internal.h 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 1994 Linus Torvalds
 *
 * Pentium III FXSR, SSE support
 * General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 * x86-64 work by Andi Kleen 2002
 */

10 11
#ifndef _ASM_X86_FPU_INTERNAL_H
#define _ASM_X86_FPU_INTERNAL_H
12 13

#include <linux/regset.h>
14
#include <linux/compat.h>
15
#include <linux/sched.h>
16
#include <linux/slab.h>
17

18
#include <asm/user.h>
19
#include <asm/fpu/api.h>
20
#include <asm/fpu/xsave.h>
21

22 23 24
#ifdef CONFIG_X86_64
# include <asm/sigcontext32.h>
# include <asm/user32.h>
A
Al Viro 已提交
25 26
struct ksignal;
int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
27
			compat_sigset_t *set, struct pt_regs *regs);
A
Al Viro 已提交
28
int ia32_setup_frame(int sig, struct ksignal *ksig,
29 30 31 32 33 34 35 36
		     compat_sigset_t *set, struct pt_regs *regs);
#else
# define user_i387_ia32_struct	user_i387_struct
# define user32_fxsr_struct	user_fxsr_struct
# define ia32_setup_frame	__setup_frame
# define ia32_setup_rt_frame	__setup_rt_frame
#endif

37 38
#define	MXCSR_DEFAULT		0x1f80

39
extern unsigned int mxcsr_feature_mask;
I
Ingo Molnar 已提交
40
extern void fpu__init_cpu(void);
41
extern void eager_fpu_init(void);
42

43 44
extern void fpu__init_system_xstate(void);
extern void fpu__init_cpu_xstate(void);
45
extern void fpu__init_system(struct cpuinfo_x86 *c);
46

47 48 49 50 51 52 53 54 55
extern int fpstate_alloc_init(struct fpu *fpu);
extern void fpstate_init(struct fpu *fpu);
extern void fpu__clear(struct task_struct *tsk);

extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
extern void fpu__restore(void);
extern void fpu__init_check_bugs(void);
extern void fpu__resume_cpu(void);

56
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
57

58 59 60 61 62
extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
			      struct task_struct *tsk);
extern void convert_to_fxsr(struct task_struct *tsk,
			    const struct user_i387_ia32_struct *env);

63
extern user_regset_active_fn regset_fpregs_active, regset_xregset_fpregs_active;
64 65 66 67 68 69
extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
				xstateregs_get;
extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
				 xstateregs_set;

/*
70 71
 * xstateregs_active == regset_fpregs_active. Please refer to the comment
 * at the definition of regset_fpregs_active.
72
 */
73
#define xstateregs_active	regset_fpregs_active
74 75 76 77 78 79 80

#ifdef CONFIG_MATH_EMULATION
extern void finit_soft_fpu(struct i387_soft_struct *soft);
#else
static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
#endif

81
/*
82
 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
83 84 85 86 87 88 89
 * on this CPU.
 *
 * This will disable any lazy FPU state restore of the current FPU state,
 * but if the current thread owns the FPU, it will still be saved by.
 */
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
{
90
	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
91 92
}

93
static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
94
{
95
	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
static inline int is_ia32_compat_frame(void)
{
	return config_enabled(CONFIG_IA32_EMULATION) &&
	       test_thread_flag(TIF_IA32);
}

static inline int is_ia32_frame(void)
{
	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
}

static inline int is_x32_frame(void)
{
	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
}

114 115
#define X87_FSW_ES (1 << 7)	/* Exception Summary */

116 117
static __always_inline __pure bool use_eager_fpu(void)
{
118
	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
119 120
}

121 122
static __always_inline __pure bool use_xsaveopt(void)
{
123
	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
124 125 126 127
}

static __always_inline __pure bool use_xsave(void)
{
128
	return static_cpu_has_safe(X86_FEATURE_XSAVE);
129 130 131 132
}

static __always_inline __pure bool use_fxsr(void)
{
133
	return static_cpu_has_safe(X86_FEATURE_FXSR);
134 135
}

