i915_scheduler.c 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * SPDX-License-Identifier: MIT
 *
 * Copyright © 2018 Intel Corporation
 */

#include <linux/mutex.h>

#include "i915_drv.h"
#include "i915_request.h"
#include "i915_scheduler.h"

static DEFINE_SPINLOCK(schedule_lock);

static const struct i915_request *
node_to_request(const struct i915_sched_node *node)
{
	return container_of(node, const struct i915_request, sched);
}

static inline bool node_signaled(const struct i915_sched_node *node)
{
	return i915_request_completed(node_to_request(node));
}

void i915_sched_node_init(struct i915_sched_node *node)
{
	INIT_LIST_HEAD(&node->signalers_list);
	INIT_LIST_HEAD(&node->waiters_list);
	INIT_LIST_HEAD(&node->link);
	node->attr.priority = I915_PRIORITY_INVALID;
}

static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
				      struct i915_sched_node *signal,
				      struct i915_dependency *dep,
				      unsigned long flags)
{
	bool ret = false;

	spin_lock(&schedule_lock);

	if (!node_signaled(signal)) {
		INIT_LIST_HEAD(&dep->dfs_link);
		list_add(&dep->wait_link, &signal->waiters_list);
		list_add(&dep->signal_link, &node->signalers_list);
		dep->signaler = signal;
		dep->flags = flags;

		ret = true;
	}

	spin_unlock(&schedule_lock);

	return ret;
}

int i915_sched_node_add_dependency(struct drm_i915_private *i915,
				   struct i915_sched_node *node,
				   struct i915_sched_node *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	if (!__i915_sched_node_add_dependency(node, signal, dep,
					      I915_DEPENDENCY_ALLOC))
		i915_dependency_free(i915, dep);

	return 0;
}

void i915_sched_node_fini(struct drm_i915_private *i915,
			  struct i915_sched_node *node)
{
	struct i915_dependency *dep, *tmp;

	GEM_BUG_ON(!list_empty(&node->link));

	spin_lock(&schedule_lock);

	/*
	 * Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
		GEM_BUG_ON(!node_signaled(dep->signaler));
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
		GEM_BUG_ON(dep->signaler != node);
		GEM_BUG_ON(!list_empty(&dep->dfs_link));

		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	spin_unlock(&schedule_lock);
}

static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

130
static void assert_priolists(struct intel_engine_execlists * const execlists)
131 132 133 134 135 136 137 138 139 140
{
	struct rb_node *rb;
	long last_prio, i;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
		   rb_first(&execlists->queue.rb_root));

141
	last_prio = (INT_MAX >> I915_USER_PRIORITY_SHIFT) + 1;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		const struct i915_priolist *p = to_priolist(rb);

		GEM_BUG_ON(p->priority >= last_prio);
		last_prio = p->priority;

		GEM_BUG_ON(!p->used);
		for (i = 0; i < ARRAY_SIZE(p->requests); i++) {
			if (list_empty(&p->requests[i]))
				continue;

			GEM_BUG_ON(!(p->used & BIT(i)));
		}
	}
}

struct list_head *
i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;
	int idx, i;

	lockdep_assert_held(&engine->timeline.lock);
168
	assert_priolists(execlists);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	/* buckets sorted from highest [in slot 0] to lowest priority */
	idx = I915_PRIORITY_COUNT - (prio & I915_PRIORITY_MASK) - 1;
	prio >>= I915_USER_PRIORITY_SHIFT;
	if (unlikely(execlists->no_priolist))
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	parent = &execlists->queue.rb_root.rb_node;
	while (*parent) {
		rb = *parent;
		p = to_priolist(rb);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
			goto out;
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
		p = &execlists->default_priolist;
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
			execlists->no_priolist = true;
			goto find_priolist;
		}
	}

	p->priority = prio;
	for (i = 0; i < ARRAY_SIZE(p->requests); i++)
		INIT_LIST_HEAD(&p->requests[i]);
	rb_link_node(&p->node, rb, parent);
	rb_insert_color_cached(&p->node, &execlists->queue, first);
	p->used = 0;

out:
	p->used |= BIT(idx);
	return &p->requests[idx];
}

226 227 228 229
struct sched_cache {
	struct list_head *priolist;
};

230
static struct intel_engine_cs *
231 232 233
sched_lock_engine(const struct i915_sched_node *node,
		  struct intel_engine_cs *locked,
		  struct sched_cache *cache)
234 235 236 237 238 239 240
{
	struct intel_engine_cs *engine = node_to_request(node)->engine;

