target_core_transport.c 77.8 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
36
#include <linux/module.h>
37
#include <linux/ratelimit.h>
38 39 40 41 42
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
43
#include <scsi/scsi_tcq.h>
44 45

#include <target/target_core_base.h>
46 47
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
48 49
#include <target/target_core_configfs.h>

C
Christoph Hellwig 已提交
50
#include "target_core_internal.h"
51 52 53 54
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

55 56 57
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

58
static struct workqueue_struct *target_completion_wq;
59 60 61 62 63 64 65 66 67
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;

static void transport_complete_task_attr(struct se_cmd *cmd);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev);
70
static int transport_generic_get_mem(struct se_cmd *cmd);
71
static int transport_put_cmd(struct se_cmd *cmd);
72
static void target_complete_ok_work(struct work_struct *work);
73

74
int init_se_kmem_caches(void)
75 76 77 78
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
79 80
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
81
				" failed\n");
82
		goto out;
83 84 85 86
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
87 88
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
89
		goto out_free_sess_cache;
90 91 92 93
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
94 95
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
96
				" failed\n");
97
		goto out_free_ua_cache;
98 99 100 101
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
102 103
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104
				" failed\n");
105
		goto out_free_pr_reg_cache;
106 107 108 109
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 111
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112
				"cache failed\n");
113
		goto out_free_lu_gp_cache;
114 115 116 117
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 119
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120
				"cache failed\n");
121
		goto out_free_lu_gp_mem_cache;
122 123 124 125 126 127
	}
	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
			"t10_alua_tg_pt_gp_mem_cache",
			sizeof(struct t10_alua_tg_pt_gp_member),
			__alignof__(struct t10_alua_tg_pt_gp_member),
			0, NULL);
128 129
	if (!t10_alua_tg_pt_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130
				"mem_t failed\n");
131
		goto out_free_tg_pt_gp_cache;
132 133
	}

134 135 136 137 138
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
		goto out_free_tg_pt_gp_mem_cache;

139
	return 0;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

out_free_tg_pt_gp_mem_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
155
out:
156
	return -ENOMEM;
157 158
}

159
void release_se_kmem_caches(void)
160
{
161
	destroy_workqueue(target_completion_wq);
162 163 164 165 166 167 168 169 170
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
}

171 172 173
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
174 175 176 177 178 179 180 181

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

182
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
183

184 185 186
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
187 188 189 190

	return new_index;
}

191
void transport_subsystem_check_init(void)
192 193
{
	int ret;
194
	static int sub_api_initialized;
195

196 197 198
	if (sub_api_initialized)
		return;

199 200
	ret = request_module("target_core_iblock");
	if (ret != 0)
201
		pr_err("Unable to load target_core_iblock\n");
202 203 204

	ret = request_module("target_core_file");
	if (ret != 0)
205
		pr_err("Unable to load target_core_file\n");
206 207 208

	ret = request_module("target_core_pscsi");
	if (ret != 0)
209
		pr_err("Unable to load target_core_pscsi\n");
210

211
	sub_api_initialized = 1;
212 213 214 215 216 217 218
}

struct se_session *transport_init_session(void)
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
219 220
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
221 222 223 224 225
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
226
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
227
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
228
	spin_lock_init(&se_sess->sess_cmd_lock);
229
	kref_init(&se_sess->sess_kref);
230 231 232 233 234 235

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

/*
236
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
259
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
260
			memset(&buf[0], 0, PR_REG_ISID_LEN);
261
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
262 263 264
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
265 266
		kref_get(&se_nacl->acl_kref);

267 268 269 270 271 272 273 274 275 276 277 278 279
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

280
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
281
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
282 283 284 285 286 287 288 289 290
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
291 292 293
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
294
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
295
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
296 297 298
}
EXPORT_SYMBOL(transport_register_session);

299
static void target_release_session(struct kref *kref)
300 301 302 303 304 305 306 307 308 309 310 311 312 313
{
	struct se_session *se_sess = container_of(kref,
			struct se_session, sess_kref);
	struct se_portal_group *se_tpg = se_sess->se_tpg;

	se_tpg->se_tpg_tfo->close_session(se_sess);
}

void target_get_session(struct se_session *se_sess)
{
	kref_get(&se_sess->sess_kref);
}
EXPORT_SYMBOL(target_get_session);

314
void target_put_session(struct se_session *se_sess)
315
{
316 317 318 319 320 321
	struct se_portal_group *tpg = se_sess->se_tpg;

	if (tpg->se_tpg_tfo->put_session != NULL) {
		tpg->se_tpg_tfo->put_session(se_sess);
		return;
	}
322
	kref_put(&se_sess->sess_kref, target_release_session);
323 324 325
}
EXPORT_SYMBOL(target_put_session);

326 327 328 329 330 331 332 333 334 335 336 337 338
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);

	complete(&nacl->acl_free_comp);
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}

339 340 341
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
342
	unsigned long flags;
343 344 345 346
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
347
	if (se_nacl) {
348
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349 350
		if (se_nacl->acl_stop == 0)
			list_del(&se_sess->sess_acl_list);
351 352 353 354 355 356 357 358 359 360 361 362
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
363
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
364 365 366 367 368 369 370 371 372 373 374 375 376
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
377
	struct target_core_fabric_ops *se_tfo;
378
	struct se_node_acl *se_nacl;
379
	unsigned long flags;
380
	bool comp_nacl = true;
381

382
	if (!se_tpg) {
383 384 385
		transport_free_session(se_sess);
		return;
	}
386
	se_tfo = se_tpg->se_tpg_tfo;
387

388
	spin_lock_irqsave(&se_tpg->session_lock, flags);
389 390 391
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
392
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
393 394 395 396 397 398

	/*
	 * Determine if we need to do extra work for this initiator node's
	 * struct se_node_acl if it had been previously dynamically generated.
	 */
	se_nacl = se_sess->se_node_acl;
399 400 401 402 403 404 405 406 407 408 409 410 411

	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
	if (se_nacl && se_nacl->dynamic_node_acl) {
		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			list_del(&se_nacl->acl_list);
			se_tpg->num_node_acls--;
			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
			core_tpg_wait_for_nacl_pr_ref(se_nacl);
			core_free_device_list_for_node(se_nacl, se_tpg);
			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);

			comp_nacl = false;
			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 413
		}
	}
414
	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415

416
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417
		se_tpg->se_tpg_tfo->get_fabric_name());
418
	/*
419 420 421
	 * If last kref is dropping now for an explict NodeACL, awake sleeping
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
	 * removal context.
422 423
	 */
	if (se_nacl && comp_nacl == true)
424
		target_put_nacl(se_nacl);
425

426
	transport_free_session(se_sess);
427 428 429 430
}
EXPORT_SYMBOL(transport_deregister_session);

