volumes.c 206.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */
5

6 7
#include <linux/sched.h>
#include <linux/bio.h>
8
#include <linux/slab.h>
9
#include <linux/buffer_head.h>
10
#include <linux/blkdev.h>
11
#include <linux/ratelimit.h>
I
Ilya Dryomov 已提交
12
#include <linux/kthread.h>
D
David Woodhouse 已提交
13
#include <linux/raid/pq.h>
S
Stefan Behrens 已提交
14
#include <linux/semaphore.h>
15
#include <linux/uuid.h>
A
Anand Jain 已提交
16
#include <linux/list_sort.h>
17 18 19 20 21 22
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
D
David Woodhouse 已提交
23
#include "raid56.h"
24
#include "async-thread.h"
25
#include "check-integrity.h"
26
#include "rcu-string.h"
27
#include "math.h"
28
#include "dev-replace.h"
29
#include "sysfs.h"
30
#include "tree-checker.h"
31
#include "space-info.h"
32

Z
Zhao Lei 已提交
33 34 35 36 37 38
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
	[BTRFS_RAID_RAID10] = {
		.sub_stripes	= 2,
		.dev_stripes	= 1,
		.devs_max	= 0,	/* 0 == as many as possible */
		.devs_min	= 4,
39
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
40 41
		.devs_increment	= 2,
		.ncopies	= 2,
42
		.nparity        = 0,
43
		.raid_name	= "raid10",
44
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
45
		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
Z
Zhao Lei 已提交
46 47 48 49 50 51
	},
	[BTRFS_RAID_RAID1] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 2,
		.devs_min	= 2,
52
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
53 54
		.devs_increment	= 2,
		.ncopies	= 2,
55
		.nparity        = 0,
56
		.raid_name	= "raid1",
57
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
58
		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
Z
Zhao Lei 已提交
59 60 61 62 63 64
	},
	[BTRFS_RAID_DUP] = {
		.sub_stripes	= 1,
		.dev_stripes	= 2,
		.devs_max	= 1,
		.devs_min	= 1,
65
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
66 67
		.devs_increment	= 1,
		.ncopies	= 2,
68
		.nparity        = 0,
69
		.raid_name	= "dup",
70
		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
71
		.mindev_error	= 0,
Z
Zhao Lei 已提交
72 73 74 75 76 77
	},
	[BTRFS_RAID_RAID0] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
78
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
79 80
		.devs_increment	= 1,
		.ncopies	= 1,
81
		.nparity        = 0,
82
		.raid_name	= "raid0",
83
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
84
		.mindev_error	= 0,
Z
Zhao Lei 已提交
85 86 87 88 89 90
	},
	[BTRFS_RAID_SINGLE] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 1,
		.devs_min	= 1,
91
		.tolerated_failures = 0,
Z
Zhao Lei 已提交
92 93
		.devs_increment	= 1,
		.ncopies	= 1,
94
		.nparity        = 0,
95
		.raid_name	= "single",
96
		.bg_flag	= 0,
97
		.mindev_error	= 0,
Z
Zhao Lei 已提交
98 99 100 101 102 103
	},
	[BTRFS_RAID_RAID5] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 2,
104
		.tolerated_failures = 1,
Z
Zhao Lei 已提交
105
		.devs_increment	= 1,
106
		.ncopies	= 1,
107
		.nparity        = 1,
108
		.raid_name	= "raid5",
109
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
110
		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
Z
Zhao Lei 已提交
111 112 113 114 115 116
	},
	[BTRFS_RAID_RAID6] = {
		.sub_stripes	= 1,
		.dev_stripes	= 1,
		.devs_max	= 0,
		.devs_min	= 3,
117
		.tolerated_failures = 2,
Z
Zhao Lei 已提交
118
		.devs_increment	= 1,
119
		.ncopies	= 1,
120
		.nparity        = 2,
121
		.raid_name	= "raid6",
122
		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
123
		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
Z
Zhao Lei 已提交
124 125 126
	},
};

127
const char *btrfs_bg_type_to_raid_name(u64 flags)
128
{
129 130 131
	const int index = btrfs_bg_flags_to_raid_index(flags);

	if (index >= BTRFS_NR_RAID_TYPES)
132 133
		return NULL;

