kfd_device_queue_manager.c 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
29
#include <linux/sched.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
46

47
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 49
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock);
50

51 52 53 54 55 56
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id);
57

58 59
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60
{
61
	if (type == KFD_QUEUE_TYPE_SDMA)
62 63
		return KFD_MQD_TYPE_SDMA;
	return KFD_MQD_TYPE_CP;
64 65
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
{
	int i;
	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;

	/* queue is available for KFD usage if bit is 1 */
	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
		if (test_bit(pipe_offset + i,
			      dqm->dev->shared_resources.queue_bitmap))
			return true;
	return false;
}

unsigned int get_queues_num(struct device_queue_manager *dqm)
81 82
{
	BUG_ON(!dqm || !dqm->dev);
83 84
	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
				KGD_MAX_QUEUES);
85 86
}

87
unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
88
{
89 90 91 92 93 94 95 96
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.num_queue_per_pipe;
}

unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.num_pipe_per_mec;
97 98
}

99
void program_sh_mem_settings(struct device_queue_manager *dqm,
100 101
					struct qcm_process_device *qpd)
{
102 103
	return dqm->dev->kfd2kgd->program_sh_mem_settings(
						dqm->dev->kgd, qpd->vmid,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

140 141 142
	/* Release the vmid mapping */
	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

162 163 164 165 166 167 168
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

169 170 171 172 173 174 175 176 177 178
	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

179 180 181 182
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
		retval = create_compute_queue_nocpsch(dqm, q, qpd);
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
183 184 185 186 187 188 189 190 191 192 193

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
194 195
	if (q->properties.is_active)
		dqm->queue_count++;
196

197 198
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count++;
199

200 201 202 203 204 205 206 207
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

208 209 210 211 212 213 214
	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
215
	int pipe, bit, i;
216 217 218

	set = false;

219 220 221 222 223 224
	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm);
			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {

		if (!is_pipe_enabled(dqm, 0, pipe))
			continue;

225 226 227
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
228
				get_queues_per_pipe(dqm));
229 230 231 232 233 234 235 236 237 238

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

239
	if (!set)
240 241 242 243 244
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
245
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

265
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
266 267 268 269 270 271 272 273 274 275 276 277 278 279
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

280 281 282 283 284
	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
			q->pipe,
			q->queue);

	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
285
			q->queue, (uint32_t __user *) q->properties.write_ptr);
286 287 288 289 290 291
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);

310
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
311
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
312 313 314 315 316 317
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		deallocate_hqd(dqm, q);
	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
318
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
319 320 321 322 323 324
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		dqm->sdma_queue_count--;
		deallocate_sdma_queue(dqm, q->sdma_id);
325 326 327 328
	} else {
		pr_debug("q->properties.type is invalid (%d)\n",
				q->properties.type);
		retval = -EINVAL;
329 330 331 332
		goto out;
	}

	retval = mqd->destroy_mqd(mqd, q->mqd,
333
				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
334 335 336 337 338 339 340 341 342 343 344
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
345 346
	if (q->properties.is_active)
		dqm->queue_count--;
347 348 349 350 351 352 353 354 355

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

356 357 358 359 360 361 362 363 364
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
365
	bool prev_active = false;
366 367 368 369

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
O
Oded Gabbay 已提交
370 371
	mqd = dqm->ops.get_mqd_manager(dqm,
			get_mqd_type_from_queue_type(q->properties.type));
372 373 374 375 376
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

377
	if (q->properties.is_active)
378 379 380 381 382 383 384 385
		prev_active = true;

	/*
	 *
	 * check active state vs. the previous state
	 * and modify counter accordingly
	 */
	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
386
	if ((q->properties.is_active) && (!prev_active))
387
		dqm->queue_count++;
388
	else if ((!q->properties.is_active) && (prev_active))
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;
422
	int retval;
423 424 425 426 427 428 429 430 431 432 433 434 435 436

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

437 438
	retval = dqm->ops_asic_specific.register_process(dqm, qpd);

439 440 441 442
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

443
	return retval;
444 445 446 447 448 449 450 451 452 453
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

454
	pr_debug("In func %s\n", __func__);
455

456 457
	pr_debug("qpd->queues_list is %s\n",
			list_empty(&qpd->queues_list) ? "empty" : "not empty");
458 459 460 461 462 463 464