/*
431
 * Called with cmd->t_state_lock held.
432
 */
433
static void target_remove_from_state_list(struct se_cmd *cmd)
434
{
435
	struct se_device *dev = cmd->se_dev;
436 437
	unsigned long flags;

438 439
	if (!dev)
		return;
440

441 442
	if (cmd->transport_state & CMD_T_BUSY)
		return;
443

444 445 446 447
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
448
	}
449
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
450 451
}

452 453
static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
				    bool write_pending)
454 455 456
{
	unsigned long flags;

457
	spin_lock_irqsave(&cmd->t_state_lock, flags);
458 459 460
	if (write_pending)
		cmd->t_state = TRANSPORT_WRITE_PENDING;

461 462 463 464
	/*
	 * Determine if IOCTL context caller in requesting the stopping of this
	 * command for LUN shutdown purposes.
	 */
465 466 467
	if (cmd->transport_state & CMD_T_LUN_STOP) {
		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
468

469
		cmd->transport_state &= ~CMD_T_ACTIVE;
470
		if (remove_from_lists)
471
			target_remove_from_state_list(cmd);
472
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
473

474
		complete(&cmd->transport_lun_stop_comp);
475 476
		return 1;
	}
477 478 479 480 481 482 483 484 485 486

	if (remove_from_lists) {
		target_remove_from_state_list(cmd);

		/*
		 * Clear struct se_cmd->se_lun before the handoff to FE.
		 */
		cmd->se_lun = NULL;
	}

487 488
	/*
	 * Determine if frontend context caller is requesting the stopping of
489
	 * this command for frontend exceptions.
490
	 */
491 492 493
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
494
			cmd->se_tfo->get_task_tag(cmd));
495

496
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
497

498
		complete(&cmd->t_transport_stop_comp);
499 500
		return 1;
	}
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	cmd->transport_state &= ~CMD_T_ACTIVE;
	if (remove_from_lists) {
		/*
		 * Some fabric modules like tcm_loop can release
		 * their internally allocated I/O reference now and
		 * struct se_cmd now.
		 *
		 * Fabric modules are expected to return '1' here if the
		 * se_cmd being passed is released at this point,
		 * or zero if not being released.
		 */
		if (cmd->se_tfo->check_stop_free != NULL) {
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
			return cmd->se_tfo->check_stop_free(cmd);
516
		}
517
	}
518

519
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520 521 522 523 524
	return 0;
}

static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
525
	return transport_cmd_check_stop(cmd, true, false);
526 527 528 529
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
530
	struct se_lun *lun = cmd->se_lun;
531 532 533 534 535 536
	unsigned long flags;

	if (!lun)
		return;

	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537 538
	if (!list_empty(&cmd->se_lun_node))
		list_del_init(&cmd->se_lun_node);
539 540 541 542 543 544 545
	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
}

void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
	if (transport_cmd_check_stop_to_fabric(cmd))
		return;
546
	if (remove)
547
		transport_put_cmd(cmd);
548 549
}

550 551 552 553
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

554 555
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
556 557
}

558
/*
559 560
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
561
 */
562
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
563 564 565 566 567 568
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
569
		return NULL;
570

571 572
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
573

574
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
575

576
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
577
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
578
	return cmd->sense_buffer;
579 580
}

581
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
582
{
583
	struct se_device *dev = cmd->se_dev;
584
	int success = scsi_status == GOOD;
585 586
	unsigned long flags;

587 588 589
	cmd->scsi_status = scsi_status;


590
	spin_lock_irqsave(&cmd->t_state_lock, flags);
591
	cmd->transport_state &= ~CMD_T_BUSY;
592 593

	if (dev && dev->transport->transport_complete) {
594 595 596 597
		dev->transport->transport_complete(cmd,
				cmd->t_data_sg,
				transport_get_sense_buffer(cmd));
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
598 599 600 601
			success = 1;
	}

	/*
602
	 * See if we are waiting to complete for an exception condition.
603
	 */
604
	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
605
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606
		complete(&cmd->task_stop_comp);
607 608
		return;
	}
609 610

	if (!success)
611
		cmd->transport_state |= CMD_T_FAILED;
612

613 614 615 616 617 618 619 620 621 622
	/*
	 * Check for case where an explict ABORT_TASK has been received
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
	if (cmd->transport_state & CMD_T_ABORTED &&
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		complete(&cmd->t_transport_stop_comp);
		return;
	} else if (cmd->transport_state & CMD_T_FAILED) {
623
		INIT_WORK(&cmd->work, target_complete_failure_work);
624
	} else {
625
		INIT_WORK(&cmd->work, target_complete_ok_work);
626
	}
627 628

	cmd->t_state = TRANSPORT_COMPLETE;
629
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
630
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631

632
	queue_work(target_completion_wq, &cmd->work);
633
}
634 635
EXPORT_SYMBOL(target_complete_cmd);

636
static void target_add_to_state_list(struct se_cmd *cmd)
637
{
638 639
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
640

641 642 643 644
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
645
	}
646
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
647 648
}

649
/*
650
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
651
 */
652 653
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
654

655
void target_qf_do_work(struct work_struct *work)
656 657 658
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
659
	LIST_HEAD(qf_cmd_list);
660 661 662
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
663 664
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
665

666
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
667 668 669 670
		list_del(&cmd->se_qf_node);
		atomic_dec(&dev->dev_qf_count);
		smp_mb__after_atomic_dec();

671
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
672
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
673
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
674 675
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
676

677 678 679 680
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
			transport_complete_qf(cmd);
681 682 683
	}
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
708
	if (dev->export_count)
709
		*bl += sprintf(b + *bl, "ACTIVATED");
710
	else
711 712
		*bl += sprintf(b + *bl, "DEACTIVATED");

713
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
714
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
715 716
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
770
		pr_debug("%s", buf);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
795 796
	int ret = 0;
	int len;
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
813
		ret = -EINVAL;
814 815 816 817 818 819
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
820
		pr_debug("%s", buf);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
843 844
	int ret = 0;
	int len;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
871
		ret = -EINVAL;
872 873 874
		break;
	}

875 876 877
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
878
		strncpy(p_buf, buf, p_buf_len);
879
	} else {
880
		pr_debug("%s", buf);
881
	}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
910 911
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
912 913 914
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
915 916
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
917 918 919
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
920 921
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
922 923 924 925 926
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
927
		ret = -EINVAL;
928 929 930 931 932 933
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
934
		pr_debug("%s", buf);
935 936 937 938 939 940 941 942

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
943
	int j = 0, i = 4; /* offset to start of the identifier */
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