134
	return btrfs_raid_array[index].raid_name;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 * bytes including terminating null byte.
 */
void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
{
	int i;
	int ret;
	char *bp = buf;
	u64 flags = bg_flags;
	u32 size_bp = size_buf;

	if (!flags) {
		strcpy(bp, "NONE");
		return;
	}

#define DESCRIBE_FLAG(flag, desc)						\
	do {								\
		if (flags & (flag)) {					\
			ret = snprintf(bp, size_bp, "%s|", (desc));	\
			if (ret < 0 || ret >= size_bp)			\
				goto out_overflow;			\
			size_bp -= ret;					\
			bp += ret;					\
			flags &= ~(flag);				\
		}							\
	} while (0)

	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");

	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
			      btrfs_raid_array[i].raid_name);
#undef DESCRIBE_FLAG

	if (flags) {
		ret = snprintf(bp, size_bp, "0x%llx|", flags);
		size_bp -= ret;
	}

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */

	/*
	 * The text is trimmed, it's up to the caller to provide sufficiently
	 * large buffer
	 */
out_overflow:;
}

191
static int init_first_rw_device(struct btrfs_trans_handle *trans);
192
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193
static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195
static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 197 198 199 200
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
			     u64 logical, u64 *length,
			     struct btrfs_bio **bbio_ret,
			     int mirror_num, int need_raid_map);
Y
Yan Zheng 已提交
201

D
David Sterba 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*
 * Device locking
 * ==============
 *
 * There are several mutexes that protect manipulation of devices and low-level
 * structures like chunks but not block groups, extents or files
 *
 * uuid_mutex (global lock)
 * ------------------------
 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 * device) or requested by the device= mount option
 *
 * the mutex can be very coarse and can cover long-running operations
 *
 * protects: updates to fs_devices counters like missing devices, rw devices,
218
 * seeding, structure cloning, opening/closing devices at mount/umount time
D
David Sterba 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
 *
 * global::fs_devs - add, remove, updates to the global list
 *
 * does not protect: manipulation of the fs_devices::devices list!
 *
 * btrfs_device::name - renames (write side), read is RCU
 *
 * fs_devices::device_list_mutex (per-fs, with RCU)
 * ------------------------------------------------
 * protects updates to fs_devices::devices, ie. adding and deleting
 *
 * simple list traversal with read-only actions can be done with RCU protection
 *
 * may be used to exclude some operations from running concurrently without any
 * modifications to the list (see write_all_supers)
 *
 * balance_mutex
 * -------------
 * protects balance structures (status, state) and context accessed from
 * several places (internally, ioctl)
 *
 * chunk_mutex
 * -----------
 * protects chunks, adding or removing during allocation, trim or when a new
243 244 245
 * device is added/removed. Additionally it also protects post_commit_list of
 * individual devices, since they can be added to the transaction's
 * post_commit_list only with chunk_mutex held.
D
David Sterba 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
 *
 * cleaner_mutex
 * -------------
 * a big lock that is held by the cleaner thread and prevents running subvolume
 * cleaning together with relocation or delayed iputs
 *
 *
 * Lock nesting
 * ============
 *
 * uuid_mutex
 *   volume_mutex
 *     device_list_mutex
 *       chunk_mutex
 *     balance_mutex
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
 *
 *
 * Exclusive operations, BTRFS_FS_EXCL_OP
 * ======================================
 *
 * Maintains the exclusivity of the following operations that apply to the
 * whole filesystem and cannot run in parallel.
 *
 * - Balance (*)
 * - Device add
 * - Device remove
 * - Device replace (*)
 * - Resize
 *
 * The device operations (as above) can be in one of the following states:
 *
 * - Running state
 * - Paused state
 * - Completed state
 *
 * Only device operations marked with (*) can go into the Paused state for the
 * following reasons:
 *
 * - ioctl (only Balance can be Paused through ioctl)
 * - filesystem remounted as read-only
 * - filesystem unmounted and mounted as read-only
 * - system power-cycle and filesystem mounted as read-only
 * - filesystem or device errors leading to forced read-only
 *
 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
 * A device operation in Paused or Running state can be canceled or resumed
 * either by ioctl (Balance only) or when remounted as read-write.
 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
 * completed.
D
David Sterba 已提交
296 297
 */

