vgic-mmio-v3.c 28.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12
/*
 * VGICv3 MMIO handling functions
 */

#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/iodev.h>
#include <kvm/arm_vgic.h>

#include <asm/kvm_emulate.h>
13 14
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
15 16 17 18

#include "vgic.h"
#include "vgic-mmio.h"

19
/* extract @num bytes at @offset bytes offset in data */
20
unsigned long extract_bytes(u64 data, unsigned int offset,
21
			    unsigned int num)
22 23 24 25
{
	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
}

26
/* allows updates of any half of a 64-bit register (or the whole thing) */
27 28
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
		     unsigned long val)
29 30 31 32 33 34 35 36 37 38
{
	int lower = (offset & 4) * 8;
	int upper = lower + 8 * len - 1;

	reg &= ~GENMASK_ULL(upper, lower);
	val &= GENMASK_ULL(len * 8 - 1, 0);

	return reg | ((u64)val << lower);
}

39 40 41 42 43 44 45
bool vgic_has_its(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;

	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
		return false;

46
	return dist->has_its;
47 48
}

49 50 51 52 53
bool vgic_supports_direct_msis(struct kvm *kvm)
{
	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
}

54 55 56 57 58 59 60
/*
 * The Revision field in the IIDR have the following meanings:
 *
 * Revision 2: Interrupt groups are guest-configurable and signaled using
 * 	       their configured groups.
 */

61 62 63
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
					    gpa_t addr, unsigned int len)
{
64
	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
65 66 67 68
	u32 value = 0;

	switch (addr & 0x0c) {
	case GICD_CTLR:
69
		if (vgic->enabled)
70 71 72 73
			value |= GICD_CTLR_ENABLE_SS_G1;
		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
		break;
	case GICD_TYPER:
74
		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
75
		value = (value >> 5) - 1;
76 77 78 79 80 81
		if (vgic_has_its(vcpu->kvm)) {
			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
			value |= GICD_TYPER_LPIS;
		} else {
			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
		}
82 83
		break;
	case GICD_IIDR:
84
		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
85
			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
86
			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		break;
	default:
		return 0;
	}

	return value;
}

static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
				    gpa_t addr, unsigned int len,
				    unsigned long val)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	bool was_enabled = dist->enabled;

	switch (addr & 0x0c) {
	case GICD_CTLR:
		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;

		if (!was_enabled && dist->enabled)
			vgic_kick_vcpus(vcpu->kvm);
		break;
	case GICD_TYPER:
	case GICD_IIDR:
		return;
	}
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128
static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
					   gpa_t addr, unsigned int len,
					   unsigned long val)
{
	switch (addr & 0x0c) {
	case GICD_IIDR:
		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
			return -EINVAL;
	}

	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
	return 0;
}

129 130 131 132 133
static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
					    gpa_t addr, unsigned int len)
{
	int intid = VGIC_ADDR_TO_INTID(addr, 64);
	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
134
	unsigned long ret = 0;
135 136 137 138 139

	if (!irq)
		return 0;

	/* The upper word is RAZ for us. */
140 141
	if (!(addr & 4))
		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
142

143 144
	vgic_put_irq(vcpu->kvm, irq);
	return ret;
145 146 147 148 149 150 151
}

static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
				    gpa_t addr, unsigned int len,
				    unsigned long val)
{
	int intid = VGIC_ADDR_TO_INTID(addr, 64);
152
	struct vgic_irq *irq;
153
	unsigned long flags;
154 155 156 157 158

	/* The upper word is WI for us since we don't implement Aff3. */
	if (addr & 4)
		return;

159 160 161 162 163
	irq = vgic_get_irq(vcpu->kvm, NULL, intid);

	if (!irq)
		return;

164
	raw_spin_lock_irqsave(&irq->irq_lock, flags);
165 166 167 168 169

	/* We only care about and preserve Aff0, Aff1 and Aff2. */
	irq->mpidr = val & GENMASK(23, 0);
	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);