976 977
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 979 980 981 982 983 984 985 986 987 988 989 990 991
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

		if (cmd->data_direction == DMA_TO_DEVICE) {
			pr_err("Rejecting underflow/overflow"
					" WRITE data\n");
992
			return TCM_INVALID_CDB_FIELD;
993 994 995 996 997
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
998
		if (dev->dev_attrib.block_size != 512)  {
999 1000 1001 1002
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003
			return TCM_INVALID_CDB_FIELD;
1004
		}
1005 1006 1007 1008 1009 1010
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1011 1012 1013 1014 1015 1016
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1017
			cmd->data_length = size;
1018 1019 1020 1021 1022 1023 1024
		}
	}

	return 0;

}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
	struct target_core_fabric_ops *tfo,
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1038 1039
	INIT_LIST_HEAD(&cmd->se_lun_node);
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1040
	INIT_LIST_HEAD(&cmd->se_qf_node);
1041
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1042
	INIT_LIST_HEAD(&cmd->state_list);
1043 1044 1045
	init_completion(&cmd->transport_lun_fe_stop_comp);
	init_completion(&cmd->transport_lun_stop_comp);
	init_completion(&cmd->t_transport_stop_comp);
1046
	init_completion(&cmd->cmd_wait_comp);
1047
	init_completion(&cmd->task_stop_comp);
1048
	spin_lock_init(&cmd->t_state_lock);
1049
	cmd->transport_state = CMD_T_DEV_ACTIVE;
1050 1051 1052 1053 1054 1055 1056

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1057 1058

	cmd->state_active = false;
1059 1060 1061
}
EXPORT_SYMBOL(transport_init_se_cmd);

1062 1063
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1064
{
1065 1066
	struct se_device *dev = cmd->se_dev;

1067 1068 1069 1070
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1071
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072 1073
		return 0;

1074
	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075
		pr_debug("SAM Task Attribute ACA"
1076
			" emulation is not supported\n");
1077
		return TCM_INVALID_CDB_FIELD;
1078 1079 1080 1081 1082
	}
	/*
	 * Used to determine when ORDERED commands should go from
	 * Dormant to Active status.
	 */
1083
	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084
	smp_mb__after_atomic_inc();
1085
	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086
			cmd->se_ordered_id, cmd->sam_task_attr,
1087
			dev->transport->name);
1088 1089 1090
	return 0;
}

1091 1092
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093
{
1094
	struct se_device *dev = cmd->se_dev;
1095
	sense_reason_t ret;
1096 1097 1098 1099 1100 1101

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1102
		pr_err("Received SCSI CDB with command_size: %d that"
1103 1104
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1105
		return TCM_INVALID_CDB_FIELD;
1106 1107 1108 1109 1110 1111
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1112 1113
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1114
						GFP_KERNEL);
1115 1116
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1117
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1118
				scsi_command_size(cdb),
1119
				(unsigned long)sizeof(cmd->__t_task_cdb));
1120
			return TCM_OUT_OF_RESOURCES;
1121 1122
		}
	} else
1123
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1124
	/*
1125
	 * Copy the original CDB into cmd->
1126
	 */
1127
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1128

1129 1130
	trace_target_sequencer_start(cmd);

1131 1132 1133
	/*
	 * Check for an existing UNIT ATTENTION condition
	 */
1134 1135 1136
	ret = target_scsi3_ua_check(cmd);
	if (ret)
		return ret;
1137

C
Christoph Hellwig 已提交
1138
	ret = target_alua_state_check(cmd);
1139 1140
	if (ret)
		return ret;
1141

1142
	ret = target_check_reservation(cmd);
1143 1144
	if (ret) {
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1145
		return ret;
1146
	}
1147

1148
	ret = dev->transport->parse_cdb(cmd);
1149 1150 1151 1152 1153
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1154
		return ret;
1155 1156 1157

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;

1158 1159 1160 1161 1162 1163
	spin_lock(&cmd->se_lun->lun_sep_lock);
	if (cmd->se_lun->lun_sep)
		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
	spin_unlock(&cmd->se_lun->lun_sep_lock);
	return 0;
}
1164
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1165

1166 1167 1168 1169 1170 1171 1172
/*
 * Used by fabric module frontends to queue tasks directly.
 * Many only be used from process context only
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1173
	sense_reason_t ret;
1174

1175 1176
	if (!cmd->se_lun) {
		dump_stack();
1177
		pr_err("cmd->se_lun is NULL\n");
1178 1179 1180 1181
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1182
		pr_err("transport_generic_handle_cdb cannot be called"
1183 1184 1185
				" from interrupt context\n");
		return -EINVAL;
	}
1186
	/*
1187 1188 1189
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1190 1191 1192 1193 1194
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1195 1196
	cmd->transport_state |= CMD_T_ACTIVE;

1197 1198 1199 1200 1201 1202
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1203 1204
	if (ret)
		transport_generic_request_failure(cmd, ret);
1205
	return 0;
1206 1207 1208
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;

	if (sgl_bidi && sgl_bidi_count) {
		cmd->t_bidi_data_sg = sgl_bidi;
		cmd->t_bidi_data_nents = sgl_bidi_count;
	}
	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1238 1239 1240
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1251 1252 1253 1254
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1255
 *
1256 1257 1258 1259
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1260 1261
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1262 1263
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1264
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1265 1266 1267
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1268 1269
{
	struct se_portal_group *se_tpg;
1270 1271
	sense_reason_t rc;
	int ret;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1284 1285
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1286 1287 1288 1289 1290 1291
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1292 1293 1294
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret)
		return ret;
1295 1296 1297 1298 1299 1300 1301 1302
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1303 1304 1305
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1306
		target_put_sess_cmd(se_sess, se_cmd);
1307
		return 0;
1308
	}
1309

1310
	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1311
	if (rc != 0) {
1312
		transport_generic_request_failure(se_cmd, rc);
1313
		return 0;
1314
	}
1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1344 1345 1346
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1347
			transport_generic_request_failure(se_cmd, rc);
1348 1349 1350
			return 0;
		}
	}
1351 1352 1353 1354 1355 1356
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1357
	transport_handle_cdb_direct(se_cmd);
1358
	return 0;
1359
}
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
			flags, NULL, 0, NULL, 0);
}
1392 1393
EXPORT_SYMBOL(target_submit_cmd);

1394 1395 1396 1397 1398 1399
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1400 1401

	transport_cmd_check_stop_to_fabric(se_cmd);
1402 1403
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1414 1415
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1416
 * @flags: submit cmd flags
1417 1418 1419 1420
 *
 * Callable from all contexts.
 **/

1421
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1422
		unsigned char *sense, u32 unpacked_lun,
1423 1424
		void *fabric_tmr_ptr, unsigned char tm_type,
		gfp_t gfp, unsigned int tag, int flags)
1425 1426 1427 1428 1429 1430 1431 1432 1433
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1434 1435 1436 1437
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1438
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1439 1440
	if (ret < 0)
		return -ENOMEM;
1441