298
DEFINE_MUTEX(uuid_mutex);
299
static LIST_HEAD(fs_uuids);
300 301 302 303
struct list_head *btrfs_get_fs_uuids(void)
{
	return &fs_uuids;
}
304

D
David Sterba 已提交
305 306
/*
 * alloc_fs_devices - allocate struct btrfs_fs_devices
307 308
 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
D
David Sterba 已提交
309 310 311 312 313
 *
 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 * The returned struct is not linked onto any lists and can be destroyed with
 * kfree() right away.
 */
314 315
static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
						 const u8 *metadata_fsid)
316 317 318
{
	struct btrfs_fs_devices *fs_devs;

319
	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 321 322 323 324 325 326
	if (!fs_devs)
		return ERR_PTR(-ENOMEM);

	mutex_init(&fs_devs->device_list_mutex);

	INIT_LIST_HEAD(&fs_devs->devices);
	INIT_LIST_HEAD(&fs_devs->alloc_list);
327
	INIT_LIST_HEAD(&fs_devs->fs_list);
328 329 330
	if (fsid)
		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);

331 332 333 334 335
	if (metadata_fsid)
		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
	else if (fsid)
		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);

336 337 338
	return fs_devs;
}

339
void btrfs_free_device(struct btrfs_device *device)
340
{
341
	WARN_ON(!list_empty(&device->post_commit_list));
342
	rcu_string_free(device->name);
343
	extent_io_tree_release(&device->alloc_state);
344 345 346 347
	bio_put(device->flush_bio);
	kfree(device);
}

Y
Yan Zheng 已提交
348 349 350 351 352 353 354 355
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
	struct btrfs_device *device;
	WARN_ON(fs_devices->opened);
	while (!list_empty(&fs_devices->devices)) {
		device = list_entry(fs_devices->devices.next,
				    struct btrfs_device, dev_list);
		list_del(&device->dev_list);
356
		btrfs_free_device(device);
Y
Yan Zheng 已提交
357 358 359 360
	}
	kfree(fs_devices);
}

361 362 363 364 365 366 367
static void btrfs_kobject_uevent(struct block_device *bdev,
				 enum kobject_action action)
{
	int ret;

	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
	if (ret)
368
		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369 370 371 372 373
			action,
			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
			&disk_to_dev(bdev->bd_disk)->kobj);
}

374
void __exit btrfs_cleanup_fs_uuids(void)
375 376 377
{
	struct btrfs_fs_devices *fs_devices;

Y
Yan Zheng 已提交
378 379
	while (!list_empty(&fs_uuids)) {
		fs_devices = list_entry(fs_uuids.next,
380 381
					struct btrfs_fs_devices, fs_list);
		list_del(&fs_devices->fs_list);
Y
Yan Zheng 已提交
382
		free_fs_devices(fs_devices);
383 384 385
	}
}

386 387 388
/*
 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 * Returned struct is not linked onto any lists and must be destroyed using
389
 * btrfs_free_device.
390
 */
391 392 393 394
static struct btrfs_device *__alloc_device(void)
{
	struct btrfs_device *dev;

395
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396 397 398
	if (!dev)
		return ERR_PTR(-ENOMEM);

399 400 401 402 403 404 405 406 407 408
	/*
	 * Preallocate a bio that's always going to be used for flushing device
	 * barriers and matches the device lifespan
	 */
	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
	if (!dev->flush_bio) {
		kfree(dev);
		return ERR_PTR(-ENOMEM);
	}

