i915_scheduler.c 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2018 Intel Corporation
 */

#include <linux/mutex.h>

#include "i915_drv.h"
10
#include "i915_globals.h"
11 12 13
#include "i915_request.h"
#include "i915_scheduler.h"

14
static struct i915_global_scheduler {
15
	struct i915_global base;
16 17 18 19
	struct kmem_cache *slab_dependencies;
	struct kmem_cache *slab_priorities;
} global;

20 21 22 23 24 25 26 27
static DEFINE_SPINLOCK(schedule_lock);

static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
	return container_of(node, const struct i915_request, sched);
}

28 29 30 31 32
static inline bool node_started(const struct i915_sched_node *node)
{
	return i915_request_started(node_to_request(node));
}

33 34 35 36 37 38 39 40 41 42
static inline bool node_signaled(const struct i915_sched_node *node)
{
	return i915_request_completed(node_to_request(node));
}

static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

43
static void assert_priolists(struct intel_engine_execlists * const execlists)
44 45 46 47 48 49 50 51 52 53
{
	struct rb_node *rb;
	long last_prio, i;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
		   rb_first(&execlists->queue.rb_root));

54
	last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		const struct i915_priolist *p = to_priolist(rb);

		GEM_BUG_ON(p->priority >= last_prio);
		last_prio = p->priority;

		GEM_BUG_ON(!p->used);
		for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
			if (list_empty(&p->requests[i]))
				continue;

			GEM_BUG_ON(!(p->used & BIT(i)));
		}
	}
}

struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;
	int idx, i;

80
	lockdep_assert_held(&engine->active.lock);
81
	assert_priolists(execlists);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

	/* buckets sorted from highest [in slot 0] to lowest priority */
	idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
	prio >>= I915_USER_PRIORITY_SHIFT;
	if (unlikely(execlists->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	parent = &execlists->queue.rb_root.rb_node;
	while (*parent) {
		rb = *parent;
		p = to_priolist(rb);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
			goto out;
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
		p = &execlists->default_priolist;
	} else {
109
		p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			execlists->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	for (i = 0; i < ARRAY_SIZE(p->requests); i++)
		INIT_LIST_HEAD(&p->requests[i]);
	rb_link_node(&p->node, rb, parent);
	rb_insert_color_cached(&p->node, &execlists->queue, first);
	p->used = 0;

out:
	p->used |= BIT(idx);
	return &p->requests[idx];
}

139 140 141 142 143
void __i915_priolist_free(struct i915_priolist *p)
{
	kmem_cache_free(global.slab_priorities, p);
}

144 145 146 147
struct sched_cache {
	struct list_head *priolist;
};

148
static struct intel_engine_cs *
149 150 151
sched_lock_engine(const struct i915_sched_node *node,
		  struct intel_engine_cs *locked,
		  struct sched_cache *cache)
152
{
153 154
	const struct i915_request *rq = node_to_request(node);
	struct intel_engine_cs *engine;
155 156 157

	GEM_BUG_ON(!locked);

158 159 160 161 162 163 164
	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	while (locked != (engine = READ_ONCE(rq->engine))) {
165
		spin_unlock(&locked->active.lock);
166
		memset(cache, 0, sizeof(*cache));
167
		spin_lock(&engine->active.lock);
168
		locked = engine;
169 170
	}

171 172
	GEM_BUG_ON(locked != engine);
	return locked;
173 174
}

175
static inline int rq_prio(const struct i915_request *rq)
176
{
177 178 179
	return rq->sched.attr.priority | __NO_PREEMPTION;
}

180
static inline bool need_preempt(int prio, int active)
181
{
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * Allow preemption of low -> normal -> high, but we do
	 * not allow low priority tasks to preempt other low priority
	 * tasks under the impression that latency for low priority
	 * tasks does not matter (as much as background throughput),
	 * so kiss.
	 */
	return prio >= max(I915_PRIORITY_NORMAL, active);
}

static void kick_submission(struct intel_engine_cs *engine,
			    const struct i915_request *rq,
			    int prio)
{
	const struct i915_request *inflight;

	/*
	 * We only need to kick the tasklet once for the high priority
	 * new context we add into the queue.
	 */
	if (prio <= engine->execlists.queue_priority_hint)
		return;

	rcu_read_lock();