1442 1443 1444
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1445
	/* See target_submit_cmd for commentary */
1446 1447 1448 1449 1450
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1451 1452 1453

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
	if (ret) {
1454 1455 1456 1457 1458 1459
		/*
		 * For callback during failure handling, push this work off
		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
		 */
		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
		schedule_work(&se_cmd->work);
1460
		return 0;
1461 1462
	}
	transport_generic_handle_tmr(se_cmd);
1463
	return 0;
1464 1465 1466
}
EXPORT_SYMBOL(target_submit_tmr);

1467
/*
1468
 * If the cmd is active, request it to be stopped and sleep until it
1469 1470
 * has completed.
 */
1471
bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1472 1473 1474
{
	bool was_active = false;

1475 1476
	if (cmd->transport_state & CMD_T_BUSY) {
		cmd->transport_state |= CMD_T_REQUEST_STOP;
1477 1478
		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);

1479 1480 1481
		pr_debug("cmd %p waiting to complete\n", cmd);
		wait_for_completion(&cmd->task_stop_comp);
		pr_debug("cmd %p stopped successfully\n", cmd);
1482 1483

		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1484 1485
		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
		cmd->transport_state &= ~CMD_T_BUSY;
1486 1487 1488 1489 1490 1491
		was_active = true;
	}

	return was_active;
}

1492 1493 1494
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1495 1496
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1497
{
1498 1499
	int ret = 0;

1500
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1501
		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1502
		cmd->t_task_cdb[0]);
1503
	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1504
		cmd->se_tfo->get_cmd_state(cmd),
1505
		cmd->t_state, sense_reason);
1506
	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1507 1508 1509
		(cmd->transport_state & CMD_T_ACTIVE) != 0,
		(cmd->transport_state & CMD_T_STOP) != 0,
		(cmd->transport_state & CMD_T_SENT) != 0);
1510 1511 1512 1513

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1514
	transport_complete_task_attr(cmd);
1515

1516
	switch (sense_reason) {
1517 1518 1519 1520
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1521
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1522 1523 1524
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1525
	case TCM_ADDRESS_OUT_OF_RANGE:
1526 1527 1528
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1529
		break;
1530 1531 1532
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1533
	case TCM_RESERVATION_CONFLICT:
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1548
		if (cmd->se_sess &&
1549
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1550
			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1551 1552 1553
				cmd->orig_fe_lun, 0x2C,
				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);

1554 1555
		trace_target_cmd_complete(cmd);
		ret = cmd->se_tfo-> queue_status(cmd);
1556
		if (ret == -EAGAIN || ret == -ENOMEM)
1557
			goto queue_full;
1558 1559
		goto check_stop;
	default:
1560
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1561 1562
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1563 1564
		break;
	}
1565

1566
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1567 1568
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;
1569

1570 1571
check_stop:
	transport_lun_remove_cmd(cmd);
1572
	if (!transport_cmd_check_stop_to_fabric(cmd))
1573
		;
1574 1575 1576
	return;

queue_full:
1577 1578
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1579
}
1580
EXPORT_SYMBOL(transport_generic_request_failure);
1581

1582
static void __target_execute_cmd(struct se_cmd *cmd)
1583
{
1584
	sense_reason_t ret;
1585

1586 1587 1588 1589 1590 1591
	if (cmd->execute_cmd) {
		ret = cmd->execute_cmd(cmd);
		if (ret) {
			spin_lock_irq(&cmd->t_state_lock);
			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
			spin_unlock_irq(&cmd->t_state_lock);
1592

1593 1594
			transport_generic_request_failure(cmd, ret);
		}
1595 1596 1597
	}
}

1598
static bool target_handle_task_attr(struct se_cmd *cmd)
1599 1600 1601
{
	struct se_device *dev = cmd->se_dev;

1602 1603
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return false;
1604

1605
	/*
L
Lucas De Marchi 已提交
1606
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1607 1608
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1609 1610 1611 1612 1613
	switch (cmd->sam_task_attr) {
	case MSG_HEAD_TAG:
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
			 "se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1614
		return false;
1615 1616
	case MSG_ORDERED_TAG:
		atomic_inc(&dev->dev_ordered_sync);
1617 1618
		smp_mb__after_atomic_inc();

1619 1620 1621 1622
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
			 " se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);

1623
		/*
1624 1625
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1626
		 */
1627
		if (!atomic_read(&dev->simple_cmds))
1628
			return false;
1629 1630
		break;
	default:
1631 1632 1633
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1634
		atomic_inc(&dev->simple_cmds);
1635
		smp_mb__after_atomic_inc();
1636
		break;
1637
	}
1638

1639 1640
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1641

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
		" delayed CMD list, se_ordered_id: %u\n",
		cmd->t_task_cdb[0], cmd->sam_task_attr,
		cmd->se_ordered_id);
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * If the received CDB has aleady been aborted stop processing it here.
	 */
1658 1659
	if (transport_check_aborted_status(cmd, 1)) {
		complete(&cmd->transport_lun_stop_comp);
1660
		return;
1661 1662 1663
	}

	/*
1664 1665
	 * Determine if IOCTL context caller in requesting the stopping of this
	 * command for LUN shutdown purposes.
1666
	 */
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	spin_lock_irq(&cmd->t_state_lock);
	if (cmd->transport_state & CMD_T_LUN_STOP) {
		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));

		cmd->transport_state &= ~CMD_T_ACTIVE;
		spin_unlock_irq(&cmd->t_state_lock);
		complete(&cmd->transport_lun_stop_comp);
		return;
	}
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
			cmd->se_tfo->get_task_tag(cmd));

		spin_unlock_irq(&cmd->t_state_lock);
		complete(&cmd->t_transport_stop_comp);
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1692
	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1693 1694
	spin_unlock_irq(&cmd->t_state_lock);

1695 1696 1697 1698 1699 1700 1701 1702
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

	__target_execute_cmd(cmd);
1703
}
1704
EXPORT_SYMBOL(target_execute_cmd);
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

		__target_execute_cmd(cmd);

		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
			break;
	}
}

1733
/*
1734
 * Called from I/O completion to determine which dormant/delayed
1735 1736 1737 1738
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
1739
	struct se_device *dev = cmd->se_dev;
1740

1741 1742 1743
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return;

1744
	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1745 1746 1747
		atomic_dec(&dev->simple_cmds);
		smp_mb__after_atomic_dec();
		dev->dev_cur_ordered_id++;
1748
		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1749 1750
			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1751
	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1752
		dev->dev_cur_ordered_id++;
1753
		pr_debug("Incremented dev_cur_ordered_id: %u for"
1754 1755
			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1756
	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1757 1758 1759 1760
		atomic_dec(&dev->dev_ordered_sync);
		smp_mb__after_atomic_dec();

		dev->dev_cur_ordered_id++;
1761
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1762 1763 1764
			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
	}