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
465
			kfree(cur);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

483 484 485 486 487 488
	pasid_mapping = (pasid == 0) ? 0 :
		(uint32_t)pasid |
		ATC_VMID_PASID_MAPPING_VALID;

	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
						dqm->dev->kgd, pasid_mapping,
489 490 491
						vmid);
}

492 493 494 495 496 497
static void init_interrupts(struct device_queue_manager *dqm)
{
	unsigned int i;

	BUG_ON(dqm == NULL);

498 499 500
	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
		if (is_pipe_enabled(dqm, 0, i))
			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
501 502
}

503 504
static int init_scheduler(struct device_queue_manager *dqm)
{
505
	int retval = 0;
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
521
			__func__, get_pipes_per_mec(dqm));
522 523 524 525

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
526
	dqm->sdma_queue_count = 0;
527
	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
528 529 530 531 532 533
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

534 535
	for (i = 0; i < get_pipes_per_mec(dqm); i++)
		dqm->allocated_queues[i] = (1 << get_queues_per_pipe(dqm)) - 1;
536 537

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
538
	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
539 540 541 542 543 544 545

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
546 547
	int i;

548 549 550 551 552
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
553 554
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
555
	mutex_destroy(&dqm->lock);
556
	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
557 558 559 560
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
561
	init_interrupts(dqm);
562 563 564 565 566 567 568 569
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
static int allocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int *sdma_queue_id)
{
	int bit;

	if (dqm->sdma_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
				CIK_SDMA_QUEUES);

	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
	*sdma_queue_id = bit;

	return 0;
}

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id)
{
590
	if (sdma_queue_id >= CIK_SDMA_QUEUES)
591 592 593 594 595 596 597 598 599 600 601
		return;
	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}

static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	struct mqd_manager *mqd;
	int retval;

602
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
603 604 605 606 607 608 609 610 611 612 613 614 615 616
	if (!mqd)
		return -ENOMEM;

	retval = allocate_sdma_queue(dqm, &q->sdma_id);
	if (retval != 0)
		return retval;

	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;

	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);

617
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
618 619 620 621 622 623 624
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		return retval;
	}

625 626 627 628 629 630 631 632
	retval = mqd->load_mqd(mqd, q->mqd, 0,
				0, NULL);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

633 634 635
	return 0;
}

636 637 638 639 640 641
/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
642
	int i, mec;
643 644 645 646 647 648 649 650
	struct scheduling_resources res;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	res.queue_mask = 0;
	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
			/ dqm->dev->shared_resources.num_pipe_per_mec;

		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
			continue;

		/* only acquire queues from the first MEC */
		if (mec > 0)
			continue;

		/* This situation may be hit in the future if a new HW
		 * generation exposes more than 64 queues. If so, the
		 * definition of res.queue_mask needs updating */
667
		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
668 669 670 671 672 673
			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
			break;
		}

		res.queue_mask |= (1ull << i);
	}
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
692
			__func__, get_pipes_per_mec(dqm));
693 694 695 696

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
697
	dqm->sdma_queue_count = 0;
698
	dqm->active_runlist = false;
699
	retval = dqm->ops_asic_specific.initialize(dqm);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
730 731
	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
					&dqm->fence_mem);
732 733 734 735 736 737

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
738 739 740

	init_interrupts(dqm);

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

763
	destroy_queues_cpsch(dqm, true, true);
764 765

	list_for_each_entry(node, &dqm->queues, list) {
766
		pdd = qpd_to_pdd(node->qpd);
767 768
		pdd->bound = false;
	}
769
	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
770 771 772 773 774 775 776 777 778 779 780 781 782 783
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
817 818
	/* here we actually preempt the DIQ */
	destroy_queues_cpsch(dqm, true, false);
819 820 821 822
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
823 824 825 826
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type.
	 */
827
	dqm->total_queue_count--;
828 829
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
830 831 832
	mutex_unlock(&dqm->lock);
}

833 834 835 836 837 838 839 840
static void select_sdma_engine_id(struct queue *q)
{
	static int sdma_id;

	q->sdma_id = sdma_id;
	sdma_id = (sdma_id + 1) % 2;
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

856 857 858 859 860 861 862
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		retval = -EPERM;
		goto out;
	}

863 864 865
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		select_sdma_engine_id(q);