	GEM_BUG_ON(!locked);

	if (engine != locked) {
		spin_unlock(&locked->timeline.lock);
241
		memset(cache, 0, sizeof(*cache));
242 243 244 245 246 247
		spin_lock(&engine->timeline.lock);
	}

	return engine;
}

248 249 250 251 252
static bool inflight(const struct i915_request *rq,
		     const struct intel_engine_cs *engine)
{
	const struct i915_request *active;

253
	if (!i915_request_is_active(rq))
254 255 256 257 258 259
		return false;

	active = port_request(engine->execlists.port);
	return active->hw_context == rq->hw_context;
}

260 261
static void __i915_schedule(struct i915_request *rq,
			    const struct i915_sched_attr *attr)
262
{
263
	struct intel_engine_cs *engine;
264 265 266
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	const int prio = attr->priority;
267
	struct sched_cache cache;
268 269
	LIST_HEAD(dfs);

270 271
	/* Needed in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&schedule_lock);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

	if (i915_request_completed(rq))
		return;

	if (prio <= READ_ONCE(rq->sched.attr.priority))
		return;

	stack.signaler = &rq->sched;
	list_add(&stack.dfs_link, &dfs);

	/*
	 * Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_sched_node *node, prio) {
	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	queue_request(node);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry(dep, &dfs, dfs_link) {
		struct i915_sched_node *node = dep->signaler;

		/*
		 * Within an engine, there can be no cycle, but we may
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &node->signalers_list, signal_link) {
			GEM_BUG_ON(p == dep); /* no cycles! */

			if (node_signaled(p->signaler))
				continue;

			GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
			if (prio > READ_ONCE(p->signaler->attr.priority))
				list_move_tail(&p->dfs_link, &dfs);
		}
	}

	/*
	 * If we didn't need to bump any existing priorities, and we haven't
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
	if (rq->sched.attr.priority == I915_PRIORITY_INVALID) {
		GEM_BUG_ON(!list_empty(&rq->sched.link));
		rq->sched.attr = *attr;

		if (stack.dfs_link.next == stack.dfs_link.prev)
333
			return;
334 335 336 337

		__list_del_entry(&stack.dfs_link);
	}

338
	memset(&cache, 0, sizeof(cache));
339 340 341 342 343 344 345 346 347
	engine = rq->engine;
	spin_lock_irq(&engine->timeline.lock);

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_sched_node *node = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

348
		engine = sched_lock_engine(node, engine, &cache);
349
		lockdep_assert_held(&engine->timeline.lock);
350 351 352 353 354 355 356

		/* Recheck after acquiring the engine->timeline.lock */
		if (prio <= node->attr.priority || node_signaled(node))
			continue;

		node->attr.priority = prio;
		if (!list_empty(&node->link)) {
357 358 359 360 361
			if (!cache.priolist)
				cache.priolist =
					i915_sched_lookup_priolist(engine,
								   prio);
			list_move_tail(&node->link, cache.priolist);
362 363 364 365 366 367 368 369 370 371 372 373 374
		} else {
			/*
			 * If the request is not in the priolist queue because
			 * it is not yet runnable, then it doesn't contribute
			 * to our preemption decisions. On the other hand,
			 * if the request is on the HW, it too is not in the
			 * queue; but in that case we may still need to reorder
			 * the inflight requests.
			 */
			if (!i915_sw_fence_done(&node_to_request(node)->submit))
				continue;
		}

375
		if (prio <= engine->execlists.queue_priority_hint)
376 377
			continue;

378 379
		engine->execlists.queue_priority_hint = prio;

380 381 382 383
		/*
		 * If we are already the currently executing context, don't
		 * bother evaluating if we should preempt ourselves.
		 */
384
		if (inflight(node_to_request(node), engine))
385 386 387 388 389 390 391
			continue;

		/* Defer (tasklet) submission until after all of our updates. */
		tasklet_hi_schedule(&engine->execlists.tasklet);
	}

	spin_unlock_irq(&engine->timeline.lock);
392
}
393

394 395 396 397
void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
{
	spin_lock(&schedule_lock);
	__i915_schedule(rq, attr);
398 399
	spin_unlock(&schedule_lock);
}
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

void i915_schedule_bump_priority(struct i915_request *rq, unsigned int bump)
{
	struct i915_sched_attr attr;

	GEM_BUG_ON(bump & ~I915_PRIORITY_MASK);

	if (READ_ONCE(rq->sched.attr.priority) == I915_PRIORITY_INVALID)
		return;

	spin_lock_bh(&schedule_lock);

	attr = rq->sched.attr;
	attr.priority |= bump;
	__i915_schedule(rq, &attr);

	spin_unlock_bh(&schedule_lock);
}