1765
	target_restart_delayed_cmds(dev);
1766 1767
}

1768
static void transport_complete_qf(struct se_cmd *cmd)
1769 1770 1771
{
	int ret = 0;

1772
	transport_complete_task_attr(cmd);
1773 1774

	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1775
		trace_target_cmd_complete(cmd);
1776 1777 1778 1779
		ret = cmd->se_tfo->queue_status(cmd);
		if (ret)
			goto out;
	}
1780 1781 1782

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
1783
		trace_target_cmd_complete(cmd);
1784 1785 1786
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
1787
		if (cmd->t_bidi_data_sg) {
1788 1789
			ret = cmd->se_tfo->queue_data_in(cmd);
			if (ret < 0)
1790
				break;
1791 1792 1793
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1794
		trace_target_cmd_complete(cmd);
1795 1796 1797 1798 1799 1800
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

1801 1802 1803 1804 1805 1806 1807
out:
	if (ret < 0) {
		transport_handle_queue_full(cmd, cmd->se_dev);
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1808 1809 1810 1811
}

static void transport_handle_queue_full(
	struct se_cmd *cmd,
1812
	struct se_device *dev)
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
{
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
	atomic_inc(&dev->dev_qf_count);
	smp_mb__after_atomic_inc();
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

1823
static void target_complete_ok_work(struct work_struct *work)
1824
{
1825
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1826
	int ret;
1827

1828 1829 1830 1831 1832
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
1833 1834
	transport_complete_task_attr(cmd);

1835 1836 1837 1838 1839 1840 1841
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

1842
	/*
1843
	 * Check if we need to send a sense buffer from
1844 1845 1846
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1847 1848 1849 1850 1851 1852 1853 1854 1855
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
		if (ret == -EAGAIN || ret == -ENOMEM)
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
1856 1857
	}
	/*
L
Lucas De Marchi 已提交
1858
	 * Check for a callback, used by amongst other things
1859 1860 1861 1862 1863 1864 1865 1866
	 * XDWRITE_READ_10 emulation.
	 */
	if (cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd);

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1867 1868
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1869 1870 1871 1872
					cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);

1873
		trace_target_cmd_complete(cmd);
1874
		ret = cmd->se_tfo->queue_data_in(cmd);
1875
		if (ret == -EAGAIN || ret == -ENOMEM)
1876
			goto queue_full;
1877 1878 1879
		break;
	case DMA_TO_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1880 1881
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1882 1883 1884 1885 1886 1887
				cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
1888
		if (cmd->t_bidi_data_sg) {
1889
			spin_lock(&cmd->se_lun->lun_sep_lock);
1890 1891
			if (cmd->se_lun->lun_sep) {
				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1892 1893 1894
					cmd->data_length;
			}
			spin_unlock(&cmd->se_lun->lun_sep_lock);
1895
			ret = cmd->se_tfo->queue_data_in(cmd);
1896
			if (ret == -EAGAIN || ret == -ENOMEM)
1897
				goto queue_full;
1898 1899 1900 1901
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1902
		trace_target_cmd_complete(cmd);
1903
		ret = cmd->se_tfo->queue_status(cmd);
1904
		if (ret == -EAGAIN || ret == -ENOMEM)
1905
			goto queue_full;
1906 1907 1908 1909 1910 1911 1912
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1913 1914 1915
	return;

queue_full:
1916
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1917
		" data_direction: %d\n", cmd, cmd->data_direction);
1918 1919
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1920 1921
}

1922
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1923
{
1924 1925
	struct scatterlist *sg;
	int count;
1926

1927 1928
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
1929

1930 1931
	kfree(sgl);
}
1932

1933 1934 1935 1936 1937 1938
static inline void transport_free_pages(struct se_cmd *cmd)
{
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
		return;

	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1939 1940
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
1941

1942
	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1943 1944
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
1945 1946
}

C
Christoph Hellwig 已提交
1947 1948 1949 1950 1951 1952 1953
/**
 * transport_release_cmd - free a command
 * @cmd:       command to free
 *
 * This routine unconditionally frees a command, and reference counting
 * or list removal must be done in the caller.
 */
1954
static int transport_release_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
1955 1956 1957
{
	BUG_ON(!cmd->se_tfo);

1958
	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
C
Christoph Hellwig 已提交
1959 1960 1961 1962
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
	/*
1963 1964
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
1965
	 */
1966
	return target_put_sess_cmd(cmd->se_sess, cmd);
C
Christoph Hellwig 已提交
1967 1968
}

1969 1970 1971 1972 1973 1974
/**
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
 *
 * This routine releases our reference to the command and frees it if possible.
 */
1975
static int transport_put_cmd(struct se_cmd *cmd)
1976 1977
{
	transport_free_pages(cmd);
1978
	return transport_release_cmd(cmd);
1979 1980
}

1981
void *transport_kmap_data_sg(struct se_cmd *cmd)
1982
{
1983
	struct scatterlist *sg = cmd->t_data_sg;
1984 1985
	struct page **pages;
	int i;
1986 1987

	/*
1988 1989 1990
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
1991
	 */
1992 1993
	if (!cmd->t_data_nents)
		return NULL;
1994 1995 1996

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
1997 1998 1999 2000
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2001
	if (!pages)
2002 2003 2004 2005 2006 2007 2008 2009 2010
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2011
	if (!cmd->t_data_vmap)
2012 2013 2014
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2015
}
2016
EXPORT_SYMBOL(transport_kmap_data_sg);
2017

2018
void transport_kunmap_data_sg(struct se_cmd *cmd)
2019
{
2020
	if (!cmd->t_data_nents) {
2021
		return;
2022
	} else if (cmd->t_data_nents == 1) {
2023
		kunmap(sg_page(cmd->t_data_sg));
2024 2025
		return;
	}
2026 2027 2028

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2029
}
2030
EXPORT_SYMBOL(transport_kunmap_data_sg);
2031

2032
static int
2033
transport_generic_get_mem(struct se_cmd *cmd)
2034
{
2035 2036 2037
	u32 length = cmd->data_length;
	unsigned int nents;
	struct page *page;
2038
	gfp_t zero_flag;
2039
	int i = 0;
2040

2041 2042 2043 2044
	nents = DIV_ROUND_UP(length, PAGE_SIZE);
	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
	if (!cmd->t_data_sg)
		return -ENOMEM;
2045

2046 2047
	cmd->t_data_nents = nents;
	sg_init_table(cmd->t_data_sg, nents);
2048

2049
	zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2050

2051 2052
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2053
		page = alloc_page(GFP_KERNEL | zero_flag);
2054 2055
		if (!page)
			goto out;
2056

2057 2058 2059
		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
		length -= page_len;
		i++;
2060 2061 2062
	}
	return 0;

