kfd_device_queue_manager.c 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/printk.h>
#include <linux/bitops.h>
29
#include <linux/sched.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"

/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)

static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
					unsigned int pasid, unsigned int vmid);

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);
46

47
static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 49
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock);
50

51 52 53 54 55 56
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd);

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id);
57

58 59
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60
{
61
	if (type == KFD_QUEUE_TYPE_SDMA)
62 63
		return KFD_MQD_TYPE_SDMA;
	return KFD_MQD_TYPE_CP;
64 65
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
{
	int i;
	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;

	/* queue is available for KFD usage if bit is 1 */
	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
		if (test_bit(pipe_offset + i,
			      dqm->dev->shared_resources.queue_bitmap))
			return true;
	return false;
}

unsigned int get_mec_num(struct device_queue_manager *dqm)
81
{
82
	BUG_ON(!dqm || !dqm->dev);
83 84

	return dqm->dev->shared_resources.num_mec;
85 86
}

87
unsigned int get_queues_num(struct device_queue_manager *dqm)
88 89
{
	BUG_ON(!dqm || !dqm->dev);
90 91
	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
				KGD_MAX_QUEUES);
92 93
}

94
unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95
{
96 97 98 99 100 101 102 103
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.num_queue_per_pipe;
}

unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm || !dqm->dev);
	return dqm->dev->shared_resources.num_pipe_per_mec;
104 105
}

106
void program_sh_mem_settings(struct device_queue_manager *dqm,
107 108
					struct qcm_process_device *qpd)
{
109 110
	return dqm->dev->kfd2kgd->program_sh_mem_settings(
						dqm->dev->kgd, qpd->vmid,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
						qpd->sh_mem_config,
						qpd->sh_mem_ape1_base,
						qpd->sh_mem_ape1_limit,
						qpd->sh_mem_bases);
}

static int allocate_vmid(struct device_queue_manager *dqm,
			struct qcm_process_device *qpd,
			struct queue *q)
{
	int bit, allocated_vmid;

	if (dqm->vmid_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);

	/* Kaveri kfd vmid's starts from vmid 8 */
	allocated_vmid = bit + KFD_VMID_START_OFFSET;
	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
	qpd->vmid = allocated_vmid;
	q->properties.vmid = allocated_vmid;

	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
	program_sh_mem_settings(dqm, qpd);

	return 0;
}

static void deallocate_vmid(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int bit = qpd->vmid - KFD_VMID_START_OFFSET;

147 148 149
	/* Release the vmid mapping */
	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
	qpd->vmid = 0;
	q->properties.vmid = 0;
}

static int create_queue_nocpsch(struct device_queue_manager *dqm,
				struct queue *q,
				struct qcm_process_device *qpd,
				int *allocated_vmid)
{
	int retval;

	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);

	pr_debug("kfd: In func %s\n", __func__);
	print_queue(q);

	mutex_lock(&dqm->lock);

169 170 171 172 173 174 175
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

176 177 178 179 180 181 182 183 184 185
	if (list_empty(&qpd->queues_list)) {
		retval = allocate_vmid(dqm, qpd, q);
		if (retval != 0) {
			mutex_unlock(&dqm->lock);
			return retval;
		}
	}
	*allocated_vmid = qpd->vmid;
	q->properties.vmid = qpd->vmid;

186 187 188 189
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
		retval = create_compute_queue_nocpsch(dqm, q, qpd);
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
190 191 192 193 194 195 196 197 198 199 200

	if (retval != 0) {
		if (list_empty(&qpd->queues_list)) {
			deallocate_vmid(dqm, qpd, q);
			*allocated_vmid = 0;
		}
		mutex_unlock(&dqm->lock);
		return retval;
	}

	list_add(&q->list, &qpd->queues_list);
201 202
	if (q->properties.is_active)
		dqm->queue_count++;
203

204 205
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count++;
206

207 208 209 210 211 212 213 214
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

