bcm_sf2.c 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Broadcom Starfighter 2 DSA switch driver
 *
 * Copyright (C) 2014, Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
24
#include <linux/of_net.h>
25
#include <linux/of_mdio.h>
26
#include <net/dsa.h>
27
#include <linux/ethtool.h>
28
#include <linux/if_bridge.h>
29
#include <linux/brcmphy.h>
30 31
#include <linux/etherdevice.h>
#include <net/switchdev.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

/* String, offset, and register size in bytes if different from 4 bytes */
static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
	{ "TxOctets",		0x000, 8	},
	{ "TxDropPkts",		0x020		},
	{ "TxQPKTQ0",		0x030		},
	{ "TxBroadcastPkts",	0x040		},
	{ "TxMulticastPkts",	0x050		},
	{ "TxUnicastPKts",	0x060		},
	{ "TxCollisions",	0x070		},
	{ "TxSingleCollision",	0x080		},
	{ "TxMultipleCollision", 0x090		},
	{ "TxDeferredCollision", 0x0a0		},
	{ "TxLateCollision",	0x0b0		},
	{ "TxExcessiveCollision", 0x0c0		},
	{ "TxFrameInDisc",	0x0d0		},
	{ "TxPausePkts",	0x0e0		},
	{ "TxQPKTQ1",		0x0f0		},
	{ "TxQPKTQ2",		0x100		},
	{ "TxQPKTQ3",		0x110		},
	{ "TxQPKTQ4",		0x120		},
	{ "TxQPKTQ5",		0x130		},
	{ "RxOctets",		0x140, 8	},
	{ "RxUndersizePkts",	0x160		},
	{ "RxPausePkts",	0x170		},
	{ "RxPkts64Octets",	0x180		},
	{ "RxPkts65to127Octets", 0x190		},
	{ "RxPkts128to255Octets", 0x1a0		},
	{ "RxPkts256to511Octets", 0x1b0		},
	{ "RxPkts512to1023Octets", 0x1c0	},
	{ "RxPkts1024toMaxPktsOctets", 0x1d0	},
	{ "RxOversizePkts",	0x1e0		},
	{ "RxJabbers",		0x1f0		},
	{ "RxAlignmentErrors",	0x200		},
	{ "RxFCSErrors",	0x210		},
	{ "RxGoodOctets",	0x220, 8	},
	{ "RxDropPkts",		0x240		},
	{ "RxUnicastPkts",	0x250		},
	{ "RxMulticastPkts",	0x260		},
	{ "RxBroadcastPkts",	0x270		},
	{ "RxSAChanges",	0x280		},
	{ "RxFragments",	0x290		},
	{ "RxJumboPkt",		0x2a0		},
	{ "RxSymblErr",		0x2b0		},
	{ "InRangeErrCount",	0x2c0		},
	{ "OutRangeErrCount",	0x2d0		},
	{ "EEELpiEvent",	0x2e0		},
	{ "EEELpiDuration",	0x2f0		},
	{ "RxDiscard",		0x300, 8	},
	{ "TxQPKTQ6",		0x320		},
	{ "TxQPKTQ7",		0x330		},
	{ "TxPkts64Octets",	0x340		},
	{ "TxPkts65to127Octets", 0x350		},
	{ "TxPkts128to255Octets", 0x360		},
	{ "TxPkts256to511Ocets", 0x370		},
	{ "TxPkts512to1023Ocets", 0x380		},
	{ "TxPkts1024toMaxPktOcets", 0x390	},
};

#define BCM_SF2_STATS_SIZE	ARRAY_SIZE(bcm_sf2_mib)

static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
				   int port, uint8_t *data)
{
	unsigned int i;

	for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
		memcpy(data + i * ETH_GSTRING_LEN,
		       bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
}

static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
					 int port, uint64_t *data)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	const struct bcm_sf2_hw_stats *s;
	unsigned int i;
	u64 val = 0;
	u32 offset;

	mutex_lock(&priv->stats_mutex);

	/* Now fetch the per-port counters */
	for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
		s = &bcm_sf2_mib[i];

		/* Do a latched 64-bit read if needed */
		offset = s->reg + CORE_P_MIB_OFFSET(port);
		if (s->sizeof_stat == 8)
			val = core_readq(priv, offset);
		else
			val = core_readl(priv, offset);

		data[i] = (u64)val;
	}

	mutex_unlock(&priv->stats_mutex);
}

static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
{
	return BCM_SF2_STATS_SIZE;
}

139 140 141 142 143
static enum dsa_tag_protocol bcm_sf2_sw_get_tag_protocol(struct dsa_switch *ds)
{
	return DSA_TAG_PROTO_BRCM;
}

144
static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
145 146 147
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int i;
148 149 150 151 152 153 154
	u32 reg;

	/* Enable the IMP Port to be in the same VLAN as the other ports
	 * on a per-port basis such that we only have Port i and IMP in
	 * the same VLAN.
	 */
	for (i = 0; i < priv->hw_params.num_ports; i++) {
155
		if (!((1 << i) & ds->enabled_port_mask))
156 157 158 159 160 161 162 163 164 165 166
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg |= (1 << cpu_port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
	}
}

static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	u32 reg, val;

	/* Enable the port memories */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
	reg = core_readl(priv, CORE_IMP_CTL);
	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
	reg &= ~(RX_DIS | TX_DIS);
	core_writel(priv, reg, CORE_IMP_CTL);

	/* Enable forwarding */
	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);

	/* Enable IMP port in dumb mode */
	reg = core_readl(priv, CORE_SWITCH_CTRL);
	reg |= MII_DUMB_FWDG_EN;
	core_writel(priv, reg, CORE_SWITCH_CTRL);

	/* Resolve which bit controls the Broadcom tag */
	switch (port) {
	case 8:
		val = BRCM_HDR_EN_P8;
		break;
	case 7:
		val = BRCM_HDR_EN_P7;
		break;
	case 5:
		val = BRCM_HDR_EN_P5;
		break;
	default:
		val = 0;
		break;
	}

	/* Enable Broadcom tags for IMP port */
	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
	reg |= val;
	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);