136 137 138
static inline void fx_finit(struct i387_fxsave_struct *fx)
{
	fx->cwd = 0x37f;
139
	fx->mxcsr = MXCSR_DEFAULT;
140 141
}

142 143 144 145 146 147 148 149 150
extern void __sanitize_i387_state(struct task_struct *);

static inline void sanitize_i387_state(struct task_struct *tsk)
{
	if (!use_xsaveopt())
		return;
	__sanitize_i387_state(tsk);
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#define user_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile(ASM_STAC "\n"					\
		     "1:" #insn "\n\t"					\
		     "2: " ASM_CLAC "\n"				\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
#define check_insn(insn, output, input...)				\
({									\
	int err;							\
	asm volatile("1:" #insn "\n\t"					\
		     "2:\n"						\
		     ".section .fixup,\"ax\"\n"				\
		     "3:  movl $-1,%[err]\n"				\
		     "    jmp  2b\n"					\
		     ".previous\n"					\
		     _ASM_EXTABLE(1b, 3b)				\
		     : [err] "=r" (err), output				\
		     : "0"(0), input);					\
	err;								\
})

static inline int fsave_user(struct i387_fsave_struct __user *fx)
183
{
184
	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
185 186 187 188
}

static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
{
189
	if (config_enabled(CONFIG_X86_32))
190
		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
191
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
192
		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
193

194
	/* See comment in fpu_fxsave() below. */
195
	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
196 197
}

198
static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
199
{
200 201 202 203
	if (config_enabled(CONFIG_X86_32))
		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
204

205 206 207
	/* See comment in fpu_fxsave() below. */
	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
208 209
}

210 211 212 213 214 215 216 217 218 219 220 221
static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
{
	if (config_enabled(CONFIG_X86_32))
		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));

	/* See comment in fpu_fxsave() below. */
	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
			  "m" (*fx));
}

222
static inline int frstor_checking(struct i387_fsave_struct *fx)
223
{
224
	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
225 226 227 228 229
}

static inline int frstor_user(struct i387_fsave_struct __user *fx)
{
	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
230 231 232 233
}

static inline void fpu_fxsave(struct fpu *fpu)
{
234
	if (config_enabled(CONFIG_X86_32))
235
		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
236
	else if (config_enabled(CONFIG_AS_FXSAVEQ))
237
		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	else {
		/* Using "rex64; fxsave %0" is broken because, if the memory
		 * operand uses any extended registers for addressing, a second
		 * REX prefix will be generated (to the assembler, rex64
		 * followed by semicolon is a separate instruction), and hence
		 * the 64-bitness is lost.
		 *
		 * Using "fxsaveq %0" would be the ideal choice, but is only
		 * supported starting with gas 2.16.
		 *
		 * Using, as a workaround, the properly prefixed form below
		 * isn't accepted by any binutils version so far released,
		 * complaining that the same type of prefix is used twice if
		 * an extended register is needed for addressing (fix submitted
		 * to mainline 2005-11-21).
		 *
254
		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
255 256 257 258 259 260
		 *
		 * This, however, we can work around by forcing the compiler to
		 * select an addressing mode that doesn't require extended
		 * registers.
		 */
		asm volatile( "rex64/fxsave (%[fx])"
261 262
			     : "=m" (fpu->state.fxsave)
			     : [fx] "R" (&fpu->state.fxsave));
263
	}
264 265 266 267
}

/*
 * These must be called with preempt disabled. Returns
268 269 270 271 272 273
 * 'true' if the FPU state is still intact and we can
 * keep registers active.
 *
 * The legacy FNSAVE instruction cleared all FPU state
 * unconditionally, so registers are essentially destroyed.
 * Modern FPU state can be kept in registers, if there are
274
 * no pending FP exceptions.
275
 */
276
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
277
{
278
	if (likely(use_xsave())) {
279
		xsave_state(&fpu->state.xsave);
280 281
		return 1;
	}
282

283 284 285
	if (likely(use_fxsr())) {
		fpu_fxsave(fpu);
		return 1;
286 287 288
	}