215 216 217 218 219 220 221
	mutex_unlock(&dqm->lock);
	return 0;
}

static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
	bool set;
222
	int pipe, bit, i;
223 224 225

	set = false;

226 227 228 229 230 231
	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm);
			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {

		if (!is_pipe_enabled(dqm, 0, pipe))
			continue;

232 233 234
		if (dqm->allocated_queues[pipe] != 0) {
			bit = find_first_bit(
				(unsigned long *)&dqm->allocated_queues[pipe],
235
				get_queues_per_pipe(dqm));
236 237 238 239 240 241 242 243 244 245

			clear_bit(bit,
				(unsigned long *)&dqm->allocated_queues[pipe]);
			q->pipe = pipe;
			q->queue = bit;
			set = true;
			break;
		}
	}

246
	if (!set)
247 248 249 250 251
		return -EBUSY;

	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
				__func__, q->pipe, q->queue);
	/* horizontal hqd allocation */
252
	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

	return 0;
}

static inline void deallocate_hqd(struct device_queue_manager *dqm,
				struct queue *q)
{
	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
}

static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

272
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (mqd == NULL)
		return -ENOMEM;

	retval = allocate_hqd(dqm, q);
	if (retval != 0)
		return retval;

	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		return retval;
	}

287 288 289 290 291
	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
			q->pipe,
			q->queue);

	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
292
			q->queue, (uint32_t __user *) q->properties.write_ptr);
293 294 295 296 297 298
	if (retval != 0) {
		deallocate_hqd(dqm, q);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	return 0;
}

static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !q->mqd || !qpd);

	retval = 0;

	pr_debug("kfd: In Func %s\n", __func__);

	mutex_lock(&dqm->lock);

317
	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
318
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
319 320 321 322 323 324
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		deallocate_hqd(dqm, q);
	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
325
		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
326 327 328 329 330 331
		if (mqd == NULL) {
			retval = -ENOMEM;
			goto out;
		}
		dqm->sdma_queue_count--;
		deallocate_sdma_queue(dqm, q->sdma_id);
332 333 334 335
	} else {
		pr_debug("q->properties.type is invalid (%d)\n",
				q->properties.type);
		retval = -EINVAL;
336 337 338 339
		goto out;
	}

	retval = mqd->destroy_mqd(mqd, q->mqd,
340
				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
341 342 343 344 345 346 347 348 349 350 351
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
				q->pipe, q->queue);

	if (retval != 0)
		goto out;

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);

	list_del(&q->list);
	if (list_empty(&qpd->queues_list))
		deallocate_vmid(dqm, qpd, q);
352 353
	if (q->properties.is_active)
		dqm->queue_count--;
354 355 356 357 358 359 360 361 362

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

363 364 365 366 367 368 369 370 371
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
372
	bool prev_active = false;
373 374 375 376

	BUG_ON(!dqm || !q || !q->mqd);

	mutex_lock(&dqm->lock);
O
Oded Gabbay 已提交
377 378
	mqd = dqm->ops.get_mqd_manager(dqm,
			get_mqd_type_from_queue_type(q->properties.type));
379 380 381 382 383
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

384
	if (q->properties.is_active)
385 386 387 388 389 390 391 392
		prev_active = true;

	/*
	 *
	 * check active state vs. the previous state
	 * and modify counter accordingly
	 */
	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
393
	if ((q->properties.is_active) && (!prev_active))
394
		dqm->queue_count++;
395
	else if ((!q->properties.is_active) && (prev_active))
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		dqm->queue_count--;

	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
		retval = execute_queues_cpsch(dqm, false);

	mutex_unlock(&dqm->lock);
	return retval;
}

static struct mqd_manager *get_mqd_manager_nocpsch(
		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
	struct mqd_manager *mqd;

	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);