	/* Enable reception Broadcom tag for CPU TX (switch RX) to
	 * allow us to tag outgoing frames
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);

	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
	 * allow delivering frames to the per-port net_devices
	 */
	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
	reg &= ~(1 << port);
	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);

	/* Force link status for IMP port */
	reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
	reg |= (MII_SW_OR | LINK_STS);
	core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
}

229 230 231 232 233 234 235 236 237 238 239 240 241
static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 reg;

	reg = core_readl(priv, CORE_EEE_EN_CTRL);
	if (enable)
		reg |= 1 << port;
	else
		reg &= ~(1 << port);
	core_writel(priv, reg, CORE_EEE_EN_CTRL);
}

242 243 244 245 246 247
static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 reg;

	reg = reg_readl(priv, REG_SPHY_CNTRL);
248 249 250 251 252 253 254 255 256 257 258 259 260
	if (enable) {
		reg |= PHY_RESET;
		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		udelay(21);
		reg = reg_readl(priv, REG_SPHY_CNTRL);
		reg &= ~PHY_RESET;
	} else {
		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
		reg_writel(priv, reg, REG_SPHY_CNTRL);
		mdelay(1);
		reg |= CK25_DIS;
	}
261
	reg_writel(priv, reg, REG_SPHY_CNTRL);
262 263 264 265 266 267 268

	/* Use PHY-driven LED signaling */
	if (!enable) {
		reg = reg_readl(priv, REG_LED_CNTRL(0));
		reg |= SPDLNK_SRC_SEL;
		reg_writel(priv, reg, REG_LED_CNTRL(0));
	}
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
					    int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
}

static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
					     int port)
{
	unsigned int off;

	switch (port) {
	case 7:
		off = P7_IRQ_OFF;
		break;
	case 0:
		/* Port 0 interrupts are located on the first bank */
		intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
		intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
		return;
	default:
		off = P_IRQ_OFF(port);
		break;
	}

	intrl2_1_mask_set(priv, P_IRQ_MASK(off));
	intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
}

315 316
static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
			      struct phy_device *phy)
317 318
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
319
	s8 cpu_port = ds->dst[ds->index].cpu_port;
320 321 322 323 324 325 326 327 328 329
	u32 reg;

	/* Clear the memory power down */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg &= ~P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);

	/* Clear the Rx and Tx disable bits and set to no spanning tree */
	core_writel(priv, 0, CORE_G_PCTL_PORT(port));

330
	/* Re-enable the GPHY and re-apply workarounds */
331
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		bcm_sf2_gphy_enable_set(ds, true);
		if (phy) {
			/* if phy_stop() has been called before, phy
			 * will be in halted state, and phy_start()
			 * will call resume.
			 *
			 * the resume path does not configure back
			 * autoneg settings, and since we hard reset
			 * the phy manually here, we need to reset the
			 * state machine also.
			 */
			phy->state = PHY_READY;
			phy_init_hw(phy);
		}
	}

348 349 350
	/* Enable MoCA port interrupts to get notified */
	if (port == priv->moca_port)
		bcm_sf2_port_intr_enable(priv, port);
351

352 353 354 355
	/* Set this port, and only this one to be in the default VLAN,
	 * if member of a bridge, restore its membership prior to
	 * bringing down this port.
	 */
356 357 358
	reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
	reg &= ~PORT_VLAN_CTRL_MASK;
	reg |= (1 << port);
359
	reg |= priv->port_sts[port].vlan_ctl_mask;
360
	core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
361 362 363

	bcm_sf2_imp_vlan_setup(ds, cpu_port);

364 365 366 367
	/* If EEE was enabled, restore it */
	if (priv->port_sts[port].eee.eee_enabled)
		bcm_sf2_eee_enable_set(ds, port, true);

368
	return 0;
369 370
}

371 372
static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
				 struct phy_device *phy)
373 374 375 376
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 off, reg;

377 378 379
	if (priv->wol_ports_mask & (1 << port))
		return;

380 381
	if (port == priv->moca_port)
		bcm_sf2_port_intr_disable(priv, port);
382

383
	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
384 385
		bcm_sf2_gphy_enable_set(ds, false);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	if (dsa_is_cpu_port(ds, port))
		off = CORE_IMP_CTL;
	else
		off = CORE_G_PCTL_PORT(port);

	reg = core_readl(priv, off);
	reg |= RX_DIS | TX_DIS;
	core_writel(priv, reg, off);

	/* Power down the port memory */
	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
	reg |= P_TXQ_PSM_VDD(port);
	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* Returns 0 if EEE was not enabled, or 1 otherwise
 */
static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
			    struct phy_device *phy)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;
	int ret;

	p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);

	ret = phy_init_eee(phy, 0);
	if (ret)
		return 0;

	bcm_sf2_eee_enable_set(ds, port, true);

	return 1;
}

static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
			      struct ethtool_eee *e)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;
	u32 reg;

	reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
	e->eee_enabled = p->eee_enabled;
	e->eee_active = !!(reg & (1 << port));

	return 0;
}

static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
			      struct phy_device *phydev,
			      struct ethtool_eee *e)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_eee *p = &priv->port_sts[port].eee;

	p->eee_enabled = e->eee_enabled;

	if (!p->eee_enabled) {
		bcm_sf2_eee_enable_set(ds, port, false);
	} else {
		p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
		if (!p->eee_enabled)
			return -EOPNOTSUPP;
	}

	return 0;
}

455
static int bcm_sf2_fast_age_op(struct bcm_sf2_priv *priv)
456 457 458 459 460
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_FAST_AGE_CTRL);
461
	reg |= EN_AGE_PORT | EN_AGE_VLAN | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
462 463 464 465 466 467 468 469 470 471 472 473 474
	core_writel(priv, reg, CORE_FAST_AGE_CTRL);

	do {
		reg = core_readl(priv, CORE_FAST_AGE_CTRL);
		if (!(reg & FAST_AGE_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

475 476
	core_writel(priv, 0, CORE_FAST_AGE_CTRL);