	/*
289 290
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to mark them inactive:
291
	 */
292
	asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave));
293 294

	return 0;
295 296
}

297 298
extern void fpu__save(struct fpu *fpu);

299 300 301
static inline int fpu_restore_checking(struct fpu *fpu)
{
	if (use_xsave())
302
		return fpu_xrstor_checking(&fpu->state.xsave);
303
	else if (use_fxsr())
304
		return fxrstor_checking(&fpu->state.fxsave);
305
	else
306
		return frstor_checking(&fpu->state.fsave);
307 308
}

309
static inline int restore_fpu_checking(struct fpu *fpu)
310
{
311 312 313 314 315
	/*
	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
	 * pending. Clear the x87 state here by setting it to fixed values.
	 * "m" is a random variable that should be in L1.
	 */
316
	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
317 318 319 320
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
321
			: : [addr] "m" (fpu->fpregs_active));
322
	}
323

324
	return fpu_restore_checking(fpu);
325 326 327
}

/* Must be paired with an 'stts' after! */
328
static inline void __fpregs_deactivate(struct fpu *fpu)
329
{
330
	fpu->fpregs_active = 0;
331
	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
332 333 334
}

/* Must be paired with a 'clts' before! */
335
static inline void __fpregs_activate(struct fpu *fpu)
336
{
337
	fpu->fpregs_active = 1;
338
	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * The question "does this thread have fpu access?"
 * is slightly racy, since preemption could come in
 * and revoke it immediately after the test.
 *
 * However, even in that very unlikely scenario,
 * we can just assume we have FPU access - typically
 * to save the FP state - we'll just take a #NM
 * fault and get the FPU access back.
 */
static inline int user_has_fpu(void)
{
	return current->thread.fpu.fpregs_active;
}

356 357 358 359 360 361 362
/*
 * Encapsulate the CR0.TS handling together with the
 * software flag.
 *
 * These generally need preemption protection to work,
 * do try to avoid using these on their own.
 */
363
static inline void fpregs_activate(struct fpu *fpu)
364
{
365
	if (!use_eager_fpu())
366 367
		clts();
	__fpregs_activate(fpu);
368 369
}

370
static inline void fpregs_deactivate(struct fpu *fpu)
371
{
372
	__fpregs_deactivate(fpu);
373
	if (!use_eager_fpu())
374
		stts();
375 376
}

377
static inline void drop_fpu(struct fpu *fpu)
378
{
379 380 381 382
	/*
	 * Forget coprocessor state..
	 */
	preempt_disable();
383
	fpu->counter = 0;
384

385
	if (fpu->fpregs_active) {
386 387 388 389
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
390
		fpregs_deactivate(fpu);
391 392
	}

393
	fpu->fpstate_active = 0;
394

395 396 397
	preempt_enable();
}

398 399 400
static inline void restore_init_xstate(void)
{
	if (use_xsave())
401
		xrstor_state(&init_xstate_ctx, -1);
402
	else
403
		fxrstor_checking(&init_xstate_ctx.i387);
404 405
}

406 407 408 409
/*
 * Reset the FPU state in the eager case and drop it in the lazy case (later use
 * will reinit it).
 */
410
static inline void fpu_reset_state(struct fpu *fpu)
411
{
412
	if (!use_eager_fpu())
413
		drop_fpu(fpu);
414 415
	else
		restore_init_xstate();
416 417
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * FPU state switching for scheduling.
 *
 * This is a two-stage process:
 *
 *  - switch_fpu_prepare() saves the old state and
 *    sets the new state of the CR0.TS bit. This is
 *    done within the context of the old process.
 *
 *  - switch_fpu_finish() restores the new state as
 *    necessary.
 */
typedef struct { int preload; } fpu_switch_t;

432 433
static inline fpu_switch_t
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
434 435 436
{
	fpu_switch_t fpu;

437 438 439 440
	/*
	 * If the task has used the math, pre-load the FPU on xsave processors
	 * or if the past 5 consecutive context-switches used math.
	 */
441
	fpu.preload = new_fpu->fpstate_active &&
442
		      (use_eager_fpu() || new_fpu->counter > 5);
443

