannot be used safely without
	* validation through pte_unmap_same(). It's of NUMA type but
	* the pfn may be screwed if the read is non atomic.
	*
3171 3172 3173
	* We can safely just do a "set_pte_at()", because the old
	* page table entry is not accessible, so there would be no
	* concurrent hardware modifications to the PTE.
3174 3175 3176
	*/
	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
3177 3178 3179 3180 3181
	if (unlikely(!pte_same(*ptep, pte))) {
		pte_unmap_unlock(ptep, ptl);
		goto out;
	}

3182 3183 3184
	/* Make it present again */
	pte = pte_modify(pte, vma->vm_page_prot);
	pte = pte_mkyoung(pte);
3185 3186
	if (was_writable)
		pte = pte_mkwrite(pte);
3187 3188 3189 3190 3191 3192 3193 3194 3195
	set_pte_at(mm, addr, ptep, pte);
	update_mmu_cache(vma, addr, ptep);

	page = vm_normal_page(vma, addr, pte);
	if (!page) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3196
	/*
3197 3198 3199 3200 3201 3202
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3203
	 */
3204
	if (!(vma->vm_flags & VM_WRITE))
3205 3206
		flags |= TNF_NO_GROUP;

3207 3208 3209 3210 3211 3212 3213
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3214
	last_cpupid = page_cpupid_last(page);
3215
	page_nid = page_to_nid(page);
3216
	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3217
	pte_unmap_unlock(ptep, ptl);
3218 3219 3220 3221 3222 3223
	if (target_nid == -1) {
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3224
	migrated = migrate_misplaced_page(page, vma, target_nid);
3225
	if (migrated) {
3226
		page_nid = target_nid;
3227
		flags |= TNF_MIGRATED;
3228 3229
	} else
		flags |= TNF_MIGRATE_FAIL;
3230 3231

out:
3232
	if (page_nid != -1)
3233
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3234 3235 3236
	return 0;
}

M
Matthew Wilcox 已提交
3237 3238 3239
static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, unsigned int flags)
{
3240
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
			unsigned int flags)
{
3251
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3252 3253 3254 3255 3256 3257
		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
H
Hugh Dickins 已提交
3267 3268
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
3269 3270 3271 3272
 * We return with pte unmapped and unlocked.
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3273
 */
3274
static int handle_pte_fault(struct mm_struct *mm,
3275 3276
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
L
Linus Torvalds 已提交
3277 3278
{
	pte_t entry;
3279
	spinlock_t *ptl;
L
Linus Torvalds 已提交
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	/*
	 * some architectures can have larger ptes than wordsize,
	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
	 * The code below just needs a consistent view for the ifs and
	 * we later double check anyway with the ptl lock held. So here
	 * a barrier will do.
	 */
	entry = *pte;
	barrier();
L
Linus Torvalds 已提交
3291
	if (!pte_present(entry)) {
3292
		if (pte_none(entry)) {
3293 3294 3295 3296
			if (vma_is_anonymous(vma))
				return do_anonymous_page(mm, vma, address,
							 pte, pmd, flags);
			else
3297 3298
				return do_fault(mm, vma, address, pte, pmd,
						flags, entry);
3299 3300
		}
		return do_swap_page(mm, vma, address,
3301
					pte, pmd, flags, entry);
L
Linus Torvalds 已提交
3302 3303
	}

3304
	if (pte_protnone(entry))
3305 3306
		return do_numa_page(mm, vma, address, entry, pte, pmd);

H
Hugh Dickins 已提交
3307
	ptl = pte_lockptr(mm, pmd);
3308 3309 3310
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
3311
	if (flags & FAULT_FLAG_WRITE) {
L
Linus Torvalds 已提交
3312
		if (!pte_write(entry))
3313 3314
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
L
Linus Torvalds 已提交
3315 3316 3317
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3318
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3319
		update_mmu_cache(vma, address, pte);
3320 3321 3322 3323 3324 3325 3326
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3327
		if (flags & FAULT_FLAG_WRITE)
3328
			flush_tlb_fix_spurious_fault(vma, address);
3329
	}
3330 3331
unlock:
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3332
	return 0;
L
Linus Torvalds 已提交
3333 3334 3335 3336
}