	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);

	mqd = dqm->mqds[type];
	if (!mqd) {
		mqd = mqd_manager_init(type, dqm->dev);
		if (mqd == NULL)
			pr_err("kfd: mqd manager is NULL");
		dqm->mqds[type] = mqd;
	}

	return mqd;
}

static int register_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	struct device_process_node *n;
429
	int retval;
430 431 432 433 434 435 436 437 438 439 440 441 442 443

	BUG_ON(!dqm || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
	if (!n)
		return -ENOMEM;

	n->qpd = qpd;

	mutex_lock(&dqm->lock);
	list_add(&n->list, &dqm->queues);

444 445
	retval = dqm->ops_asic_specific.register_process(dqm, qpd);

446 447 448 449
	dqm->processes_count++;

	mutex_unlock(&dqm->lock);

450
	return retval;
451 452 453 454 455 456 457 458 459 460
}

static int unregister_process_nocpsch(struct device_queue_manager *dqm,
					struct qcm_process_device *qpd)
{
	int retval;
	struct device_process_node *cur, *next;

	BUG_ON(!dqm || !qpd);

461
	pr_debug("In func %s\n", __func__);
462

463 464
	pr_debug("qpd->queues_list is %s\n",
			list_empty(&qpd->queues_list) ? "empty" : "not empty");
465 466 467 468 469 470 471

	retval = 0;
	mutex_lock(&dqm->lock);

	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
		if (qpd == cur->qpd) {
			list_del(&cur->list);
472
			kfree(cur);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
			dqm->processes_count--;
			goto out;
		}
	}
	/* qpd not found in dqm list */
	retval = 1;
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
			unsigned int vmid)
{
	uint32_t pasid_mapping;

490 491 492 493 494 495
	pasid_mapping = (pasid == 0) ? 0 :
		(uint32_t)pasid |
		ATC_VMID_PASID_MAPPING_VALID;

	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
						dqm->dev->kgd, pasid_mapping,
496 497 498
						vmid);
}

499 500 501 502 503 504
static void init_interrupts(struct device_queue_manager *dqm)
{
	unsigned int i;

	BUG_ON(dqm == NULL);

505 506 507
	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
		if (is_pipe_enabled(dqm, 0, i))
			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
508 509
}

510 511
static int init_scheduler(struct device_queue_manager *dqm)
{
512
	int retval = 0;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

	BUG_ON(!dqm);

	pr_debug("kfd: In %s\n", __func__);

	return retval;
}

static int initialize_nocpsch(struct device_queue_manager *dqm)
{
	int i;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
528
			__func__, get_pipes_per_mec(dqm));
529 530 531 532

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
533
	dqm->sdma_queue_count = 0;
534
	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
535 536 537 538 539 540
					sizeof(unsigned int), GFP_KERNEL);
	if (!dqm->allocated_queues) {
		mutex_destroy(&dqm->lock);
		return -ENOMEM;
	}

541 542
	for (i = 0; i < get_pipes_per_mec(dqm); i++)
		dqm->allocated_queues[i] = (1 << get_queues_per_pipe(dqm)) - 1;
543 544

	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
545
	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
546 547 548 549 550 551 552

	init_scheduler(dqm);
	return 0;
}

static void uninitialize_nocpsch(struct device_queue_manager *dqm)
{
553 554
	int i;

555 556 557 558 559
	BUG_ON(!dqm);

	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);

	kfree(dqm->allocated_queues);
560 561
	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
		kfree(dqm->mqds[i]);
562
	mutex_destroy(&dqm->lock);
563
	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
564 565 566 567
}

static int start_nocpsch(struct device_queue_manager *dqm)
{
568
	init_interrupts(dqm);
569 570 571 572 573 574 575 576
	return 0;
}

static int stop_nocpsch(struct device_queue_manager *dqm)
{
	return 0;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static int allocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int *sdma_queue_id)
{
	int bit;

	if (dqm->sdma_bitmap == 0)
		return -ENOMEM;

	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
				CIK_SDMA_QUEUES);