170
	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
171
	vgic_put_irq(vcpu->kvm, irq);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
}


static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	bool was_enabled = vgic_cpu->lpis_enabled;

	if (!vgic_has_its(vcpu->kvm))
		return;

	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;

195 196 197
	if (was_enabled && !vgic_cpu->lpis_enabled)
		vgic_flush_pending_lpis(vcpu);

198 199
	if (!was_enabled && vgic_cpu->lpis_enabled)
		vgic_enable_lpis(vcpu);
200 201
}

202 203 204 205
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
					      gpa_t addr, unsigned int len)
{
	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
206 207
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
208
	int target_vcpu_id = vcpu->vcpu_id;
209 210
	gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
			(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
211 212
	u64 value;

213
	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
214
	value |= ((target_vcpu_id & 0xffff) << 8);
215 216

	if (addr == last_rdist_typer)
217
		value |= GICR_TYPER_LAST;
218 219
	if (vgic_has_its(vcpu->kvm))
		value |= GICR_TYPER_PLPIS;
220 221 222 223 224 225 226 227 228 229

	return extract_bytes(value, addr & 7, len);
}

static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
}

230 231 232 233 234 235 236 237 238 239 240 241
static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
					      gpa_t addr, unsigned int len)
{
	switch (addr & 0xffff) {
	case GICD_PIDR2:
		/* report a GICv3 compliant implementation */
		return 0x3b;
	}

	return 0;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
						  gpa_t addr, unsigned int len)
{
	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
	u32 value = 0;
	int i;

	/*
	 * pending state of interrupt is latched in pending_latch variable.
	 * Userspace will save and restore pending state and line_level
	 * separately.
	 * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
	 * for handling of ISPENDR and ICPENDR.
	 */
	for (i = 0; i < len * 8; i++) {
		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);

		if (irq->pending_latch)
			value |= (1U << i);

		vgic_put_irq(vcpu->kvm, irq);
	}

	return value;
}

268 269 270
static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
					 gpa_t addr, unsigned int len,
					 unsigned long val)
271 272 273
{
	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
	int i;
274
	unsigned long flags;
275 276 277 278

	for (i = 0; i < len * 8; i++) {
		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);

279
		raw_spin_lock_irqsave(&irq->irq_lock, flags);
280 281 282 283 284 285 286
		if (test_bit(i, &val)) {
			/*
			 * pending_latch is set irrespective of irq type
			 * (level or edge) to avoid dependency that VM should
			 * restore irq config before pending info.
			 */
			irq->pending_latch = true;
287
			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
288 289
		} else {
			irq->pending_latch = false;
290
			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
291 292 293 294
		}

		vgic_put_irq(vcpu->kvm, irq);
	}
295 296

	return 0;
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/* We want to avoid outer shareable. */
u64 vgic_sanitise_shareability(u64 field)
{
	switch (field) {
	case GIC_BASER_OuterShareable:
		return GIC_BASER_InnerShareable;
	default:
		return field;
	}
}

/* Avoid any inner non-cacheable mapping. */
u64 vgic_sanitise_inner_cacheability(u64 field)
{
	switch (field) {
	case GIC_BASER_CACHE_nCnB:
	case GIC_BASER_CACHE_nC:
		return GIC_BASER_CACHE_RaWb;
	default:
		return field;
	}
}

/* Non-cacheable or same-as-inner are OK. */
u64 vgic_sanitise_outer_cacheability(u64 field)
{
	switch (field) {
	case GIC_BASER_CACHE_SameAsInner:
	case GIC_BASER_CACHE_nC:
		return field;
	default:
		return GIC_BASER_CACHE_nC;
	}
}

u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
			u64 (*sanitise_fn)(u64))
{
	u64 field = (reg & field_mask) >> field_shift;

	field = sanitise_fn(field) << field_shift;
	return (reg & ~field_mask) | field;
}