444
	if (old_fpu->fpregs_active) {
445
		if (!copy_fpregs_to_fpstate(old_fpu))
446
			old_fpu->last_cpu = -1;
447
		else
448
			old_fpu->last_cpu = cpu;
449

450
		/* But leave fpu_fpregs_owner_ctx! */
451
		old_fpu->fpregs_active = 0;
452 453 454

		/* Don't change CR0.TS if we just switch! */
		if (fpu.preload) {
455
			new_fpu->counter++;
456
			__fpregs_activate(new_fpu);
457
			prefetch(&new_fpu->state);
458
		} else if (!use_eager_fpu())
459 460
			stts();
	} else {
461 462
		old_fpu->counter = 0;
		old_fpu->last_cpu = -1;
463
		if (fpu.preload) {
464
			new_fpu->counter++;
465
			if (fpu_want_lazy_restore(new_fpu, cpu))
466 467
				fpu.preload = 0;
			else
468
				prefetch(&new_fpu->state);
469
			fpregs_activate(new_fpu);
470 471 472 473 474 475 476 477 478 479 480
		}
	}
	return fpu;
}

/*
 * By the time this gets called, we've already cleared CR0.TS and
 * given the process the FPU if we are going to preload the FPU
 * state - all we need to do is to conditionally restore the register
 * state itself.
 */
481
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
482
{
483
	if (fpu_switch.preload) {
484
		if (unlikely(restore_fpu_checking(new_fpu)))
485
			fpu_reset_state(new_fpu);
486 487 488 489 490 491
	}
}

/*
 * Signal frame handlers...
 */
492 493
extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
494

495
static inline int xstate_sigframe_size(void)
496
{
497 498 499 500 501 502 503 504 505 506 507
	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
}

static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
{
	void __user *buf_fx = buf;
	int size = xstate_sigframe_size();

	if (ia32_frame && use_fxsr()) {
		buf_fx = buf + sizeof(struct i387_fsave_struct);
		size += sizeof(struct i387_fsave_struct);
508
	}
509 510

	return __restore_xstate_sig(buf, buf_fx, size);
511 512 513
}

/*
514
 * Needs to be preemption-safe.
515
 *
516
 * NOTE! user_fpu_begin() must be used only immediately before restoring
517 518 519
 * the save state. It does not do any saving/restoring on its own. In
 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
 * the task can lose the FPU right after preempt_enable().
520 521 522
 */
static inline void user_fpu_begin(void)
{
523 524
	struct fpu *fpu = &current->thread.fpu;

525 526
	preempt_disable();
	if (!user_has_fpu())
527
		fpregs_activate(fpu);
528 529 530 531 532 533 534 535 536
	preempt_enable();
}

/*
 * i387 state interaction
 */
static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
537
		return tsk->thread.fpu.state.fxsave.cwd;
538
	} else {
539
		return (unsigned short)tsk->thread.fpu.state.fsave.cwd;
540 541 542 543 544 545
	}
}

static inline unsigned short get_fpu_swd(struct task_struct *tsk)
{
	if (cpu_has_fxsr) {
546
		return tsk->thread.fpu.state.fxsave.swd;
547
	} else {
548
		return (unsigned short)tsk->thread.fpu.state.fsave.swd;
549 550 551 552 553 554
	}
}

static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
{
	if (cpu_has_xmm) {
555
		return tsk->thread.fpu.state.fxsave.mxcsr;
556 557 558 559 560
	} else {
		return MXCSR_DEFAULT;
	}
}

561
extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static inline unsigned long
alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
		unsigned long *size)
{
	unsigned long frame_size = xstate_sigframe_size();

	*buf_fx = sp = round_down(sp - frame_size, 64);
	if (ia32_frame && use_fxsr()) {
		frame_size += sizeof(struct i387_fsave_struct);
		sp -= sizeof(struct i387_fsave_struct);
	}

	*size = frame_size;
	return sp;
}
578

579
#endif /* _ASM_X86_FPU_INTERNAL_H */