866
	mqd = dqm->ops.get_mqd_manager(dqm,
867 868
			get_mqd_type_from_queue_type(q->properties.type));

869 870 871 872 873
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

874
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
875 876 877 878 879 880 881 882 883 884 885
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

886 887
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
			dqm->sdma_queue_count++;
888 889 890 891 892 893 894 895 896
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;

	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

897 898 899 900 901
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

902
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
903 904
				unsigned int fence_value,
				unsigned long timeout)
905 906 907 908 909 910 911 912 913
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
914
		schedule();
915 916 917 918 919
	}

	return 0;
}

920 921 922 923
static int destroy_sdma_queues(struct device_queue_manager *dqm,
				unsigned int sdma_engine)
{
	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
924
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
925 926 927
			sdma_engine);
}

928 929
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock)
930 931
{
	int retval;
932
	enum kfd_preempt_type_filter preempt_type;
933
	struct kfd_process_device *pdd;
934 935 936 937 938 939 940

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
941
	if (!dqm->active_runlist)
942
		goto out;
943 944 945 946 947 948 949 950 951

	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
		dqm->sdma_queue_count);

	if (dqm->sdma_queue_count > 0) {
		destroy_sdma_queues(dqm, 0);
		destroy_sdma_queues(dqm, 1);
	}

952 953 954 955
	preempt_type = preempt_static_queues ?
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;

956
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
957
			preempt_type, 0, false, 0);
958 959 960 961 962 963 964
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
965
	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
966
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
967
	if (retval != 0) {
968 969 970
		pdd = kfd_get_process_device_data(dqm->dev,
				kfd_get_process(current));
		pdd->reset_wavefronts = true;
971 972
		goto out;
	}
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

991
	retval = destroy_queues_cpsch(dqm, false, false);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
1026
	bool preempt_all_queues;
1027 1028 1029

	BUG_ON(!dqm || !qpd || !q);

1030 1031
	preempt_all_queues = false;

1032 1033 1034 1035
	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	if (qpd->is_debug) {
		/*
		 * error, currently we do not allow to destroy a queue
		 * of a currently debugged process
		 */
		retval = -EBUSY;
		goto failed_try_destroy_debugged_queue;

	}

1047
	mqd = dqm->ops.get_mqd_manager(dqm,
1048
			get_mqd_type_from_queue_type(q->properties.type));
1049 1050 1051 1052 1053
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

1054 1055 1056
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count--;

1057
	list_del(&q->list);
1058 1059
	if (q->properties.is_active)
		dqm->queue_count--;
1060 1061 1062 1063

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1064 1065 1066 1067 1068 1069 1070 1071

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
1072 1073 1074 1075 1076 1077

	mutex_unlock(&dqm->lock);

	return 0;

failed:
1078 1079
failed_try_destroy_debugged_queue:

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
1099
	bool retval;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

1136 1137 1138 1139 1140 1141 1142
	retval = dqm->ops_asic_specific.set_cache_memory_policy(
			dqm,
			qpd,
			default_policy,
			alternate_policy,
			alternate_aperture_base,
			alternate_aperture_size);
1143 1144 1145 1146 1147 1148 1149 1150 1151

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
1152
	return retval;
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

1165 1166
	pr_debug("kfd: loading device queue manager\n");

1167 1168 1169 1170 1171 1172 1173 1174 1175
	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		dqm->ops.create_queue = create_queue_cpsch;
		dqm->ops.initialize = initialize_cpsch;
		dqm->ops.start = start_cpsch;
		dqm->ops.stop = stop_cpsch;
		dqm->ops.destroy_queue = destroy_queue_cpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1189 1190 1191
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		dqm->ops.start = start_nocpsch;
		dqm->ops.stop = stop_nocpsch;
		dqm->ops.create_queue = create_queue_nocpsch;
		dqm->ops.destroy_queue = destroy_queue_nocpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.initialize = initialize_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1203 1204 1205 1206 1207 1208
		break;
	default:
		BUG();
		break;
	}

1209 1210 1211
	switch (dev->device_info->asic_family) {
	case CHIP_CARRIZO:
		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1212 1213
		break;

1214 1215
	case CHIP_KAVERI:
		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1216
		break;
1217 1218
	}

1219
	if (dqm->ops.initialize(dqm) != 0) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

1231
	dqm->ops.uninitialize(dqm);
1232 1233
	kfree(dqm);
}