2063
out:
2064
	while (i > 0) {
2065
		i--;
2066
		__free_page(sg_page(&cmd->t_data_sg[i]));
2067
	}
2068 2069 2070
	kfree(cmd->t_data_sg);
	cmd->t_data_sg = NULL;
	return -ENOMEM;
2071 2072
}

2073
/*
2074 2075 2076
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2077
 */
2078 2079
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2080 2081 2082 2083 2084 2085
{
	int ret = 0;

	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2086
	 * beforehand.
2087
	 */
2088 2089
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2090
		ret = transport_generic_get_mem(cmd);
2091
		if (ret < 0)
2092
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2093 2094
	}
	/*
2095 2096 2097
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2098
	 */
2099
	target_add_to_state_list(cmd);
2100 2101 2102 2103
	if (cmd->data_direction != DMA_TO_DEVICE) {
		target_execute_cmd(cmd);
		return 0;
	}
2104
	transport_cmd_check_stop(cmd, false, true);
2105 2106 2107 2108 2109

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;

2110 2111 2112
	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
	WARN_ON(ret);

2113
	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2114

2115 2116 2117 2118 2119
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
	transport_handle_queue_full(cmd, cmd->se_dev);
	return 0;
2120
}
2121
EXPORT_SYMBOL(transport_generic_new_cmd);
2122

2123
static void transport_write_pending_qf(struct se_cmd *cmd)
2124
{
2125 2126 2127 2128
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM) {
2129 2130 2131 2132
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
		transport_handle_queue_full(cmd, cmd->se_dev);
	}
2133 2134
}

2135
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2136
{
2137
	unsigned long flags;
2138 2139
	int ret = 0;

2140
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2141
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2142 2143
			 transport_wait_for_tasks(cmd);

2144
		ret = transport_release_cmd(cmd);
2145 2146 2147
	} else {
		if (wait_for_tasks)
			transport_wait_for_tasks(cmd);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
		if (cmd->state_active) {
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			target_remove_from_state_list(cmd);
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		}
2158

2159
		if (cmd->se_lun)
2160 2161
			transport_lun_remove_cmd(cmd);

2162
		ret = transport_put_cmd(cmd);
2163
	}
2164
	return ret;
2165 2166 2167
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2168 2169 2170
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to add
2171
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2172
 */
2173
int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2174
			       bool ack_kref)
2175 2176
{
	unsigned long flags;
2177
	int ret = 0;
2178

2179
	kref_init(&se_cmd->cmd_kref);
2180 2181 2182 2183 2184
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2185
	if (ack_kref == true) {
2186
		kref_get(&se_cmd->cmd_kref);
2187 2188
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2189

2190
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2191 2192 2193 2194
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2195
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2196
out:
2197
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2198
	return ret;
2199
}
2200
EXPORT_SYMBOL(target_get_sess_cmd);
2201

2202
static void target_release_cmd_kref(struct kref *kref)
2203
{
2204 2205
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2206 2207

	if (list_empty(&se_cmd->se_cmd_list)) {
2208
		spin_unlock(&se_sess->sess_cmd_lock);
2209
		se_cmd->se_tfo->release_cmd(se_cmd);
2210
		return;
2211 2212
	}
	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2213
		spin_unlock(&se_sess->sess_cmd_lock);
2214
		complete(&se_cmd->cmd_wait_comp);
2215
		return;
2216 2217
	}
	list_del(&se_cmd->se_cmd_list);
2218
	spin_unlock(&se_sess->sess_cmd_lock);
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228
	se_cmd->se_tfo->release_cmd(se_cmd);
}

/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to drop
 */
int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
{
2229 2230
	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
			&se_sess->sess_cmd_lock);
2231 2232 2233
}
EXPORT_SYMBOL(target_put_sess_cmd);

2234 2235 2236 2237
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2238
 */
2239
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2240 2241 2242 2243 2244
{
	struct se_cmd *se_cmd;
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2245 2246 2247 2248
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2249
	se_sess->sess_tearing_down = 1;
2250
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2251

2252
	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2253 2254 2255 2256
		se_cmd->cmd_wait_set = 1;

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2257
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2258 2259 2260 2261

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2262
void target_wait_for_sess_cmds(struct se_session *se_sess)
2263 2264
{
	struct se_cmd *se_cmd, *tmp_cmd;
2265
	unsigned long flags;
2266 2267

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2268
				&se_sess->sess_wait_list, se_cmd_list) {
2269 2270 2271 2272 2273 2274
		list_del(&se_cmd->se_cmd_list);

		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2275 2276 2277 2278
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2279 2280 2281

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2282 2283 2284 2285 2286

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2287 2288 2289
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2290 2291 2292 2293 2294 2295 2296 2297
/*	transport_lun_wait_for_tasks():
 *
 *	Called from ConfigFS context to stop the passed struct se_cmd to allow
 *	an struct se_lun to be successfully shutdown.
 */
static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
{
	unsigned long flags;
2298 2299
	int ret = 0;

2300 2301 2302 2303
	/*
	 * If the frontend has already requested this struct se_cmd to
	 * be stopped, we can safely ignore this struct se_cmd.
	 */
2304
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2305 2306 2307 2308 2309
	if (cmd->transport_state & CMD_T_STOP) {
		cmd->transport_state &= ~CMD_T_LUN_STOP;

		pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
			 cmd->se_tfo->get_task_tag(cmd));
2310
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2311
		transport_cmd_check_stop(cmd, false, false);
2312
		return -EPERM;
2313
	}
2314
	cmd->transport_state |= CMD_T_LUN_FE_STOP;
2315
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2316

2317 2318 2319 2320 2321 2322 2323
	// XXX: audit task_flags checks.
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if ((cmd->transport_state & CMD_T_BUSY) &&
	    (cmd->transport_state & CMD_T_SENT)) {
		if (!target_stop_cmd(cmd, &flags))
			ret++;
	}
2324
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2325

2326 2327
	pr_debug("ConfigFS: cmd: %p stop tasks ret:"
			" %d\n", cmd, ret);
2328
	if (!ret) {
2329
		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2330
				cmd->se_tfo->get_task_tag(cmd));
2331
		wait_for_completion(&cmd->transport_lun_stop_comp);
2332
		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2333
				cmd->se_tfo->get_task_tag(cmd));
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	}

	return 0;
}

static void __transport_clear_lun_from_sessions(struct se_lun *lun)
{
	struct se_cmd *cmd = NULL;
	unsigned long lun_flags, cmd_flags;
	/*
	 * Do exception processing and return CHECK_CONDITION status to the
	 * Initiator Port.
	 */
	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2348 2349 2350
	while (!list_empty(&lun->lun_cmd_list)) {
		cmd = list_first_entry(&lun->lun_cmd_list,
		       struct se_cmd, se_lun_node);
2351
		list_del_init(&cmd->se_lun_node);
2352