#define PROPBASER_RES0_MASK						\
	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
#define PENDBASER_RES0_MASK						\
	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))

static u64 vgic_sanitise_pendbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
				  GICR_PENDBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	reg &= ~PENDBASER_RES0_MASK;

	return reg;
}

static u64 vgic_sanitise_propbaser(u64 reg)
{
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
				  GICR_PROPBASER_SHAREABILITY_SHIFT,
				  vgic_sanitise_shareability);
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
				  vgic_sanitise_inner_cacheability);
	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
				  vgic_sanitise_outer_cacheability);

	reg &= ~PROPBASER_RES0_MASK;
	return reg;
}

static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return extract_bytes(dist->propbaser, addr & 7, len);
}

static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
396
	u64 old_propbaser, propbaser;
397 398 399 400 401

	/* Storing a value with LPIs already enabled is undefined */
	if (vgic_cpu->lpis_enabled)
		return;

402
	do {
403
		old_propbaser = READ_ONCE(dist->propbaser);
404 405 406 407 408
		propbaser = old_propbaser;
		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
		propbaser = vgic_sanitise_propbaser(propbaser);
	} while (cmpxchg64(&dist->propbaser, old_propbaser,
			   propbaser) != old_propbaser);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
}

static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
					     gpa_t addr, unsigned int len)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
}

static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
				     gpa_t addr, unsigned int len,
				     unsigned long val)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
424
	u64 old_pendbaser, pendbaser;
425 426 427 428 429

	/* Storing a value with LPIs already enabled is undefined */
	if (vgic_cpu->lpis_enabled)
		return;

430
	do {
431
		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
432 433 434 435 436
		pendbaser = old_pendbaser;
		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
		pendbaser = vgic_sanitise_pendbaser(pendbaser);
	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
			   pendbaser) != old_pendbaser);
437 438
}

439 440 441 442 443 444 445
/*
 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 * redistributors, while SPIs are covered by registers in the distributor
 * block. Trying to set private IRQs in this block gets ignored.
 * We take some special care here to fix the calculation of the register
 * offset.
 */
446
#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
447 448 449 450 451 452 453 454 455 456 457 458 459 460
	{								\
		.reg_offset = off,					\
		.bits_per_irq = bpi,					\
		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
		.access_flags = acc,					\
		.read = vgic_mmio_read_raz,				\
		.write = vgic_mmio_write_wi,				\
	}, {								\
		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
		.bits_per_irq = bpi,					\
		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
		.access_flags = acc,					\
		.read = rd,						\
		.write = wr,						\
461 462
		.uaccess_read = ur,					\
		.uaccess_write = uw,					\
463 464 465
	}

static const struct vgic_register_region vgic_v3_dist_registers[] = {
466 467 468 469
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
		NULL, vgic_mmio_uaccess_write_v3_misc,
		16, VGIC_ACCESS_32bit),
470 471 472
	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
473
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
474
		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
475 476
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
477
		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
478 479
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
480
		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
481 482
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
483 484
		vgic_mmio_read_pending, vgic_mmio_write_spending,
		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
485 486
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
487
		vgic_mmio_read_pending, vgic_mmio_write_cpending,
488
		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
489 490
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
491 492
		vgic_mmio_read_active, vgic_mmio_write_sactive,
		NULL, vgic_mmio_uaccess_write_sactive, 1,
493 494
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
495 496 497
		vgic_mmio_read_active, vgic_mmio_write_cactive,
		NULL, vgic_mmio_uaccess_write_cactive,
		1, VGIC_ACCESS_32bit),
498
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
499 500
		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
501
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
502
		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
503 504
		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
505
		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
506 507
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
508
		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
509 510
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
511
		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
512 513
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
514
		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
515 516 517 518 519
		VGIC_ACCESS_32bit),
};