477 478 479
	return 0;
}

480 481 482 483 484 485 486 487 488 489 490 491
/* Fast-ageing of ARL entries for a given port, equivalent to an ARL
 * flush for that port.
 */
static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	core_writel(priv, port, CORE_FAST_AGE_PORT);

	return bcm_sf2_fast_age_op(priv);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
static int bcm_sf2_sw_fast_age_vlan(struct bcm_sf2_priv *priv, u16 vid)
{
	core_writel(priv, vid, CORE_FAST_AGE_VID);

	return bcm_sf2_fast_age_op(priv);
}

static int bcm_sf2_vlan_op_wait(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 10;
	u32 reg;

	do {
		reg = core_readl(priv, CORE_ARLA_VTBL_RWCTRL);
		if (!(reg & ARLA_VTBL_STDN))
			return 0;

		usleep_range(1000, 2000);
	} while (timeout--);

	return -ETIMEDOUT;
}

static int bcm_sf2_vlan_op(struct bcm_sf2_priv *priv, u8 op)
{
	core_writel(priv, ARLA_VTBL_STDN | op, CORE_ARLA_VTBL_RWCTRL);

	return bcm_sf2_vlan_op_wait(priv);
}

static void bcm_sf2_set_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
				   struct bcm_sf2_vlan *vlan)
{
	int ret;

	core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);
	core_writel(priv, vlan->untag << UNTAG_MAP_SHIFT | vlan->members,
		    CORE_ARLA_VTBL_ENTRY);

	ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_WRITE);
	if (ret)
		pr_err("failed to write VLAN entry\n");
}

static int bcm_sf2_get_vlan_entry(struct bcm_sf2_priv *priv, u16 vid,
				  struct bcm_sf2_vlan *vlan)
{
	u32 entry;
	int ret;

	core_writel(priv, vid & VTBL_ADDR_INDEX_MASK, CORE_ARLA_VTBL_ADDR);

	ret = bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_READ);
	if (ret)
		return ret;

	entry = core_readl(priv, CORE_ARLA_VTBL_ENTRY);
	vlan->members = entry & FWD_MAP_MASK;
	vlan->untag = (entry >> UNTAG_MAP_SHIFT) & UNTAG_MAP_MASK;

	return 0;
}

555
static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
556
			      struct net_device *bridge)
557 558
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
559
	s8 cpu_port = ds->dst->cpu_port;
560 561 562
	unsigned int i;
	u32 reg, p_ctl;

563 564 565 566 567 568 569 570 571
	/* Make this port leave the all VLANs join since we will have proper
	 * VLAN entries from now on
	 */
	reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
	reg &= ~BIT(port);
	if ((reg & BIT(cpu_port)) == BIT(cpu_port))
		reg &= ~BIT(cpu_port);
	core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);

572
	priv->port_sts[port].bridge_dev = bridge;
573 574 575
	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));

	for (i = 0; i < priv->hw_params.num_ports; i++) {
576
		if (priv->port_sts[i].bridge_dev != bridge)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
			continue;

		/* Add this local port to the remote port VLAN control
		 * membership and update the remote port bitmask
		 */
		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg |= 1 << port;
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
		priv->port_sts[i].vlan_ctl_mask = reg;

		p_ctl |= 1 << i;
	}

	/* Configure the local port VLAN control membership to include
	 * remote ports and update the local port bitmask
	 */
	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
	priv->port_sts[port].vlan_ctl_mask = p_ctl;

	return 0;
}

599
static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
600 601
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
602
	struct net_device *bridge = priv->port_sts[port].bridge_dev;
603
	s8 cpu_port = ds->dst->cpu_port;
604 605 606 607 608 609 610
	unsigned int i;
	u32 reg, p_ctl;

	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));

	for (i = 0; i < priv->hw_params.num_ports; i++) {
		/* Don't touch the remaining ports */
611
		if (priv->port_sts[i].bridge_dev != bridge)
612 613 614 615 616 617 618 619 620 621 622 623 624 625
			continue;

		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
		reg &= ~(1 << port);
		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
		priv->port_sts[port].vlan_ctl_mask = reg;

		/* Prevent self removal to preserve isolation */
		if (port != i)
			p_ctl &= ~(1 << i);
	}

	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
	priv->port_sts[port].vlan_ctl_mask = p_ctl;
626
	priv->port_sts[port].bridge_dev = NULL;
627 628 629 630 631 632 633

	/* Make this port join all VLANs without VLAN entries */
	reg = core_readl(priv, CORE_JOIN_ALL_VLAN_EN);
	reg |= BIT(port);
	if (!(reg & BIT(cpu_port)))
		reg |= BIT(cpu_port);
	core_writel(priv, reg, CORE_JOIN_ALL_VLAN_EN);
634 635
}

636 637
static void bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
					u8 state)
638 639 640 641 642 643
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u8 hw_state, cur_hw_state;
	u32 reg;

	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
644
	cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

	switch (state) {
	case BR_STATE_DISABLED:
		hw_state = G_MISTP_DIS_STATE;
		break;
	case BR_STATE_LISTENING:
		hw_state = G_MISTP_LISTEN_STATE;
		break;
	case BR_STATE_LEARNING:
		hw_state = G_MISTP_LEARN_STATE;
		break;
	case BR_STATE_FORWARDING:
		hw_state = G_MISTP_FWD_STATE;
		break;
	case BR_STATE_BLOCKING:
		hw_state = G_MISTP_BLOCK_STATE;
		break;
	default:
		pr_err("%s: invalid STP state: %d\n", __func__, state);
664
		return;
665 666 667
	}

	/* Fast-age ARL entries if we are moving a port from Learning or
668 669
	 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
	 * state (hw_state)
670 671
	 */
	if (cur_hw_state != hw_state) {
672 673
		if (cur_hw_state >= G_MISTP_LEARN_STATE &&
		    hw_state <= G_MISTP_LISTEN_STATE) {
674
			if (bcm_sf2_sw_fast_age_port(ds, port)) {
675
				pr_err("%s: fast-ageing failed\n", __func__);
676
				return;
677 678 679 680 681 682 683 684 685 686
			}
		}
	}