/*
 * By the time we get here, we already hold the mm semaphore
3337 3338 3339
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3340
 */
3341 3342
static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			     unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
3343 3344 3345 3346 3347 3348
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

3349
	if (unlikely(is_vm_hugetlb_page(vma)))
3350
		return hugetlb_fault(mm, vma, address, flags);
L
Linus Torvalds 已提交
3351 3352 3353 3354

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
H
Hugh Dickins 已提交
3355
		return VM_FAULT_OOM;
L
Linus Torvalds 已提交
3356 3357
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
H
Hugh Dickins 已提交
3358
		return VM_FAULT_OOM;
3359
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
M
Matthew Wilcox 已提交
3360
		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3361 3362
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3363 3364
	} else {
		pmd_t orig_pmd = *pmd;
3365 3366
		int ret;

3367 3368
		barrier();
		if (pmd_trans_huge(orig_pmd)) {
3369 3370
			unsigned int dirty = flags & FAULT_FLAG_WRITE;

3371
			if (pmd_protnone(orig_pmd))
3372
				return do_huge_pmd_numa_page(mm, vma, address,
3373 3374
							     orig_pmd, pmd);

3375
			if (dirty && !pmd_write(orig_pmd)) {
M
Matthew Wilcox 已提交
3376 3377
				ret = wp_huge_pmd(mm, vma, address, pmd,
							orig_pmd, flags);
3378 3379
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3380 3381 3382
			} else {
				huge_pmd_set_accessed(mm, vma, address, pmd,
						      orig_pmd, dirty);
3383
				return 0;
3384
			}
3385 3386 3387 3388 3389 3390 3391 3392
		}
	}

	/*
	 * Use __pte_alloc instead of pte_alloc_map, because we can't
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
3393 3394
	if (unlikely(pmd_none(*pmd)) &&
	    unlikely(__pte_alloc(mm, vma, pmd, address)))
H
Hugh Dickins 已提交
3395
		return VM_FAULT_OOM;
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	/* if an huge pmd materialized from under us just retry later */
	if (unlikely(pmd_trans_huge(*pmd)))
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);
L
Linus Torvalds 已提交
3406

3407
	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
L
Linus Torvalds 已提交
3408 3409
}

3410 3411 3412 3413 3414 3415
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		    unsigned long address, unsigned int flags)
{
	int ret;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3434
		mem_cgroup_oom_enable();
3435 3436 3437

	ret = __handle_mm_fault(mm, vma, address, flags);

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	if (flags & FAULT_FLAG_USER) {
		mem_cgroup_oom_disable();
                /*
                 * The task may have entered a memcg OOM situation but
                 * if the allocation error was handled gracefully (no
                 * VM_FAULT_OOM), there is no need to kill anything.
                 * Just clean up the OOM state peacefully.
                 */
                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                        mem_cgroup_oom_synchronize(false);
	}
3449

3450 3451
	return ret;
}
3452
EXPORT_SYMBOL_GPL(handle_mm_fault);
3453

L
Linus Torvalds 已提交
3454 3455 3456
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
H
Hugh Dickins 已提交
3457
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3458
 */
3459
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
L
Linus Torvalds 已提交
3460
{
H
Hugh Dickins 已提交
3461 3462
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
3463
		return -ENOMEM;
L
Linus Torvalds 已提交
3464

3465 3466
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3467
	spin_lock(&mm->page_table_lock);
3468
	if (pgd_present(*pgd))		/* Another has populated it */
3469
		pud_free(mm, new);
3470 3471
	else
		pgd_populate(mm, pgd, new);
H
Hugh Dickins 已提交
3472
	spin_unlock(&mm->page_table_lock);
3473
	return 0;
L
Linus Torvalds 已提交
3474 3475 3476 3477 3478 3479
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
H
Hugh Dickins 已提交
3480
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3481
 */
3482
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
3483
{
H
Hugh Dickins 已提交
3484 3485
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
3486
		return -ENOMEM;
L
Linus Torvalds 已提交
3487