2353
		spin_lock(&cmd->t_state_lock);
2354
		pr_debug("SE_LUN[%d] - Setting cmd->transport"
2355
			"_lun_stop for  ITT: 0x%08x\n",
2356 2357
			cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
2358
		cmd->transport_state |= CMD_T_LUN_STOP;
2359
		spin_unlock(&cmd->t_state_lock);
2360 2361 2362

		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);

2363 2364
		if (!cmd->se_lun) {
			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2365 2366
				cmd->se_tfo->get_task_tag(cmd),
				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2367 2368 2369 2370 2371 2372
			BUG();
		}
		/*
		 * If the Storage engine still owns the iscsi_cmd_t, determine
		 * and/or stop its context.
		 */
2373
		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2374 2375
			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
2376

2377
		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2378 2379 2380 2381
			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
			continue;
		}

2382
		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2383
			"_wait_for_tasks(): SUCCESS\n",
2384 2385
			cmd->se_lun->unpacked_lun,
			cmd->se_tfo->get_task_tag(cmd));
2386

2387
		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2388
		if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2389
			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2390 2391
			goto check_cond;
		}
2392
		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2393
		target_remove_from_state_list(cmd);
2394
		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

		/*
		 * The Storage engine stopped this struct se_cmd before it was
		 * send to the fabric frontend for delivery back to the
		 * Initiator Node.  Return this SCSI CDB back with an
		 * CHECK_CONDITION status.
		 */
check_cond:
		transport_send_check_condition_and_sense(cmd,
				TCM_NON_EXISTENT_LUN, 0);
		/*
		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
		 * be released, notify the waiting thread now that LU has
		 * finished accessing it.
		 */
2410
		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2411
		if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2412
			pr_debug("SE_LUN[%d] - Detected FE stop for"
2413 2414
				" struct se_cmd: %p ITT: 0x%08x\n",
				lun->unpacked_lun,
2415
				cmd, cmd->se_tfo->get_task_tag(cmd));
2416

2417
			spin_unlock_irqrestore(&cmd->t_state_lock,
2418
					cmd_flags);
2419
			transport_cmd_check_stop(cmd, false, false);
2420
			complete(&cmd->transport_lun_fe_stop_comp);
2421 2422 2423
			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
			continue;
		}
2424
		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2425
			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2426

2427
		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2428 2429 2430 2431 2432 2433 2434
		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
	}
	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
}

static int transport_clear_lun_thread(void *p)
{
J
Jörn Engel 已提交
2435
	struct se_lun *lun = p;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

	__transport_clear_lun_from_sessions(lun);
	complete(&lun->lun_shutdown_comp);

	return 0;
}

int transport_clear_lun_from_sessions(struct se_lun *lun)
{
	struct task_struct *kt;

2447
	kt = kthread_run(transport_clear_lun_thread, lun,
2448 2449
			"tcm_cl_%u", lun->unpacked_lun);
	if (IS_ERR(kt)) {
2450
		pr_err("Unable to start clear_lun thread\n");
2451
		return PTR_ERR(kt);
2452 2453 2454 2455 2456 2457
	}
	wait_for_completion(&lun->lun_shutdown_comp);

	return 0;
}

2458 2459 2460
/**
 * transport_wait_for_tasks - wait for completion to occur
 * @cmd:	command to wait
2461
 *
2462 2463
 * Called from frontend fabric context to wait for storage engine
 * to pause and/or release frontend generated struct se_cmd.
2464
 */
2465
bool transport_wait_for_tasks(struct se_cmd *cmd)
2466 2467 2468
{
	unsigned long flags;

2469
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2470 2471
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2472
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2473
		return false;
2474
	}
2475

2476 2477
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2478
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2479
		return false;
2480
	}
2481 2482 2483
	/*
	 * If we are already stopped due to an external event (ie: LUN shutdown)
	 * sleep until the connection can have the passed struct se_cmd back.
2484
	 * The cmd->transport_lun_stopped_sem will be upped by
2485 2486 2487
	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
	 * has completed its operation on the struct se_cmd.
	 */
2488
	if (cmd->transport_state & CMD_T_LUN_STOP) {
2489
		pr_debug("wait_for_tasks: Stopping"
2490
			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
2491
			"_stop_comp); for ITT: 0x%08x\n",
2492
			cmd->se_tfo->get_task_tag(cmd));
2493 2494 2495 2496 2497 2498 2499
		/*
		 * There is a special case for WRITES where a FE exception +
		 * LUN shutdown means ConfigFS context is still sleeping on
		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
		 * We go ahead and up transport_lun_stop_comp just to be sure
		 * here.
		 */
2500 2501 2502 2503
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		complete(&cmd->transport_lun_stop_comp);
		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
		spin_lock_irqsave(&cmd->t_state_lock, flags);
2504

2505
		target_remove_from_state_list(cmd);
2506 2507 2508 2509 2510
		/*
		 * At this point, the frontend who was the originator of this
		 * struct se_cmd, now owns the structure and can be released through
		 * normal means below.
		 */
2511
		pr_debug("wait_for_tasks: Stopped"
2512
			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2513
			"stop_comp); for ITT: 0x%08x\n",
2514
			cmd->se_tfo->get_task_tag(cmd));
2515

2516
		cmd->transport_state &= ~CMD_T_LUN_STOP;
2517
	}
2518

2519
	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2520
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521
		return false;
2522
	}
2523

2524
	cmd->transport_state |= CMD_T_STOP;
2525

2526
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2527
		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2528 2529
		cmd, cmd->se_tfo->get_task_tag(cmd),
		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2530

2531
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2532

2533
	wait_for_completion(&cmd->t_transport_stop_comp);
2534

2535
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2536
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2537

2538
	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2539
		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2540
		cmd->se_tfo->get_task_tag(cmd));
2541

2542
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2543 2544

	return true;
2545
}
2546
EXPORT_SYMBOL(transport_wait_for_tasks);
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

static int transport_get_sense_codes(
	struct se_cmd *cmd,
	u8 *asc,
	u8 *ascq)
{
	*asc = cmd->scsi_asc;
	*ascq = cmd->scsi_ascq;

	return 0;
}

2559 2560 2561
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
2562 2563 2564 2565 2566
{
	unsigned char *buffer = cmd->sense_buffer;
	unsigned long flags;
	u8 asc = 0, ascq = 0;