	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
	reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
	reg |= hw_state;
	core_writel(priv, reg, CORE_G_PCTL_PORT(port));
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/* Address Resolution Logic routines */
static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 10;
	u32 reg;

	do {
		reg = core_readl(priv, CORE_ARLA_RWCTL);
		if (!(reg & ARL_STRTDN))
			return 0;

		usleep_range(1000, 2000);
	} while (timeout--);

	return -ETIMEDOUT;
}

static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
{
	u32 cmd;

	if (op > ARL_RW)
		return -EINVAL;

	cmd = core_readl(priv, CORE_ARLA_RWCTL);
	cmd &= ~IVL_SVL_SELECT;
	cmd |= ARL_STRTDN;
	if (op)
		cmd |= ARL_RW;
	else
		cmd &= ~ARL_RW;
	core_writel(priv, cmd, CORE_ARLA_RWCTL);

	return bcm_sf2_arl_op_wait(priv);
}

static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
			    u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
			    bool is_valid)
{
	unsigned int i;
	int ret;

	ret = bcm_sf2_arl_op_wait(priv);
	if (ret)
		return ret;

	/* Read the 4 bins */
	for (i = 0; i < 4; i++) {
		u64 mac_vid;
		u32 fwd_entry;

		mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
		fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
		bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);

		if (ent->is_valid && is_valid) {
			*idx = i;
			return 0;
		}

		/* This is the MAC we just deleted */
		if (!is_valid && (mac_vid & mac))
			return 0;
	}

	return -ENOENT;
}

static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
			  const unsigned char *addr, u16 vid, bool is_valid)
{
	struct bcm_sf2_arl_entry ent;
	u32 fwd_entry;
	u64 mac, mac_vid = 0;
	u8 idx = 0;
	int ret;

	/* Convert the array into a 64-bit MAC */
	mac = bcm_sf2_mac_to_u64(addr);

	/* Perform a read for the given MAC and VID */
	core_writeq(priv, mac, CORE_ARLA_MAC);
	core_writel(priv, vid, CORE_ARLA_VID);

	/* Issue a read operation for this MAC */
	ret = bcm_sf2_arl_rw_op(priv, 1);
	if (ret)
		return ret;

	ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
	/* If this is a read, just finish now */
	if (op)
		return ret;

	/* We could not find a matching MAC, so reset to a new entry */
	if (ret) {
		fwd_entry = 0;
		idx = 0;
	}

	memset(&ent, 0, sizeof(ent));
	ent.port = port;
	ent.is_valid = is_valid;
	ent.vid = vid;
	ent.is_static = true;
	memcpy(ent.mac, addr, ETH_ALEN);
	bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);

	core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
	core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));

	ret = bcm_sf2_arl_rw_op(priv, 0);
	if (ret)
		return ret;

	/* Re-read the entry to check */
	return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
}

static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
				  const struct switchdev_obj_port_fdb *fdb,
				  struct switchdev_trans *trans)
{
	/* We do not need to do anything specific here yet */
	return 0;
}

815 816 817
static void bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_fdb *fdb,
			       struct switchdev_trans *trans)
818 819 820
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

821 822
	if (bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
		pr_err("%s: failed to add MAC address\n", __func__);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
}

static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
			      const struct switchdev_obj_port_fdb *fdb)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
}

static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
{
	unsigned timeout = 1000;
	u32 reg;

	do {
		reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
		if (!(reg & ARLA_SRCH_STDN))
			return 0;

		if (reg & ARLA_SRCH_VLID)
			return 0;

		usleep_range(1000, 2000);
	} while (timeout--);

	return -ETIMEDOUT;
}

static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
				  struct bcm_sf2_arl_entry *ent)
{
	u64 mac_vid;
	u32 fwd_entry;

	mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
	fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
	bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
}

static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
			       const struct bcm_sf2_arl_entry *ent,
			       struct switchdev_obj_port_fdb *fdb,
			       int (*cb)(struct switchdev_obj *obj))
{
	if (!ent->is_valid)
		return 0;

	if (port != ent->port)
		return 0;

	ether_addr_copy(fdb->addr, ent->mac);
	fdb->vid = ent->vid;
	fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;

	return cb(&fdb->obj);
}

static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
			       struct switchdev_obj_port_fdb *fdb,
			       int (*cb)(struct switchdev_obj *obj))
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
886
	struct net_device *dev = ds->ports[port].netdev;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	struct bcm_sf2_arl_entry results[2];
	unsigned int count = 0;
	int ret;

	/* Start search operation */
	core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);

	do {
		ret = bcm_sf2_arl_search_wait(priv);
		if (ret)
			return ret;

		/* Read both entries, then return their values back */
		bcm_sf2_arl_search_rd(priv, 0, &results[0]);
		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
		if (ret)
			return ret;

		bcm_sf2_arl_search_rd(priv, 1, &results[1]);
		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
		if (ret)
			return ret;

		if (!results[0].is_valid && !results[1].is_valid)
			break;

	} while (count++ < CORE_ARLA_NUM_ENTRIES);

	return 0;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
			       int regnum, u16 val)
{
	int ret = 0;
	u32 reg;

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg |= MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	/* Page << 8 | offset */
	reg = 0x70;
	reg <<= 2;
	core_writel(priv, addr, reg);

	/* Page << 8 | offset */
	reg = 0x80 << 8 | regnum << 1;
	reg <<= 2;

	if (op)
		ret = core_readl(priv, reg);
	else
		core_writel(priv, val, reg);

	reg = reg_readl(priv, REG_SWITCH_CNTRL);
	reg &= ~MDIO_MASTER_SEL;
	reg_writel(priv, reg, REG_SWITCH_CNTRL);

	return ret & 0xffff;
}

static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept reads from Broadcom pseudo-PHY address, else, send
	 * them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
		return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
	else
		return mdiobus_read(priv->master_mii_bus, addr, regnum);
}

static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
				 u16 val)
{
	struct bcm_sf2_priv *priv = bus->priv;