	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
	*sdma_queue_id = bit;

	return 0;
}

static void deallocate_sdma_queue(struct device_queue_manager *dqm,
				unsigned int sdma_queue_id)
{
597
	if (sdma_queue_id >= CIK_SDMA_QUEUES)
598 599 600 601 602 603 604 605 606 607 608
		return;
	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
}

static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
					struct queue *q,
					struct qcm_process_device *qpd)
{
	struct mqd_manager *mqd;
	int retval;

609
	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
610 611 612 613 614 615 616 617 618 619 620 621 622 623
	if (!mqd)
		return -ENOMEM;

	retval = allocate_sdma_queue(dqm, &q->sdma_id);
	if (retval != 0)
		return retval;

	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;

	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);

624
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
625 626 627 628 629 630 631
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		return retval;
	}

632 633 634 635 636 637 638 639
	retval = mqd->load_mqd(mqd, q->mqd, 0,
				0, NULL);
	if (retval != 0) {
		deallocate_sdma_queue(dqm, q->sdma_id);
		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
		return retval;
	}

640 641 642
	return 0;
}

643 644 645 646 647 648
/*
 * Device Queue Manager implementation for cp scheduler
 */

static int set_sched_resources(struct device_queue_manager *dqm)
{
649
	int i, mec;
650 651 652 653 654 655 656 657
	struct scheduling_resources res;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s\n", __func__);

	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
	res.vmid_mask <<= KFD_VMID_START_OFFSET;
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	res.queue_mask = 0;
	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
			/ dqm->dev->shared_resources.num_pipe_per_mec;

		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
			continue;

		/* only acquire queues from the first MEC */
		if (mec > 0)
			continue;

		/* This situation may be hit in the future if a new HW
		 * generation exposes more than 64 queues. If so, the
		 * definition of res.queue_mask needs updating */
		if (WARN_ON(i > (sizeof(res.queue_mask)*8))) {
			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
			break;
		}

		res.queue_mask |= (1ull << i);
	}
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	res.gws_mask = res.oac_mask = res.gds_heap_base =
						res.gds_heap_size = 0;

	pr_debug("kfd: scheduling resources:\n"
			"      vmid mask: 0x%8X\n"
			"      queue mask: 0x%8llX\n",
			res.vmid_mask, res.queue_mask);

	return pm_send_set_resources(&dqm->packets, &res);
}

static int initialize_cpsch(struct device_queue_manager *dqm)
{
	int retval;

	BUG_ON(!dqm);

	pr_debug("kfd: In func %s num of pipes: %d\n",
699
			__func__, get_pipes_per_mec(dqm));
700 701 702 703

	mutex_init(&dqm->lock);
	INIT_LIST_HEAD(&dqm->queues);
	dqm->queue_count = dqm->processes_count = 0;
704
	dqm->sdma_queue_count = 0;
705
	dqm->active_runlist = false;
706
	retval = dqm->ops_asic_specific.initialize(dqm);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	if (retval != 0)
		goto fail_init_pipelines;

	return 0;

fail_init_pipelines:
	mutex_destroy(&dqm->lock);
	return retval;
}

static int start_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	int retval;

	BUG_ON(!dqm);

	retval = 0;

	retval = pm_init(&dqm->packets, dqm);
	if (retval != 0)
		goto fail_packet_manager_init;

	retval = set_sched_resources(dqm);
	if (retval != 0)
		goto fail_set_sched_resources;

	pr_debug("kfd: allocating fence memory\n");

	/* allocate fence memory on the gart */
737 738
	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
					&dqm->fence_mem);
739 740 741 742 743 744

	if (retval != 0)
		goto fail_allocate_vidmem;

	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
745 746 747

	init_interrupts(dqm);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	list_for_each_entry(node, &dqm->queues, list)
		if (node->qpd->pqm->process && dqm->dev)
			kfd_bind_process_to_device(dqm->dev,
						node->qpd->pqm->process);

	execute_queues_cpsch(dqm, true);

	return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
	pm_uninit(&dqm->packets);
fail_packet_manager_init:
	return retval;
}

static int stop_cpsch(struct device_queue_manager *dqm)
{
	struct device_process_node *node;
	struct kfd_process_device *pdd;