409 410
	INIT_LIST_HEAD(&dev->dev_list);
	INIT_LIST_HEAD(&dev->dev_alloc_list);
411
	INIT_LIST_HEAD(&dev->post_commit_list);
412 413 414 415

	spin_lock_init(&dev->io_lock);

	atomic_set(&dev->reada_in_flight, 0);
416
	atomic_set(&dev->dev_stats_ccnt, 0);
417
	btrfs_device_data_ordered_init(dev);
418
	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419
	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420
	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421 422 423 424

	return dev;
}

425 426
static noinline struct btrfs_fs_devices *find_fsid(
		const u8 *fsid, const u8 *metadata_fsid)
427 428 429
{
	struct btrfs_fs_devices *fs_devices;

430 431
	ASSERT(fsid);

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	if (metadata_fsid) {
		/*
		 * Handle scanned device having completed its fsid change but
		 * belonging to a fs_devices that was created by first scanning
		 * a device which didn't have its fsid/metadata_uuid changed
		 * at all and the CHANGING_FSID_V2 flag set.
		 */
		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
			if (fs_devices->fsid_change &&
			    memcmp(metadata_fsid, fs_devices->fsid,
				   BTRFS_FSID_SIZE) == 0 &&
			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
				   BTRFS_FSID_SIZE) == 0) {
				return fs_devices;
			}
		}
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		/*
		 * Handle scanned device having completed its fsid change but
		 * belonging to a fs_devices that was created by a device that
		 * has an outdated pair of fsid/metadata_uuid and
		 * CHANGING_FSID_V2 flag set.
		 */
		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
			if (fs_devices->fsid_change &&
			    memcmp(fs_devices->metadata_uuid,
				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
				   BTRFS_FSID_SIZE) == 0) {
				return fs_devices;
			}
		}
463 464 465
	}

	/* Handle non-split brain cases */
466
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467 468 469 470 471 472 473 474 475
		if (metadata_fsid) {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
				      BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		} else {
			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
				return fs_devices;
		}
476 477 478 479
	}
	return NULL;
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static int
btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
		      int flush, struct block_device **bdev,
		      struct buffer_head **bh)
{
	int ret;

	*bdev = blkdev_get_by_path(device_path, flags, holder);

	if (IS_ERR(*bdev)) {
		ret = PTR_ERR(*bdev);
		goto error;
	}

	if (flush)
		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496
	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497 498 499 500 501 502
	if (ret) {
		blkdev_put(*bdev, flags);
		goto error;
	}
	invalidate_bdev(*bdev);
	*bh = btrfs_read_dev_super(*bdev);
503 504
	if (IS_ERR(*bh)) {
		ret = PTR_ERR(*bh);
505 506 507 508 509 510 511 512 513 514 515 516
		blkdev_put(*bdev, flags);
		goto error;
	}

	return 0;

error:
	*bdev = NULL;
	*bh = NULL;
	return ret;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530
static void requeue_list(struct btrfs_pending_bios *pending_bios,
			struct bio *head, struct bio *tail)
{

	struct bio *old_head;

	old_head = pending_bios->head;
	pending_bios->head = head;
	if (pending_bios->tail)
		tail->bi_next = old_head;
	else
		pending_bios->tail = tail;
}

531 532 533 534 535 536 537 538 539 540 541
/*
 * we try to collect pending bios for a device so we don't get a large
 * number of procs sending bios down to the same device.  This greatly
 * improves the schedulers ability to collect and merge the bios.
 *
 * But, it also turns into a long list of bios to process and that is sure
 * to eventually make the worker thread block.  The solution here is to
 * make some progress and then put this work struct back at the end of
 * the list if the block device is congested.  This way, multiple devices
 * can make progress from a single worker thread.
 */
542
static noinline void run_scheduled_bios(struct btrfs_device *device)
543
{
544
	struct btrfs_fs_info *fs_info = device->fs_info;
545 546
	struct bio *pending;
	struct backing_dev_info *bdi;
547
	struct btrfs_pending_bios *pending_bios;
548 549 550
	struct bio *tail;
	struct bio *cur;
	int again = 0;
551
	unsigned long num_run;
552
	unsigned long batch_run = 0;
553
	unsigned long last_waited = 0;
554
	int force_reg = 0;
M
Miao Xie 已提交
555
	int sync_pending = 0;
556 557 558 559 560 561 562 563 564
	struct blk_plug plug;