	/* Intercept writes to the Broadcom pseudo-PHY address, else,
	 * send them to our master MDIO bus controller
	 */
	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
		bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
	else
		mdiobus_write(priv->master_mii_bus, addr, regnum, val);

	return 0;
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq0_mask;
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	return IRQ_HANDLED;
}

static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
{
	struct bcm_sf2_priv *priv = dev_id;

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~priv->irq1_mask;
	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);

	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 1;
	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
		priv->port_sts[7].link = 0;

	return IRQ_HANDLED;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
	core_writel(priv, reg, CORE_WATCHDOG_CTRL);

	do {
		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
		if (!(reg & SOFTWARE_RESET))
			break;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	if (timeout == 0)
		return -ETIMEDOUT;

	return 0;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
{
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
				   struct device_node *dn)
{
	struct device_node *port;
	const char *phy_mode_str;
	int mode;
	unsigned int port_num;
	int ret;

	priv->moca_port = -1;

	for_each_available_child_of_node(dn, port) {
		if (of_property_read_u32(port, "reg", &port_num))
			continue;

		/* Internal PHYs get assigned a specific 'phy-mode' property
		 * value: "internal" to help flag them before MDIO probing
		 * has completed, since they might be turned off at that
		 * time
		 */
		mode = of_get_phy_mode(port);
		if (mode < 0) {
			ret = of_property_read_string(port, "phy-mode",
						      &phy_mode_str);
			if (ret < 0)
				continue;

			if (!strcasecmp(phy_mode_str, "internal"))
				priv->int_phy_mask |= 1 << port_num;
		}

		if (mode == PHY_INTERFACE_MODE_MOCA)
			priv->moca_port = port_num;
	}
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static int bcm_sf2_mdio_register(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct device_node *dn;
	static int index;
	int err;

	/* Find our integrated MDIO bus node */
	dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
	priv->master_mii_bus = of_mdio_find_bus(dn);
	if (!priv->master_mii_bus)
		return -EPROBE_DEFER;

	get_device(&priv->master_mii_bus->dev);
	priv->master_mii_dn = dn;

	priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
	if (!priv->slave_mii_bus)
		return -ENOMEM;

	priv->slave_mii_bus->priv = priv;
	priv->slave_mii_bus->name = "sf2 slave mii";
	priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
	priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
	snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
		 index++);
	priv->slave_mii_bus->dev.of_node = dn;

	/* Include the pseudo-PHY address to divert reads towards our
	 * workaround. This is only required for 7445D0, since 7445E0
	 * disconnects the internal switch pseudo-PHY such that we can use the
	 * regular SWITCH_MDIO master controller instead.
	 *
	 * Here we flag the pseudo PHY as needing special treatment and would
	 * otherwise make all other PHY read/writes go to the master MDIO bus
	 * controller that comes with this switch backed by the "mdio-unimac"
	 * driver.
	 */
	if (of_machine_is_compatible("brcm,bcm7445d0"))
		priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
	else
		priv->indir_phy_mask = 0;

	ds->phys_mii_mask = priv->indir_phy_mask;
	ds->slave_mii_bus = priv->slave_mii_bus;
	priv->slave_mii_bus->parent = ds->dev->parent;
	priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;

	if (dn)
		err = of_mdiobus_register(priv->slave_mii_bus, dn);
	else
		err = mdiobus_register(priv->slave_mii_bus);

	if (err)
		of_node_put(dn);

	return err;
}

static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
{
	mdiobus_unregister(priv->slave_mii_bus);
	if (priv->master_mii_dn)
		of_node_put(priv->master_mii_dn);
}

1140 1141 1142 1143 1144
static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
{
	return 0;
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
	 * the REG_PHY_REVISION register layout is.
	 */

	return priv->hw_params.gphy_rev;
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
				   struct phy_device *phydev)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	u32 id_mode_dis = 0, port_mode;
	const char *str = NULL;
	u32 reg;

	switch (phydev->interface) {
	case PHY_INTERFACE_MODE_RGMII:
		str = "RGMII (no delay)";
		id_mode_dis = 1;
	case PHY_INTERFACE_MODE_RGMII_TXID:
		if (!str)
			str = "RGMII (TX delay)";
		port_mode = EXT_GPHY;
		break;
	case PHY_INTERFACE_MODE_MII:
		str = "MII";
		port_mode = EXT_EPHY;
		break;
	case PHY_INTERFACE_MODE_REVMII:
		str = "Reverse MII";
		port_mode = EXT_REVMII;
		break;
	default:
1183 1184 1185 1186 1187 1188 1189 1190 1191
		/* All other PHYs: internal and MoCA */
		goto force_link;
	}

	/* If the link is down, just disable the interface to conserve power */
	if (!phydev->link) {
		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
		reg &= ~RGMII_MODE_EN;
		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		goto force_link;
	}

	/* Clear id_mode_dis bit, and the existing port mode, but
	 * make sure we enable the RGMII block for data to pass
	 */
	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
	reg &= ~ID_MODE_DIS;
	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);

	reg |= port_mode | RGMII_MODE_EN;
	if (id_mode_dis)
		reg |= ID_MODE_DIS;

	if (phydev->pause) {
		if (phydev->asym_pause)
			reg |= TX_PAUSE_EN;
		reg |= RX_PAUSE_EN;
	}

	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));

	pr_info("Port %d configured for %s\n", port, str);

force_link:
	/* Force link settings detected from the PHY */
	reg = SW_OVERRIDE;
	switch (phydev->speed) {
	case SPEED_1000:
		reg |= SPDSTS_1000 << SPEED_SHIFT;
		break;
	case SPEED_100:
		reg |= SPDSTS_100 << SPEED_SHIFT;
		break;
	}

	if (phydev->link)
		reg |= LINK_STS;
	if (phydev->duplex == DUPLEX_FULL)
		reg |= DUPLX_MODE;

	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
}

static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
					 struct fixed_phy_status *status)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1241
	u32 duplex, pause;
1242 1243 1244 1245 1246 1247 1248
	u32 reg;

	duplex = core_readl(priv, CORE_DUPSTS);
	pause = core_readl(priv, CORE_PAUSESTS);

	status->link = 0;