	/* Nothing currently active? We're overdue for a submission! */
	inflight = execlists_active(&engine->execlists);
	if (!inflight)
		goto unlock;
211

212 213 214 215 216 217 218
	/*
	 * If we are already the currently executing context, don't
	 * bother evaluating if we should preempt ourselves, or if
	 * we expect nothing to change as a result of running the
	 * tasklet, i.e. we have not change the priority queue
	 * sufficiently to oust the running context.
	 */
219 220
	if (inflight->hw_context == rq->hw_context)
		goto unlock;
221

222 223 224 225 226 227
	engine->execlists.queue_priority_hint = prio;
	if (need_preempt(prio, rq_prio(inflight)))
		tasklet_hi_schedule(&engine->execlists.tasklet);

unlock:
	rcu_read_unlock();
228 229
}

230
static void __i915_schedule(struct i915_sched_node *node,
231
			    const struct i915_sched_attr *attr)
232
{
233
	struct intel_engine_cs *engine;
234 235 236
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	const int prio = attr->priority;
237
	struct sched_cache cache;
238 239
	LIST_HEAD(dfs);

240 241
	/* Needed in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&schedule_lock);
242 243
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

244
	if (prio <= READ_ONCE(node->attr.priority))
245 246
		return;

247
	if (node_signaled(node))
248 249
		return;

250
	stack.signaler = node;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
	list_add(&stack.dfs_link, &dfs);

	/*
	 * Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	queue_request(node);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry(dep, &dfs, dfs_link) {
		struct i915_sched_node *node = dep->signaler;

274 275 276 277
		/* If we are already flying, we know we have no signalers */
		if (node_started(node))
			continue;

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &node->signalers_list, signal_link) {
			GEM_BUG_ON(p == dep); /* no cycles! */

			if (node_signaled(p->signaler))
				continue;

			if (prio > READ_ONCE(p->signaler->attr.priority))
				list_move_tail(&p->dfs_link, &dfs);
		}
	}

	/*
	 * If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
301 302 303
	if (node->attr.priority == I915_PRIORITY_INVALID) {
		GEM_BUG_ON(!list_empty(&node->link));
		node->attr = *attr;
304 305

		if (stack.dfs_link.next == stack.dfs_link.prev)
306
			return;
307 308 309 310

		__list_del_entry(&stack.dfs_link);
	}

311
	memset(&cache, 0, sizeof(cache));
312
	engine = node_to_request(node)->engine;
313
	spin_lock(&engine->active.lock);
314 315

	/* Fifo and depth-first replacement ensure our deps execute before us */
316
	engine = sched_lock_engine(node, engine, &cache);
317 318 319
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		INIT_LIST_HEAD(&dep->dfs_link);

320
		node = dep->signaler;
321
		engine = sched_lock_engine(node, engine, &cache);
322
		lockdep_assert_held(&engine->active.lock);
323 324 325 326 327

		/* Recheck after acquiring the engine->timeline.lock */
		if (prio <= node->attr.priority || node_signaled(node))
			continue;

328 329
		GEM_BUG_ON(node_to_request(node)->engine != engine);

330
		node->attr.priority = prio;
331 332

		if (list_empty(&node->link)) {
333 334 335 336 337 338 339 340
			/*
			 * If the request is not in the priolist queue because
			 * it is not yet runnable, then it doesn't contribute
			 * to our preemption decisions. On the other hand,
			 * if the request is on the HW, it too is not in the
			 * queue; but in that case we may still need to reorder
			 * the inflight requests.
			 */
341 342 343 344 345 346 347 348 349 350
			continue;
		}

		if (!intel_engine_is_virtual(engine) &&
		    !i915_request_is_active(node_to_request(node))) {
			if (!cache.priolist)
				cache.priolist =
					i915_sched_lookup_priolist(engine,
								   prio);
			list_move_tail(&node->link, cache.priolist);
351 352 353
		}

		/* Defer (tasklet) submission until after all of our updates. */
354
		kick_submission(engine, node_to_request(node), prio);
355 356
	}