static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
520
		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
521
		VGIC_ACCESS_32bit),
522 523 524
	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
525
	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
526
		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
527 528
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
529
		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
530
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
531 532 533
	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
534
	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
535
		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
536 537
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
538
		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
539 540
		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
541
		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
542 543 544 545 546
		VGIC_ACCESS_32bit),
};

static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
	REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
547
		vgic_mmio_read_group, vgic_mmio_write_group, 4,
548 549 550 551 552 553 554
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
		vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
		vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
		VGIC_ACCESS_32bit),
555 556 557
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
		vgic_mmio_read_pending, vgic_mmio_write_spending,
		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
558
		VGIC_ACCESS_32bit),
559 560
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
		vgic_mmio_read_pending, vgic_mmio_write_cpending,
561
		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
562
		VGIC_ACCESS_32bit),
563 564 565 566 567 568 569 570
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
		vgic_mmio_read_active, vgic_mmio_write_sactive,
		NULL, vgic_mmio_uaccess_write_sactive,
		4, VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
		vgic_mmio_read_active, vgic_mmio_write_cactive,
		NULL, vgic_mmio_uaccess_write_cactive,
		4, VGIC_ACCESS_32bit),
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
	REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
		vgic_mmio_read_config, vgic_mmio_write_config, 8,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
	REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
		VGIC_ACCESS_32bit),
};

unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
{
	dev->regions = vgic_v3_dist_registers;
	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);

	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);

	return SZ_64K;
}

595 596 597 598 599 600 601 602 603
/**
 * vgic_register_redist_iodev - register a single redist iodev
 * @vcpu:    The VCPU to which the redistributor belongs
 *
 * Register a KVM iodev for this VCPU's redistributor using the address
 * provided.
 *
 * Return 0 on success, -ERRNO otherwise.
 */
604
int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
605 606 607
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *vgic = &kvm->arch.vgic;
608
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
609 610
	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
611
	struct vgic_redist_region *rdreg;
612 613 614
	gpa_t rd_base, sgi_base;
	int ret;

615 616 617
	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
		return 0;

618 619 620 621 622 623
	/*
	 * We may be creating VCPUs before having set the base address for the
	 * redistributor region, in which case we will come back to this
	 * function for all VCPUs when the base address is set.  Just return
	 * without doing any work for now.
	 */
624
	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
625
	if (!rdreg)
626 627 628 629 630
		return 0;

	if (!vgic_v3_check_base(kvm))
		return -EINVAL;

631 632 633
	vgic_cpu->rdreg = rdreg;

	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	sgi_base = rd_base + SZ_64K;

	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
	rd_dev->base_addr = rd_base;
	rd_dev->iodev_type = IODEV_REDIST;
	rd_dev->regions = vgic_v3_rdbase_registers;
	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
	rd_dev->redist_vcpu = vcpu;

	mutex_lock(&kvm->slots_lock);
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
				      SZ_64K, &rd_dev->dev);
	mutex_unlock(&kvm->slots_lock);

	if (ret)
		return ret;

	kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
	sgi_dev->base_addr = sgi_base;
	sgi_dev->iodev_type = IODEV_REDIST;
	sgi_dev->regions = vgic_v3_sgibase_registers;
	sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
	sgi_dev->redist_vcpu = vcpu;

	mutex_lock(&kvm->slots_lock);
	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
				      SZ_64K, &sgi_dev->dev);
661
	if (ret) {
662 663
		kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
					  &rd_dev->dev);
664
		goto out;
665
	}
666

667
	rdreg->free_index++;
668 669
out:
	mutex_unlock(&kvm->slots_lock);
670 671 672 673 674 675 676 677 678 679 680 681
	return ret;
}

static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
{
	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;