1249
	/* MoCA port is special as we do not get link status from CORE_LNKSTS,
1250 1251 1252
	 * which means that we need to force the link at the port override
	 * level to get the data to flow. We do use what the interrupt handler
	 * did determine before.
1253 1254 1255
	 *
	 * For the other ports, we just force the link status, since this is
	 * a fixed PHY device.
1256
	 */
1257
	if (port == priv->moca_port) {
1258
		status->link = priv->port_sts[port].link;
1259 1260 1261 1262 1263 1264
		/* For MoCA interfaces, also force a link down notification
		 * since some version of the user-space daemon (mocad) use
		 * cmd->autoneg to force the link, which messes up the PHY
		 * state machine and make it go in PHY_FORCING state instead.
		 */
		if (!status->link)
1265
			netif_carrier_off(ds->ports[port].netdev);
1266 1267
		status->duplex = 1;
	} else {
1268
		status->link = 1;
1269 1270 1271
		status->duplex = !!(duplex & (1 << port));
	}

1272 1273 1274 1275 1276 1277 1278 1279
	reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
	reg |= SW_OVERRIDE;
	if (status->link)
		reg |= LINK_STS;
	else
		reg &= ~LINK_STS;
	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	if ((pause & (1 << port)) &&
	    (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
		status->asym_pause = 1;
		status->pause = 1;
	}

	if (pause & (1 << port))
		status->pause = 1;
}

1290 1291 1292 1293 1294
static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;

1295
	bcm_sf2_intr_disable(priv);
1296 1297 1298 1299 1300 1301

	/* Disable all ports physically present including the IMP
	 * port, the other ones have already been disabled during
	 * bcm_sf2_sw_setup
	 */
	for (port = 0; port < DSA_MAX_PORTS; port++) {
1302
		if ((1 << port) & ds->enabled_port_mask ||
1303
		    dsa_is_cpu_port(ds, port))
1304
			bcm_sf2_port_disable(ds, port, NULL);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	}

	return 0;
}

static int bcm_sf2_sw_resume(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;
	int ret;

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("%s: failed to software reset switch\n", __func__);
		return ret;
	}

1322 1323
	if (priv->hw_params.num_gphy == 1)
		bcm_sf2_gphy_enable_set(ds, true);
1324 1325

	for (port = 0; port < DSA_MAX_PORTS; port++) {
1326
		if ((1 << port) & ds->enabled_port_mask)
1327
			bcm_sf2_port_setup(ds, port, NULL);
1328 1329 1330 1331 1332 1333 1334
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
	}

	return 0;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
			       struct ethtool_wolinfo *wol)
{
	struct net_device *p = ds->dst[ds->index].master_netdev;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct ethtool_wolinfo pwol;

	/* Get the parent device WoL settings */
	p->ethtool_ops->get_wol(p, &pwol);

	/* Advertise the parent device supported settings */
	wol->supported = pwol.supported;
	memset(&wol->sopass, 0, sizeof(wol->sopass));

	if (pwol.wolopts & WAKE_MAGICSECURE)
		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));

	if (priv->wol_ports_mask & (1 << port))
		wol->wolopts = pwol.wolopts;
	else
		wol->wolopts = 0;
}

static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
			      struct ethtool_wolinfo *wol)
{
	struct net_device *p = ds->dst[ds->index].master_netdev;
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	s8 cpu_port = ds->dst[ds->index].cpu_port;
	struct ethtool_wolinfo pwol;

	p->ethtool_ops->get_wol(p, &pwol);
	if (wol->wolopts & ~pwol.supported)
		return -EINVAL;

	if (wol->wolopts)
		priv->wol_ports_mask |= (1 << port);
	else
		priv->wol_ports_mask &= ~(1 << port);

	/* If we have at least one port enabled, make sure the CPU port
	 * is also enabled. If the CPU port is the last one enabled, we disable
	 * it since this configuration does not make sense.
	 */
	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
		priv->wol_ports_mask |= (1 << cpu_port);
	else
		priv->wol_ports_mask &= ~(1 << cpu_port);

	return p->ethtool_ops->set_wol(p, wol);
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
static void bcm_sf2_enable_vlan(struct bcm_sf2_priv *priv, bool enable)
{
	u32 mgmt, vc0, vc1, vc4, vc5;

	mgmt = core_readl(priv, CORE_SWMODE);
	vc0 = core_readl(priv, CORE_VLAN_CTRL0);
	vc1 = core_readl(priv, CORE_VLAN_CTRL1);
	vc4 = core_readl(priv, CORE_VLAN_CTRL4);
	vc5 = core_readl(priv, CORE_VLAN_CTRL5);

	mgmt &= ~SW_FWDG_MODE;

	if (enable) {
		vc0 |= VLAN_EN | VLAN_LEARN_MODE_IVL;
		vc1 |= EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP;
		vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
		vc4 |= INGR_VID_CHK_DROP;
		vc5 |= DROP_VTABLE_MISS | EN_VID_FFF_FWD;
	} else {
		vc0 &= ~(VLAN_EN | VLAN_LEARN_MODE_IVL);
		vc1 &= ~(EN_RSV_MCAST_UNTAG | EN_RSV_MCAST_FWDMAP);
		vc4 &= ~(INGR_VID_CHK_MASK << INGR_VID_CHK_SHIFT);
		vc5 &= ~(DROP_VTABLE_MISS | EN_VID_FFF_FWD);
		vc4 |= INGR_VID_CHK_VID_VIOL_IMP;
	}

	core_writel(priv, vc0, CORE_VLAN_CTRL0);
	core_writel(priv, vc1, CORE_VLAN_CTRL1);
	core_writel(priv, 0, CORE_VLAN_CTRL3);
	core_writel(priv, vc4, CORE_VLAN_CTRL4);
	core_writel(priv, vc5, CORE_VLAN_CTRL5);
	core_writel(priv, mgmt, CORE_SWMODE);
}

static void bcm_sf2_sw_configure_vlan(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;