	BUG_ON(!dqm);

770
	destroy_queues_cpsch(dqm, true, true);
771 772

	list_for_each_entry(node, &dqm->queues, list) {
773
		pdd = qpd_to_pdd(node->qpd);
774 775
		pdd->bound = false;
	}
776
	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
777 778 779 780 781 782 783 784 785 786 787 788 789 790
	pm_uninit(&dqm->packets);

	return 0;
}

static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq || !qpd);

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
				dqm->total_queue_count);
		mutex_unlock(&dqm->lock);
		return -EPERM;
	}

	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	list_add(&kq->list, &qpd->priv_queue_list);
	dqm->queue_count++;
	qpd->is_debug = true;
	execute_queues_cpsch(dqm, false);
	mutex_unlock(&dqm->lock);

	return 0;
}

static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
					struct kernel_queue *kq,
					struct qcm_process_device *qpd)
{
	BUG_ON(!dqm || !kq);

	pr_debug("kfd: In %s\n", __func__);

	mutex_lock(&dqm->lock);
824 825
	/* here we actually preempt the DIQ */
	destroy_queues_cpsch(dqm, true, false);
826 827 828 829
	list_del(&kq->list);
	dqm->queue_count--;
	qpd->is_debug = false;
	execute_queues_cpsch(dqm, false);
830 831 832 833
	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type.
	 */
834
	dqm->total_queue_count--;
835 836
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
837 838 839
	mutex_unlock(&dqm->lock);
}

840 841 842 843 844 845 846 847
static void select_sdma_engine_id(struct queue *q)
{
	static int sdma_id;

	q->sdma_id = sdma_id;
	sdma_id = (sdma_id + 1) % 2;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
			struct qcm_process_device *qpd, int *allocate_vmid)
{
	int retval;
	struct mqd_manager *mqd;

	BUG_ON(!dqm || !q || !qpd);

	retval = 0;

	if (allocate_vmid)
		*allocate_vmid = 0;

	mutex_lock(&dqm->lock);

863 864 865 866 867 868 869
	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
				dqm->total_queue_count);
		retval = -EPERM;
		goto out;
	}

870 871 872
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		select_sdma_engine_id(q);

873
	mqd = dqm->ops.get_mqd_manager(dqm,
874 875
			get_mqd_type_from_queue_type(q->properties.type));

876 877 878 879 880
	if (mqd == NULL) {
		mutex_unlock(&dqm->lock);
		return -ENOMEM;
	}

881
	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
882 883 884 885 886 887 888 889 890 891 892
	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
				&q->gart_mqd_addr, &q->properties);
	if (retval != 0)
		goto out;

	list_add(&q->list, &qpd->queues_list);
	if (q->properties.is_active) {
		dqm->queue_count++;
		retval = execute_queues_cpsch(dqm, false);
	}

893 894
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
			dqm->sdma_queue_count++;
895 896 897 898 899 900 901 902 903
	/*
	 * Unconditionally increment this counter, regardless of the queue's
	 * type or whether the queue is active.
	 */
	dqm->total_queue_count++;

	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);

904 905 906 907 908
out:
	mutex_unlock(&dqm->lock);
	return retval;
}

909
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
910 911
				unsigned int fence_value,
				unsigned long timeout)
912 913 914 915 916 917 918 919 920
{
	BUG_ON(!fence_addr);
	timeout += jiffies;

	while (*fence_addr != fence_value) {
		if (time_after(jiffies, timeout)) {
			pr_err("kfd: qcm fence wait loop timeout expired\n");
			return -ETIME;
		}
921
		schedule();
922 923 924 925 926
	}

	return 0;
}

927 928 929 930
static int destroy_sdma_queues(struct device_queue_manager *dqm,
				unsigned int sdma_engine)
{
	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
931
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
932 933 934
			sdma_engine);
}