3488 3489
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3490
	spin_lock(&mm->page_table_lock);
L
Linus Torvalds 已提交
3491
#ifndef __ARCH_HAS_4LEVEL_HACK
3492 3493
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
3494
		pud_populate(mm, pud, new);
3495
	} else	/* Another has populated it */
3496
		pmd_free(mm, new);
3497 3498 3499
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
3500
		pgd_populate(mm, pud, new);
3501 3502
	} else /* Another has populated it */
		pmd_free(mm, new);
L
Linus Torvalds 已提交
3503
#endif /* __ARCH_HAS_4LEVEL_HACK */
H
Hugh Dickins 已提交
3504
	spin_unlock(&mm->page_table_lock);
3505
	return 0;
3506
}
L
Linus Torvalds 已提交
3507 3508
#endif /* __PAGETABLE_PMD_FOLDED */

3509
static int __follow_pte(struct mm_struct *mm, unsigned long address,
J
Johannes Weiner 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
3526
	VM_BUG_ON(pmd_trans_huge(*pmd));
J
Johannes Weiner 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

J
Johannes Weiner 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

3587
#ifdef CONFIG_HAVE_IOREMAP_PROT
3588 3589 3590
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
3591
{
3592
	int ret = -EINVAL;
3593 3594 3595
	pte_t *ptep, pte;
	spinlock_t *ptl;

3596 3597
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
3598

3599
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3600
		goto out;
3601
	pte = *ptep;
3602

3603 3604 3605 3606
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
3607
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3608

3609
	ret = 0;
3610 3611 3612
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
3613
	return ret;
3614 3615 3616 3617 3618 3619 3620
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
3621
	void __iomem *maddr;
3622 3623
	int offset = addr & (PAGE_SIZE-1);

3624
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3625 3626
		return -EINVAL;

3627
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3628 3629 3630 3631 3632 3633 3634 3635
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
3636
EXPORT_SYMBOL_GPL(generic_access_phys);
3637 3638
#endif

3639
/*
3640 3641
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
3642
 */
3643 3644
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
3645 3646 3647 3648 3649
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
S
Simon Arlott 已提交
3650
	/* ignore errors, just check how much was successfully transferred */
3651 3652 3653
	while (len) {
		int bytes, ret, offset;
		void *maddr;
3654
		struct page *page = NULL;
3655 3656 3657

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
3658
		if (ret <= 0) {
3659 3660 3661
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
3662 3663 3664 3665 3666
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
3667
			if (!vma || vma->vm_start > addr)
3668 3669 3670 3671 3672 3673 3674
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
3675
#endif
3676
		} else {
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
			page_cache_release(page);
3693 3694 3695 3696 3697 3698 3699 3700 3701
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
3702

S
Stephen Wilson 已提交
3703
/**
3704
 * access_remote_vm - access another process' address space
S
Stephen Wilson 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

3740 3741 3742 3743 3744 3745 3746 3747
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

3748 3749 3750 3751 3752 3753 3754
	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

3755 3756 3757 3758 3759 3760
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
A
Andy Shevchenko 已提交
3761
			char *p;
3762

M
Miklos Szeredi 已提交
3763
			p = file_path(f, buf, PAGE_SIZE);
3764 3765
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
3766
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3767 3768 3769 3770 3771
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
3772
	up_read(&mm->mmap_sem);
3773
}
3774

3775
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3776
void __might_fault(const char *file, int line)
3777
{
3778 3779 3780 3781 3782 3783 3784 3785
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;
3786
	if (pagefault_disabled())
3787
		return;
3788 3789
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3790
	if (current->mm)
3791
		might_lock_read(&current->mm->mmap_sem);
3792
#endif
3793
}
3794
EXPORT_SYMBOL(__might_fault);
3795
#endif
A
Andrea Arcangeli 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3867

3868
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3869 3870 3871 3872 3873 3874 3875 3876 3877

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

3878
bool ptlock_alloc(struct page *page)
3879 3880 3881
{
	spinlock_t *ptl;

3882
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3883 3884
	if (!ptl)
		return false;
3885
	page->ptl = ptl;
3886 3887 3888
	return true;
}

3889
void ptlock_free(struct page *page)
3890
{
3891
	kmem_cache_free(page_ptl_cachep, page->ptl);
3892 3893
}
#endif