	/* Clear all VLANs */
	bcm_sf2_vlan_op(priv, ARLA_VTBL_CMD_CLEAR);

	for (port = 0; port < priv->hw_params.num_ports; port++) {
		if (!((1 << port) & ds->enabled_port_mask))
			continue;

		core_writel(priv, 1, CORE_DEFAULT_1Q_TAG_P(port));
	}
}

static int bcm_sf2_sw_vlan_filtering(struct dsa_switch *ds, int port,
				     bool vlan_filtering)
{
	return 0;
}

static int bcm_sf2_sw_vlan_prepare(struct dsa_switch *ds, int port,
				   const struct switchdev_obj_port_vlan *vlan,
				   struct switchdev_trans *trans)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	bcm_sf2_enable_vlan(priv, true);

	return 0;
}

static void bcm_sf2_sw_vlan_add(struct dsa_switch *ds, int port,
				const struct switchdev_obj_port_vlan *vlan,
				struct switchdev_trans *trans)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
	s8 cpu_port = ds->dst->cpu_port;
	struct bcm_sf2_vlan *vl;
	u16 vid;

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		vl = &priv->vlans[vid];

		bcm_sf2_get_vlan_entry(priv, vid, vl);

		vl->members |= BIT(port) | BIT(cpu_port);
		if (untagged)
			vl->untag |= BIT(port) | BIT(cpu_port);
		else
			vl->untag &= ~(BIT(port) | BIT(cpu_port));

		bcm_sf2_set_vlan_entry(priv, vid, vl);
		bcm_sf2_sw_fast_age_vlan(priv, vid);
	}

	if (pvid) {
		core_writel(priv, vlan->vid_end, CORE_DEFAULT_1Q_TAG_P(port));
		core_writel(priv, vlan->vid_end,
			    CORE_DEFAULT_1Q_TAG_P(cpu_port));
		bcm_sf2_sw_fast_age_vlan(priv, vid);
	}
}

static int bcm_sf2_sw_vlan_del(struct dsa_switch *ds, int port,
			       const struct switchdev_obj_port_vlan *vlan)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
	s8 cpu_port = ds->dst->cpu_port;
	struct bcm_sf2_vlan *vl;
	u16 vid, pvid;
	int ret;

	pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));

	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
		vl = &priv->vlans[vid];

		ret = bcm_sf2_get_vlan_entry(priv, vid, vl);
		if (ret)
			return ret;

		vl->members &= ~BIT(port);
		if ((vl->members & BIT(cpu_port)) == BIT(cpu_port))
			vl->members = 0;
		if (pvid == vid)
			pvid = 0;
		if (untagged) {
			vl->untag &= ~BIT(port);
			if ((vl->untag & BIT(port)) == BIT(cpu_port))
				vl->untag = 0;
		}

		bcm_sf2_set_vlan_entry(priv, vid, vl);
		bcm_sf2_sw_fast_age_vlan(priv, vid);
	}

	core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(port));
	core_writel(priv, pvid, CORE_DEFAULT_1Q_TAG_P(cpu_port));
	bcm_sf2_sw_fast_age_vlan(priv, vid);

	return 0;
}

static int bcm_sf2_sw_vlan_dump(struct dsa_switch *ds, int port,
				struct switchdev_obj_port_vlan *vlan,
				int (*cb)(struct switchdev_obj *obj))
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	struct bcm_sf2_port_status *p = &priv->port_sts[port];
	struct bcm_sf2_vlan *vl;
	u16 vid, pvid;
	int err = 0;

	pvid = core_readl(priv, CORE_DEFAULT_1Q_TAG_P(port));

	for (vid = 0; vid < VLAN_N_VID; vid++) {
		vl = &priv->vlans[vid];

		if (!(vl->members & BIT(port)))
			continue;

		vlan->vid_begin = vlan->vid_end = vid;
		vlan->flags = 0;

		if (vl->untag & BIT(port))
			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
		if (p->pvid == vid)
			vlan->flags |= BRIDGE_VLAN_INFO_PVID;

		err = cb(&vlan->obj);
		if (err)
			break;
	}

	return err;
}

1563 1564 1565 1566
static int bcm_sf2_sw_setup(struct dsa_switch *ds)
{
	struct bcm_sf2_priv *priv = ds_to_priv(ds);
	unsigned int port;
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	/* Enable all valid ports and disable those unused */
	for (port = 0; port < priv->hw_params.num_ports; port++) {
		/* IMP port receives special treatment */
		if ((1 << port) & ds->enabled_port_mask)
			bcm_sf2_port_setup(ds, port, NULL);
		else if (dsa_is_cpu_port(ds, port))
			bcm_sf2_imp_setup(ds, port);
		else
			bcm_sf2_port_disable(ds, port, NULL);
	}

	bcm_sf2_sw_configure_vlan(ds);

	return 0;
}

static struct dsa_switch_driver bcm_sf2_switch_driver = {
	.setup			= bcm_sf2_sw_setup,
1586
	.get_tag_protocol	= bcm_sf2_sw_get_tag_protocol,
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	.set_addr		= bcm_sf2_sw_set_addr,
	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
	.get_strings		= bcm_sf2_sw_get_strings,
	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
	.get_sset_count		= bcm_sf2_sw_get_sset_count,
	.adjust_link		= bcm_sf2_sw_adjust_link,
	.fixed_link_update	= bcm_sf2_sw_fixed_link_update,
	.suspend		= bcm_sf2_sw_suspend,
	.resume			= bcm_sf2_sw_resume,
	.get_wol		= bcm_sf2_sw_get_wol,
	.set_wol		= bcm_sf2_sw_set_wol,
	.port_enable		= bcm_sf2_port_setup,
	.port_disable		= bcm_sf2_port_disable,
	.get_eee		= bcm_sf2_sw_get_eee,
	.set_eee		= bcm_sf2_sw_set_eee,
	.port_bridge_join	= bcm_sf2_sw_br_join,
	.port_bridge_leave	= bcm_sf2_sw_br_leave,
	.port_stp_state_set	= bcm_sf2_sw_br_set_stp_state,
	.port_fdb_prepare	= bcm_sf2_sw_fdb_prepare,
	.port_fdb_add		= bcm_sf2_sw_fdb_add,
	.port_fdb_del		= bcm_sf2_sw_fdb_del,
	.port_fdb_dump		= bcm_sf2_sw_fdb_dump,
	.port_vlan_filtering	= bcm_sf2_sw_vlan_filtering,
	.port_vlan_prepare	= bcm_sf2_sw_vlan_prepare,
	.port_vlan_add		= bcm_sf2_sw_vlan_add,
	.port_vlan_del		= bcm_sf2_sw_vlan_del,
	.port_vlan_dump		= bcm_sf2_sw_vlan_dump,
};