	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
}

682
static int vgic_register_all_redist_iodevs(struct kvm *kvm)
683 684 685 686 687
{
	struct kvm_vcpu *vcpu;
	int c, ret = 0;

	kvm_for_each_vcpu(c, vcpu, kvm) {
688
		ret = vgic_register_redist_iodev(vcpu);
689 690 691 692 693 694
		if (ret)
			break;
	}

	if (ret) {
		/* The current c failed, so we start with the previous one. */
695
		mutex_lock(&kvm->slots_lock);
696
		for (c--; c >= 0; c--) {
697
			vcpu = kvm_get_vcpu(kvm, c);
698
			vgic_unregister_redist_iodev(vcpu);
699
		}
700
		mutex_unlock(&kvm->slots_lock);
701 702 703 704
	}

	return ret;
}
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 * vgic_v3_insert_redist_region - Insert a new redistributor region
 *
 * Performs various checks before inserting the rdist region in the list.
 * Those tests depend on whether the size of the rdist region is known
 * (ie. count != 0). The list is sorted by rdist region index.
 *
 * @kvm: kvm handle
 * @index: redist region index
 * @base: base of the new rdist region
 * @count: number of redistributors the region is made of (0 in the old style
 * single region, whose size is induced from the number of vcpus)
 *
 * Return 0 on success, < 0 otherwise
 */
static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
					gpa_t base, uint32_t count)
723
{
724
	struct vgic_dist *d = &kvm->arch.vgic;
725
	struct vgic_redist_region *rdreg;
726 727
	struct list_head *rd_regions = &d->rd_regions;
	size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
728 729
	int ret;

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	/* single rdist region already set ?*/
	if (!count && !list_empty(rd_regions))
		return -EINVAL;

	/* cross the end of memory ? */
	if (base + size < base)
		return -EINVAL;

	if (list_empty(rd_regions)) {
		if (index != 0)
			return -EINVAL;
	} else {
		rdreg = list_last_entry(rd_regions,
					struct vgic_redist_region, list);
		if (index != rdreg->index + 1)
			return -EINVAL;

		/* Cannot add an explicitly sized regions after legacy region */
		if (!rdreg->count)
			return -EINVAL;
	}

	/*
	 * For legacy single-region redistributor regions (!count),
	 * check that the redistributor region does not overlap with the
	 * distributor's address space.
	 */
	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
		vgic_dist_overlap(kvm, base, size))
		return -EINVAL;

	/* collision with any other rdist region? */
	if (vgic_v3_rdist_overlap(kvm, base, size))
763 764 765 766 767 768 769 770
		return -EINVAL;

	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
	if (!rdreg)
		return -ENOMEM;

	rdreg->base = VGIC_ADDR_UNDEF;

771
	ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
772
	if (ret)
773
		goto free;
774

775 776 777 778
	rdreg->base = base;
	rdreg->count = count;
	rdreg->free_index = 0;
	rdreg->index = index;
779

780 781 782 783 784 785 786
	list_add_tail(&rdreg->list, rd_regions);
	return 0;
free:
	kfree(rdreg);
	return ret;
}

787
int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
788 789 790
{
	int ret;

791
	ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
792 793
	if (ret)
		return ret;
794

795 796 797 798 799 800 801 802 803 804 805
	/*
	 * Register iodevs for each existing VCPU.  Adding more VCPUs
	 * afterwards will register the iodevs when needed.
	 */
	ret = vgic_register_all_redist_iodevs(kvm);
	if (ret)
		return ret;

	return 0;
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
	const struct vgic_register_region *region;
	struct vgic_io_device iodev;
	struct vgic_reg_attr reg_attr;
	struct kvm_vcpu *vcpu;
	gpa_t addr;
	int ret;

	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
	if (ret)
		return ret;

	vcpu = reg_attr.vcpu;
	addr = reg_attr.addr;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		iodev.regions = vgic_v3_dist_registers;
		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
		iodev.base_addr = 0;
		break;
	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
		iodev.regions = vgic_v3_rdbase_registers;
		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
		iodev.base_addr = 0;
		break;
	}
834 835 836 837 838 839
	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
		u64 reg, id;