935 936
static int destroy_queues_cpsch(struct device_queue_manager *dqm,
				bool preempt_static_queues, bool lock)
937 938
{
	int retval;
939
	enum kfd_preempt_type_filter preempt_type;
940
	struct kfd_process_device *pdd;
941 942 943 944 945 946 947

	BUG_ON(!dqm);

	retval = 0;

	if (lock)
		mutex_lock(&dqm->lock);
948
	if (!dqm->active_runlist)
949
		goto out;
950 951 952 953 954 955 956 957 958

	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
		dqm->sdma_queue_count);

	if (dqm->sdma_queue_count > 0) {
		destroy_sdma_queues(dqm, 0);
		destroy_sdma_queues(dqm, 1);
	}

959 960 961 962
	preempt_type = preempt_static_queues ?
			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;

963
	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
964
			preempt_type, 0, false, 0);
965 966 967 968 969 970 971
	if (retval != 0)
		goto out;

	*dqm->fence_addr = KFD_FENCE_INIT;
	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
				KFD_FENCE_COMPLETED);
	/* should be timed out */
972
	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
973
				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
974
	if (retval != 0) {
975 976 977
		pdd = kfd_get_process_device_data(dqm->dev,
				kfd_get_process(current));
		pdd->reset_wavefronts = true;
978 979
		goto out;
	}
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	pm_release_ib(&dqm->packets);
	dqm->active_runlist = false;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
{
	int retval;

	BUG_ON(!dqm);

	if (lock)
		mutex_lock(&dqm->lock);

998
	retval = destroy_queues_cpsch(dqm, false, false);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	if (retval != 0) {
		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
		goto out;
	}

	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
		retval = 0;
		goto out;
	}

	if (dqm->active_runlist) {
		retval = 0;
		goto out;
	}

	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
	if (retval != 0) {
		pr_err("kfd: failed to execute runlist");
		goto out;
	}
	dqm->active_runlist = true;

out:
	if (lock)
		mutex_unlock(&dqm->lock);
	return retval;
}

static int destroy_queue_cpsch(struct device_queue_manager *dqm,
				struct qcm_process_device *qpd,
				struct queue *q)
{
	int retval;
	struct mqd_manager *mqd;
1033
	bool preempt_all_queues;
1034 1035 1036

	BUG_ON(!dqm || !qpd || !q);

1037 1038
	preempt_all_queues = false;

1039 1040 1041 1042
	retval = 0;

	/* remove queue from list to prevent rescheduling after preemption */
	mutex_lock(&dqm->lock);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

	if (qpd->is_debug) {
		/*
		 * error, currently we do not allow to destroy a queue
		 * of a currently debugged process
		 */
		retval = -EBUSY;
		goto failed_try_destroy_debugged_queue;

	}

1054
	mqd = dqm->ops.get_mqd_manager(dqm,
1055
			get_mqd_type_from_queue_type(q->properties.type));
1056 1057 1058 1059 1060
	if (!mqd) {
		retval = -ENOMEM;
		goto failed;
	}

1061 1062 1063
	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
		dqm->sdma_queue_count--;

1064
	list_del(&q->list);
1065 1066
	if (q->properties.is_active)
		dqm->queue_count--;
1067 1068 1069 1070

	execute_queues_cpsch(dqm, false);

	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1071 1072 1073 1074 1075 1076 1077 1078

	/*
	 * Unconditionally decrement this counter, regardless of the queue's
	 * type
	 */
	dqm->total_queue_count--;
	pr_debug("Total of %d queues are accountable so far\n",
			dqm->total_queue_count);
1079 1080 1081 1082 1083 1084

	mutex_unlock(&dqm->lock);

	return 0;

failed:
1085 1086
failed_try_destroy_debugged_queue:

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	mutex_unlock(&dqm->lock);
	return retval;
}

/*
 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
 * stay in user mode.
 */
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF

static bool set_cache_memory_policy(struct device_queue_manager *dqm,
				   struct qcm_process_device *qpd,
				   enum cache_policy default_policy,
				   enum cache_policy alternate_policy,
				   void __user *alternate_aperture_base,
				   uint64_t alternate_aperture_size)
{
1106
	bool retval;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	pr_debug("kfd: In func %s\n", __func__);

	mutex_lock(&dqm->lock);

	if (alternate_aperture_size == 0) {
		/* base > limit disables APE1 */
		qpd->sh_mem_ape1_base = 1;
		qpd->sh_mem_ape1_limit = 0;
	} else {
		/*
		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
		 * Verify that the base and size parameters can be
		 * represented in this format and convert them.
		 * Additionally restrict APE1 to user-mode addresses.
		 */

		uint64_t base = (uintptr_t)alternate_aperture_base;
		uint64_t limit = base + alternate_aperture_size - 1;

		if (limit <= base)
			goto out;

		if ((base & APE1_FIXED_BITS_MASK) != 0)
			goto out;

		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
			goto out;

		qpd->sh_mem_ape1_base = base >> 16;
		qpd->sh_mem_ape1_limit = limit >> 16;
	}

1143 1144 1145 1146 1147 1148 1149
	retval = dqm->ops_asic_specific.set_cache_memory_policy(
			dqm,
			qpd,
			default_policy,
			alternate_policy,
			alternate_aperture_base,
			alternate_aperture_size);
1150 1151 1152 1153 1154 1155 1156 1157 1158

	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
		program_sh_mem_settings(dqm, qpd);

	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
		qpd->sh_mem_ape1_limit);

	mutex_unlock(&dqm->lock);
1159
	return retval;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

out:
	mutex_unlock(&dqm->lock);
	return false;
}

struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
	struct device_queue_manager *dqm;

	BUG_ON(!dev);

1172 1173
	pr_debug("kfd: loading device queue manager\n");

1174 1175 1176 1177 1178 1179 1180 1181 1182
	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
	if (!dqm)
		return NULL;

	dqm->dev = dev;
	switch (sched_policy) {
	case KFD_SCHED_POLICY_HWS:
	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
		/* initialize dqm for cp scheduling */
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		dqm->ops.create_queue = create_queue_cpsch;
		dqm->ops.initialize = initialize_cpsch;
		dqm->ops.start = start_cpsch;
		dqm->ops.stop = stop_cpsch;
		dqm->ops.destroy_queue = destroy_queue_cpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1196 1197 1198
		break;
	case KFD_SCHED_POLICY_NO_HWS:
		/* initialize dqm for no cp scheduling */
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		dqm->ops.start = start_nocpsch;
		dqm->ops.stop = stop_nocpsch;
		dqm->ops.create_queue = create_queue_nocpsch;
		dqm->ops.destroy_queue = destroy_queue_nocpsch;
		dqm->ops.update_queue = update_queue;
		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
		dqm->ops.register_process = register_process_nocpsch;
		dqm->ops.unregister_process = unregister_process_nocpsch;
		dqm->ops.initialize = initialize_nocpsch;
		dqm->ops.uninitialize = uninitialize_nocpsch;
		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1210 1211 1212 1213 1214 1215
		break;
	default:
		BUG();
		break;
	}

1216 1217 1218
	switch (dev->device_info->asic_family) {
	case CHIP_CARRIZO:
		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1219 1220
		break;

1221 1222
	case CHIP_KAVERI:
		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1223
		break;
1224 1225
	}

1226
	if (dqm->ops.initialize(dqm) != 0) {
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		kfree(dqm);
		return NULL;
	}

	return dqm;
}

void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
	BUG_ON(!dqm);

1238
	dqm->ops.uninitialize(dqm);
1239 1240
	kfree(dqm);
}