static int bcm_sf2_sw_probe(struct platform_device *pdev)
{
	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
	struct device_node *dn = pdev->dev.of_node;
	struct bcm_sf2_priv *priv;
	struct dsa_switch *ds;
	void __iomem **base;
1623
	struct resource *r;
1624 1625 1626 1627
	unsigned int i;
	u32 reg, rev;
	int ret;

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	ds = devm_kzalloc(&pdev->dev, sizeof(*ds) + sizeof(*priv), GFP_KERNEL);
	if (!ds)
		return -ENOMEM;

	priv = (struct bcm_sf2_priv *)(ds + 1);
	ds->priv = priv;
	ds->dev = &pdev->dev;
	ds->drv = &bcm_sf2_switch_driver;

	dev_set_drvdata(&pdev->dev, ds);

1639 1640 1641
	spin_lock_init(&priv->indir_lock);
	mutex_init(&priv->stats_mutex);

1642
	bcm_sf2_identify_ports(priv, dn->child);
1643 1644 1645 1646 1647 1648

	priv->irq0 = irq_of_parse_and_map(dn, 0);
	priv->irq1 = irq_of_parse_and_map(dn, 1);

	base = &priv->core;
	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1649 1650 1651
		r = platform_get_resource(pdev, IORESOURCE_MEM, i);
		*base = devm_ioremap_resource(&pdev->dev, r);
		if (IS_ERR(*base)) {
1652
			pr_err("unable to find register: %s\n", reg_names[i]);
1653
			return PTR_ERR(*base);
1654 1655 1656 1657 1658 1659 1660
		}
		base++;
	}

	ret = bcm_sf2_sw_rst(priv);
	if (ret) {
		pr_err("unable to software reset switch: %d\n", ret);
1661
		return ret;
1662 1663 1664 1665 1666
	}

	ret = bcm_sf2_mdio_register(ds);
	if (ret) {
		pr_err("failed to register MDIO bus\n");
1667
		return ret;
1668 1669 1670 1671 1672
	}

	/* Disable all interrupts and request them */
	bcm_sf2_intr_disable(priv);

1673 1674
	ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
			       "switch_0", priv);
1675 1676
	if (ret < 0) {
		pr_err("failed to request switch_0 IRQ\n");
1677
		goto out_mdio;
1678 1679
	}

1680 1681
	ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
			       "switch_1", priv);
1682 1683
	if (ret < 0) {
		pr_err("failed to request switch_1 IRQ\n");
1684
		goto out_mdio;
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	/* Reset the MIB counters */
	reg = core_readl(priv, CORE_GMNCFGCFG);
	reg |= RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);
	reg &= ~RST_MIB_CNT;
	core_writel(priv, reg, CORE_GMNCFGCFG);

	/* Get the maximum number of ports for this switch */
	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
		priv->hw_params.num_ports = DSA_MAX_PORTS;

	/* Assume a single GPHY setup if we can't read that property */
	if (of_property_read_u32(dn, "brcm,num-gphy",
				 &priv->hw_params.num_gphy))
		priv->hw_params.num_gphy = 1;

	rev = reg_readl(priv, REG_SWITCH_REVISION);
	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
					SWITCH_TOP_REV_MASK;
	priv->hw_params.core_rev = (rev & SF2_REV_MASK);

	rev = reg_readl(priv, REG_PHY_REVISION);
	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;

1712 1713
	ret = dsa_register_switch(ds, dn);
	if (ret)
1714
		goto out_mdio;
1715

1716 1717 1718 1719 1720 1721 1722
	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
		priv->core, priv->irq0, priv->irq1);

	return 0;

1723 1724
out_mdio:
	bcm_sf2_mdio_unregister(priv);
1725 1726 1727
	return ret;
}

1728
static int bcm_sf2_sw_remove(struct platform_device *pdev)
1729
{
1730 1731 1732 1733 1734 1735 1736 1737
	struct dsa_switch *ds = platform_get_drvdata(pdev);
	struct bcm_sf2_priv *priv = ds_to_priv(ds);

	/* Disable all ports and interrupts */
	priv->wol_ports_mask = 0;
	bcm_sf2_sw_suspend(ds);
	dsa_unregister_switch(ds);
	bcm_sf2_mdio_unregister(priv);
1738 1739 1740 1741

	return 0;
}

1742 1743
#ifdef CONFIG_PM_SLEEP
static int bcm_sf2_suspend(struct device *dev)
1744
{
1745 1746 1747 1748
	struct platform_device *pdev = to_platform_device(dev);
	struct dsa_switch *ds = platform_get_drvdata(pdev);

	return dsa_switch_suspend(ds);
1749
}
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

static int bcm_sf2_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct dsa_switch *ds = platform_get_drvdata(pdev);

	return dsa_switch_resume(ds);
}
#endif /* CONFIG_PM_SLEEP */

static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
			 bcm_sf2_suspend, bcm_sf2_resume);

static const struct of_device_id bcm_sf2_of_match[] = {
	{ .compatible = "brcm,bcm7445-switch-v4.0" },
	{ /* sentinel */ },
};

static struct platform_driver bcm_sf2_driver = {
	.probe	= bcm_sf2_sw_probe,
	.remove	= bcm_sf2_sw_remove,
	.driver = {
		.name = "brcm-sf2",
		.of_match_table = bcm_sf2_of_match,
		.pm = &bcm_sf2_pm_ops,
	},
};
module_platform_driver(bcm_sf2_driver);
1778 1779 1780 1781 1782

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:brcm-sf2");