		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
	}
840 841 842 843 844 845 846 847 848 849 850 851 852 853
	default:
		return -ENXIO;
	}

	/* We only support aligned 32-bit accesses. */
	if (addr & 3)
		return -ENXIO;

	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
	if (!region)
		return -ENXIO;

	return 0;
}
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 * generation register ICC_SGI1R_EL1) with a given VCPU.
 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 * return -1.
 */
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
	unsigned long affinity;
	int level0;

	/*
	 * Split the current VCPU's MPIDR into affinity level 0 and the
	 * rest as this is what we have to compare against.
	 */
	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
	affinity &= ~MPIDR_LEVEL_MASK;

	/* bail out if the upper three levels don't match */
	if (sgi_aff != affinity)
		return -1;

	/* Is this VCPU's bit set in the mask ? */
	if (!(sgi_cpu_mask & BIT(level0)))
		return -1;

	return level0;
}

/*
 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 * so provide a wrapper to use the existing defines to isolate a certain
 * affinity level.
 */
#define SGI_AFFINITY_LEVEL(reg, level) \
	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))

/**
 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 * @vcpu: The VCPU requesting a SGI
896 897
 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
898 899 900 901 902 903 904 905 906
 *
 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 * This will trap in sys_regs.c and call this function.
 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 * target processors as well as a bitmask of 16 Aff0 CPUs.
 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 * check for matching ones. If this bit is set, we signal all, but not the
 * calling VCPU.
 */
907
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
908 909 910 911 912 913 914 915
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *c_vcpu;
	u16 target_cpus;
	u64 mpidr;
	int sgi, c;
	int vcpu_id = vcpu->vcpu_id;
	bool broadcast;
916
	unsigned long flags;
917 918

	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
919
	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);

	/*
	 * We iterate over all VCPUs to find the MPIDRs matching the request.
	 * If we have handled one CPU, we clear its bit to detect early
	 * if we are already finished. This avoids iterating through all
	 * VCPUs when most of the times we just signal a single VCPU.
	 */
	kvm_for_each_vcpu(c, c_vcpu, kvm) {
		struct vgic_irq *irq;

		/* Exit early if we have dealt with all requested CPUs */
		if (!broadcast && target_cpus == 0)
			break;

		/* Don't signal the calling VCPU */
		if (broadcast && c == vcpu_id)
			continue;

		if (!broadcast) {
			int level0;

			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
			if (level0 == -1)
				continue;

			/* remove this matching VCPU from the mask */
			target_cpus &= ~BIT(level0);
		}

		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);

955
		raw_spin_lock_irqsave(&irq->irq_lock, flags);
956

957 958 959 960 961 962 963 964 965
		/*
		 * An access targetting Group0 SGIs can only generate
		 * those, while an access targetting Group1 SGIs can
		 * generate interrupts of either group.
		 */
		if (!irq->group || allow_group1) {
			irq->pending_latch = true;
			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
		} else {
966
			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
967 968
		}

969
		vgic_put_irq(vcpu->kvm, irq);
970 971
	}
}
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
			 int offset, u32 *val)
{
	struct vgic_io_device dev = {
		.regions = vgic_v3_dist_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
	};

	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
}

int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
			   int offset, u32 *val)
{
	struct vgic_io_device rd_dev = {
		.regions = vgic_v3_rdbase_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
	};

	struct vgic_io_device sgi_dev = {
		.regions = vgic_v3_sgibase_registers,
		.nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
	};

	/* SGI_base is the next 64K frame after RD_base */
	if (offset >= SZ_64K)
		return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
				    val);
	else
		return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
				    u32 intid, u64 *val)
{
	if (intid % 32)
		return -EINVAL;

	if (is_write)
		vgic_write_irq_line_level_info(vcpu, intid, *val);
	else
		*val = vgic_read_irq_line_level_info(vcpu, intid);

	return 0;
}