	/*
	 * this function runs all the bios we've collected for
	 * a particular device.  We don't want to wander off to
	 * another device without first sending all of these down.
	 * So, setup a plug here and finish it off before we return
	 */
	blk_start_plug(&plug);
565

566
	bdi = device->bdev->bd_bdi;
567

568 569 570
loop:
	spin_lock(&device->io_lock);

571
loop_lock:
572
	num_run = 0;
573

574 575 576 577 578
	/* take all the bios off the list at once and process them
	 * later on (without the lock held).  But, remember the
	 * tail and other pointers so the bios can be properly reinserted
	 * into the list if we hit congestion
	 */
579
	if (!force_reg && device->pending_sync_bios.head) {
580
		pending_bios = &device->pending_sync_bios;
581 582
		force_reg = 1;
	} else {
583
		pending_bios = &device->pending_bios;
584 585
		force_reg = 0;
	}
586 587 588

	pending = pending_bios->head;
	tail = pending_bios->tail;
589 590 591 592 593 594 595 596 597 598
	WARN_ON(pending && !tail);

	/*
	 * if pending was null this time around, no bios need processing
	 * at all and we can stop.  Otherwise it'll loop back up again
	 * and do an additional check so no bios are missed.
	 *
	 * device->running_pending is used to synchronize with the
	 * schedule_bio code.
	 */
599 600
	if (device->pending_sync_bios.head == NULL &&
	    device->pending_bios.head == NULL) {
601 602
		again = 0;
		device->running_pending = 0;
603 604 605
	} else {
		again = 1;
		device->running_pending = 1;
606
	}
607 608 609 610

	pending_bios->head = NULL;
	pending_bios->tail = NULL;

611 612
	spin_unlock(&device->io_lock);

C
Chris Mason 已提交
613
	while (pending) {
614 615

		rmb();
616 617 618 619 620 621 622 623
		/* we want to work on both lists, but do more bios on the
		 * sync list than the regular list
		 */
		if ((num_run > 32 &&
		    pending_bios != &device->pending_sync_bios &&
		    device->pending_sync_bios.head) ||
		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
		    device->pending_bios.head)) {
624 625 626 627 628
			spin_lock(&device->io_lock);
			requeue_list(pending_bios, pending, tail);
			goto loop_lock;
		}

629 630 631
		cur = pending;
		pending = pending->bi_next;
		cur->bi_next = NULL;
632

633
		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
		/*
		 * if we're doing the sync list, record that our
		 * plug has some sync requests on it
		 *
		 * If we're doing the regular list and there are
		 * sync requests sitting around, unplug before
		 * we add more
		 */
		if (pending_bios == &device->pending_sync_bios) {
			sync_pending = 1;
		} else if (sync_pending) {
			blk_finish_plug(&plug);
			blk_start_plug(&plug);
			sync_pending = 0;
		}

651
		btrfsic_submit_bio(cur);
652 653
		num_run++;
		batch_run++;
654 655

		cond_resched();
656 657 658 659 660 661

		/*
		 * we made progress, there is more work to do and the bdi
		 * is now congested.  Back off and let other work structs
		 * run instead
		 */
C
Chris Mason 已提交
662
		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663
		    fs_info->fs_devices->open_devices > 1) {
664
			struct io_context *ioc;
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
			ioc = current->io_context;

			/*
			 * the main goal here is that we don't want to
			 * block if we're going to be able to submit
			 * more requests without blocking.
			 *
			 * This code does two great things, it pokes into
			 * the elevator code from a filesystem _and_
			 * it makes assumptions about how batching works.
			 */
			if (ioc && ioc->nr_batch_requests > 0 &&
			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
			    (last_waited == 0 ||
			     ioc->last_waited == last_waited)) {
				/*
				 * we want to go through our batch of
				 * requests and stop.  So, we copy out
				 * the ioc->last_waited time and test
				 * against it before looping
				 */
				last_waited = ioc->last_waited;
688
				cond_resched();
689 690
				continue;
			}
691
			spin_lock(&device->io_lock);
692
			requeue_list(pending_bios, pending, tail);
693
			device->running_pending = 1;
694 695

			spin_unlock(&device->io_lock);
696 697
			btrfs_queue_work(fs_info->submit_workers,
					 &device->work);
698 699 700
			goto done;
		}
	}
701