357
	spin_unlock(&engine->active.lock);
358
}
359

360 361
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
362
	spin_lock_irq(&schedule_lock);
363
	__i915_schedule(&rq->sched, attr);
364
	spin_unlock_irq(&schedule_lock);
365
}
366

367 368 369 370 371 372 373 374
static void __bump_priority(struct i915_sched_node *node, unsigned int bump)
{
	struct i915_sched_attr attr = node->attr;

	attr.priority |= bump;
	__i915_schedule(node, &attr);
}

375 376
void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
{
377
	unsigned long flags;
378 379

	GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);
380
	if (READ_ONCE(rq->sched.attr.priority) & bump)
381 382
		return;

383
	spin_lock_irqsave(&schedule_lock, flags);
384
	__bump_priority(&rq->sched, bump);
385
	spin_unlock_irqrestore(&schedule_lock, flags);
386
}
387

388
void i915_sched_node_init(struct i915_sched_node *node)
389
{
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	INIT_LIST_HEAD(&node->signalers_list);
	INIT_LIST_HEAD(&node->waiters_list);
	INIT_LIST_HEAD(&node->link);
	node->attr.priority = I915_PRIORITY_INVALID;
	node->semaphores = 0;
	node->flags = 0;
}

static struct i915_dependency *
i915_dependency_alloc(void)
{
	return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct i915_dependency *dep)
{
	kmem_cache_free(global.slab_dependencies, dep);
}

bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
				      struct i915_sched_node *signal,
				      struct i915_dependency *dep,
				      unsigned long flags)
{
	bool ret = false;

	spin_lock_irq(&schedule_lock);

	if (!node_signaled(signal)) {
		INIT_LIST_HEAD(&dep->dfs_link);
		list_add(&dep->wait_link, &signal->waiters_list);
		list_add(&dep->signal_link, &node->signalers_list);
		dep->signaler = signal;
424
		dep->waiter = node;
425 426 427 428 429 430 431
		dep->flags = flags;

		/* Keep track of whether anyone on this chain has a semaphore */
		if (signal->flags & I915_SCHED_HAS_SEMAPHORE_CHAIN &&
		    !node_started(signal))
			node->flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;

432 433 434 435 436 437 438 439 440 441
		/*
		 * As we do not allow WAIT to preempt inflight requests,
		 * once we have executed a request, along with triggering
		 * any execution callbacks, we must preserve its ordering
		 * within the non-preemptible FIFO.
		 */
		BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK);
		if (flags & I915_DEPENDENCY_EXTERNAL)
			__bump_priority(signal, __NO_PREEMPTION);

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
		ret = true;
	}

	spin_unlock_irq(&schedule_lock);

	return ret;
}

int i915_sched_node_add_dependency(struct i915_sched_node *node,
				   struct i915_sched_node *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc();
	if (!dep)
		return -ENOMEM;

	if (!__i915_sched_node_add_dependency(node, signal, dep,
460
					      I915_DEPENDENCY_EXTERNAL |
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
					      I915_DEPENDENCY_ALLOC))
		i915_dependency_free(dep);

	return 0;
}

void i915_sched_node_fini(struct i915_sched_node *node)
{
	struct i915_dependency *dep, *tmp;

	spin_lock_irq(&schedule_lock);

	/*
	 * Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
		GEM_BUG_ON(!node_signaled(dep->signaler));
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
		GEM_BUG_ON(dep->signaler != node);
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(dep);
	}

	spin_unlock_irq(&schedule_lock);
499 500
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
static void i915_global_scheduler_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_priorities);
}

static void i915_global_scheduler_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_priorities);
}

static struct i915_global_scheduler global = { {
	.shrink = i915_global_scheduler_shrink,
	.exit = i915_global_scheduler_exit,
} };

518 519 520 521 522 523 524 525 526 527 528 529
int __init i915_global_scheduler_init(void)
{
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN);
	if (!global.slab_dependencies)
		return -ENOMEM;

	global.slab_priorities = KMEM_CACHE(i915_priolist,
					    SLAB_HWCACHE_ALIGN);
	if (!global.slab_priorities)
		goto err_priorities;

530
	i915_global_register(&global.base);
531 532 533 534 535 536
	return 0;

err_priorities:
	kmem_cache_destroy(global.slab_priorities);
	return -ENOMEM;
}