2567
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2568
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2569
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2570 2571 2572
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2573
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2574 2575 2576 2577 2578 2579

	if (!reason && from_transport)
		goto after_reason;

	if (!from_transport)
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2580

2581 2582 2583 2584 2585
	/*
	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
	 * SENSE KEY values from include/scsi/scsi.h
	 */
	switch (reason) {
H
Hannes Reinecke 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	case TCM_NO_SENSE:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* Not Ready */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
		/* NO ADDITIONAL SENSE INFORMATION */
		buffer[SPC_ASC_KEY_OFFSET] = 0;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
		break;
2596
	case TCM_NON_EXISTENT_LUN:
2597
		/* CURRENT ERROR */
2598 2599
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2600
		/* ILLEGAL REQUEST */
2601
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2602
		/* LOGICAL UNIT NOT SUPPORTED */
2603
		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2604
		break;
2605 2606 2607
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_SECTOR_COUNT_TOO_MANY:
		/* CURRENT ERROR */
2608 2609
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2610
		/* ILLEGAL REQUEST */
2611
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2612
		/* INVALID COMMAND OPERATION CODE */
2613
		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2614 2615 2616
		break;
	case TCM_UNKNOWN_MODE_PAGE:
		/* CURRENT ERROR */
2617 2618
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2619
		/* ILLEGAL REQUEST */
2620
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2621
		/* INVALID FIELD IN CDB */
2622
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2623 2624 2625
		break;
	case TCM_CHECK_CONDITION_ABORT_CMD:
		/* CURRENT ERROR */
2626 2627
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2628
		/* ABORTED COMMAND */
2629
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2630
		/* BUS DEVICE RESET FUNCTION OCCURRED */
2631 2632
		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2633 2634 2635
		break;
	case TCM_INCORRECT_AMOUNT_OF_DATA:
		/* CURRENT ERROR */
2636 2637
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2638
		/* ABORTED COMMAND */
2639
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2640
		/* WRITE ERROR */
2641
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2642
		/* NOT ENOUGH UNSOLICITED DATA */
2643
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2644 2645 2646
		break;
	case TCM_INVALID_CDB_FIELD:
		/* CURRENT ERROR */
2647 2648
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2649
		/* ILLEGAL REQUEST */
2650
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2651
		/* INVALID FIELD IN CDB */
2652
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2653 2654 2655
		break;
	case TCM_INVALID_PARAMETER_LIST:
		/* CURRENT ERROR */
2656 2657
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2658
		/* ILLEGAL REQUEST */
2659
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2660
		/* INVALID FIELD IN PARAMETER LIST */
2661
		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2662
		break;
2663 2664 2665 2666 2667 2668 2669 2670 2671
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* PARAMETER LIST LENGTH ERROR */
		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
		break;
2672 2673
	case TCM_UNEXPECTED_UNSOLICITED_DATA:
		/* CURRENT ERROR */
2674 2675
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2676
		/* ABORTED COMMAND */
2677
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2678
		/* WRITE ERROR */
2679
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2680
		/* UNEXPECTED_UNSOLICITED_DATA */
2681
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2682 2683 2684
		break;
	case TCM_SERVICE_CRC_ERROR:
		/* CURRENT ERROR */
2685 2686
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2687
		/* ABORTED COMMAND */
2688
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2689
		/* PROTOCOL SERVICE CRC ERROR */
2690
		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2691
		/* N/A */
2692
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2693 2694 2695
		break;
	case TCM_SNACK_REJECTED:
		/* CURRENT ERROR */
2696 2697
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698
		/* ABORTED COMMAND */
2699
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2700
		/* READ ERROR */
2701
		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2702
		/* FAILED RETRANSMISSION REQUEST */
2703
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2704 2705 2706
		break;
	case TCM_WRITE_PROTECTED:
		/* CURRENT ERROR */
2707 2708
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2709
		/* DATA PROTECT */
2710
		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2711
		/* WRITE PROTECTED */
2712
		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2713
		break;
2714 2715
	case TCM_ADDRESS_OUT_OF_RANGE:
		/* CURRENT ERROR */
2716 2717
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2718
		/* ILLEGAL REQUEST */
2719
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2720
		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2721
		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2722
		break;
2723 2724
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
		/* CURRENT ERROR */
2725 2726
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2727
		/* UNIT ATTENTION */
2728
		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2729
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2730 2731
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2732 2733 2734
		break;
	case TCM_CHECK_CONDITION_NOT_READY:
		/* CURRENT ERROR */
2735 2736
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2737
		/* Not Ready */
2738
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2739
		transport_get_sense_codes(cmd, &asc, &ascq);
2740 2741
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2742 2743 2744 2745
		break;
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	default:
		/* CURRENT ERROR */
2746 2747
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2748 2749 2750 2751 2752 2753 2754
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2755
		/* LOGICAL UNIT COMMUNICATION FAILURE */
2756
		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
		break;
	}
	/*
	 * This code uses linux/include/scsi/scsi.h SAM status codes!
	 */
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	/*
	 * Automatically padded, this value is encoded in the fabric's
	 * data_length response PDU containing the SCSI defined sense data.
	 */
2767
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2768 2769

after_reason:
2770
	trace_target_cmd_complete(cmd);
2771
	return cmd->se_tfo->queue_status(cmd);
2772 2773 2774 2775 2776
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
2777 2778
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
2779

2780 2781
	if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
		return 1;
2782

2783 2784
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
		 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2785

2786
	cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2787
	trace_target_cmd_complete(cmd);
2788 2789 2790
	cmd->se_tfo->queue_status(cmd);

	return 1;
2791 2792 2793 2794 2795
}
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
2796 2797 2798
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
2799
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2800 2801 2802 2803 2804
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

2805 2806 2807 2808 2809 2810 2811
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
2812
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2813
			cmd->transport_state |= CMD_T_ABORTED;
2814 2815 2816 2817
			smp_mb__after_atomic_inc();
		}
	}
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2818

2819 2820
	transport_lun_remove_cmd(cmd);

2821
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2822
		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
2823
		cmd->se_tfo->get_task_tag(cmd));
2824

2825
	trace_target_cmd_complete(cmd);
2826
	cmd->se_tfo->queue_status(cmd);
2827 2828
}

2829
static void target_tmr_work(struct work_struct *work)
2830
{
2831
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2832
	struct se_device *dev = cmd->se_dev;
2833 2834 2835 2836
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

	switch (tmr->function) {
2837
	case TMR_ABORT_TASK:
2838
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2839
		break;
2840 2841 2842
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
2843 2844
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
2845
	case TMR_LUN_RESET:
2846 2847 2848 2849
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
		break;
2850
	case TMR_TARGET_WARM_RESET:
2851 2852
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
2853
	case TMR_TARGET_COLD_RESET:
2854 2855 2856
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
2857
		pr_err("Uknown TMR function: 0x%02x.\n",
2858 2859 2860 2861 2862 2863
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2864
	cmd->se_tfo->queue_tm_rsp(cmd);
2865

2866
	transport_cmd_check_stop_to_fabric(cmd);
2867 2868
}

2869 2870
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
2871
{
2872 2873
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2874 2875
	return 0;
}
2876
EXPORT_SYMBOL(transport_generic_handle_tmr);