702 703 704 705 706 707 708 709 710
	cond_resched();
	if (again)
		goto loop;

	spin_lock(&device->io_lock);
	if (device->pending_bios.head || device->pending_sync_bios.head)
		goto loop_lock;
	spin_unlock(&device->io_lock);

711
done:
712
	blk_finish_plug(&plug);
713 714
}

715
static void pending_bios_fn(struct btrfs_work *work)
716 717 718 719 720 721 722
{
	struct btrfs_device *device;

	device = container_of(work, struct btrfs_device, work);
	run_scheduled_bios(device);
}

723 724 725 726 727 728 729 730 731 732 733
static bool device_path_matched(const char *path, struct btrfs_device *device)
{
	int found;

	rcu_read_lock();
	found = strcmp(rcu_str_deref(device->name), path);
	rcu_read_unlock();

	return found == 0;
}

734 735 736 737 738 739 740
/*
 *  Search and remove all stale (devices which are not mounted) devices.
 *  When both inputs are NULL, it will search and release all stale devices.
 *  path:	Optional. When provided will it release all unmounted devices
 *		matching this path only.
 *  skip_dev:	Optional. Will skip this device when searching for the stale
 *		devices.
741 742 743
 *  Return:	0 for success or if @path is NULL.
 * 		-EBUSY if @path is a mounted device.
 * 		-ENOENT if @path does not match any device in the list.
744
 */
745
static int btrfs_free_stale_devices(const char *path,
746
				     struct btrfs_device *skip_device)
A
Anand Jain 已提交
747
{
748 749
	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
	struct btrfs_device *device, *tmp_device;
750 751 752 753
	int ret = 0;

	if (path)
		ret = -ENOENT;
A
Anand Jain 已提交
754

755
	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
A
Anand Jain 已提交
756

757
		mutex_lock(&fs_devices->device_list_mutex);
758 759 760
		list_for_each_entry_safe(device, tmp_device,
					 &fs_devices->devices, dev_list) {
			if (skip_device && skip_device == device)
761
				continue;
762
			if (path && !device->name)
A
Anand Jain 已提交
763
				continue;
764
			if (path && !device_path_matched(path, device))
765
				continue;
766 767 768 769 770 771
			if (fs_devices->opened) {
				/* for an already deleted device return 0 */
				if (path && ret != 0)
					ret = -EBUSY;
				break;
			}
A
Anand Jain 已提交
772 773

			/* delete the stale device */
774 775 776 777
			fs_devices->num_devices--;
			list_del(&device->dev_list);
			btrfs_free_device(device);

778
			ret = 0;
779
			if (fs_devices->num_devices == 0)
780
				break;
781 782
		}
		mutex_unlock(&fs_devices->device_list_mutex);
783

784 785 786 787
		if (fs_devices->num_devices == 0) {
			btrfs_sysfs_remove_fsid(fs_devices);
			list_del(&fs_devices->fs_list);
			free_fs_devices(fs_devices);
A
Anand Jain 已提交
788 789
		}
	}
790 791

	return ret;
A
Anand Jain 已提交
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
			struct btrfs_device *device, fmode_t flags,
			void *holder)
{
	struct request_queue *q;
	struct block_device *bdev;
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
	u64 devid;
	int ret;

	if (device->bdev)
		return -EINVAL;
	if (!device->name)
		return -EINVAL;

	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
				    &bdev, &bh);
	if (ret)
		return ret;

	disk_super = (struct btrfs_super_block *)bh->b_data;
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	if (devid != device->devid)
		goto error_brelse;

	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
		goto error_brelse;

	device->generation = btrfs_super_generation(disk_super);

	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826 827 828 829 830 831 832
		if (btrfs_super_incompat_flags(disk_super) &
		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
			pr_err(
		"BTRFS: Invalid seeding and uuid-changed device detected\n");
			goto error_brelse;
		}

833
		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834 835
		fs_devices->seeding = 1;
	} else {
836 837 838 839
		if (bdev_read_only(bdev))
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
		else
			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840 841 842 843 844 845 846
	}

	q = bdev_get_queue(bdev);
	if (!blk_queue_nonrot(q))
		fs_devices->rotating = 1;

	device->bdev = bdev;
847
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848 849 850
	device->mode = flags;

	fs_devices->open_devices++;
851 852
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
853
		fs_devices->rw_devices++;
854
		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855 856 857 858 859 860 861 862 863 864 865 866
	}
	brelse(bh);

	return 0;

error_brelse:
	brelse(bh);
	blkdev_put(bdev, flags);

	return -EINVAL;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 * being created with a disk that has already completed its fsid change.
 */
static struct btrfs_fs_devices *find_fsid_inprogress(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
			return fs_devices;
		}
	}

	return NULL;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

static struct btrfs_fs_devices *find_fsid_changed(
					struct btrfs_super_block *disk_super)
{
	struct btrfs_fs_devices *fs_devices;

	/*
	 * Handles the case where scanned device is part of an fs that had
	 * multiple successful changes of FSID but curently device didn't
	 * observe it. Meaning our fsid will be different than theirs.
	 */
	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
			   BTRFS_FSID_SIZE) != 0 &&
		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
			   BTRFS_FSID_SIZE) == 0 &&
		    memcmp(fs_devices->fsid, disk_super->fsid,
			   BTRFS_FSID_SIZE) != 0) {
			return fs_devices;
		}
	}

	return NULL;
}
912 913 914 915
/*
 * Add new device to list of registered devices
 *
 * Returns:
916 917
 * device pointer which was just added or updated when successful
 * error pointer when failed
918
 */
919
static noinline struct btrfs_device *device_list_add(const char *path,
920 921
			   struct btrfs_super_block *disk_super,
			   bool *new_device_added)
922 923
{
	struct btrfs_device *device;
924
	struct btrfs_fs_devices *fs_devices = NULL;
925
	struct rcu_string *name;
926
	u64 found_transid = btrfs_super_generation(disk_super);
927
	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928 929
	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930 931
	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932

933 934 935 936 937 938 939 940 941 942 943 944 945 946
	if (fsid_change_in_progress) {
		if (!has_metadata_uuid) {
			/*
			 * When we have an image which has CHANGING_FSID_V2 set
			 * it might belong to either a filesystem which has
			 * disks with completed fsid change or it might belong
			 * to fs with no UUID changes in effect, handle both.
			 */
			fs_devices = find_fsid_inprogress(disk_super);
			if (!fs_devices)
				fs_devices = find_fsid(disk_super->fsid, NULL);
		} else {
			fs_devices = find_fsid_changed(disk_super);
		}
947 948 949 950
	} else if (has_metadata_uuid) {
		fs_devices = find_fsid(disk_super->fsid,
				       disk_super->metadata_uuid);
	} else {
951
		fs_devices = find_fsid(disk_super->fsid, NULL);
952 953
	}

954 955

	if (!fs_devices) {
956 957 958 959 960 961
		if (has_metadata_uuid)
			fs_devices = alloc_fs_devices(disk_super->fsid,
						      disk_super->metadata_uuid);
		else
			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);

962
		if (IS_ERR(fs_devices))
963
			return ERR_CAST(fs_devices);
964

965 966
		fs_devices->fsid_change = fsid_change_in_progress;

967
		mutex_lock(&fs_devices->device_list_mutex);
968
		list_add(&fs_devices->fs_list, &fs_uuids);
969

970 971
		device = NULL;
	} else {
972
		mutex_lock(&fs_devices->device_list_mutex);
973 974
		device = btrfs_find_device(fs_devices, devid,
				disk_super->dev_item.uuid, NULL, false);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989

		/*
		 * If this disk has been pulled into an fs devices created by
		 * a device which had the CHANGING_FSID_V2 flag then replace the
		 * metadata_uuid/fsid values of the fs_devices.
		 */
		if (has_metadata_uuid && fs_devices->fsid_change &&
		    found_transid > fs_devices->latest_generation) {
			memcpy(fs_devices->fsid, disk_super->fsid,
					BTRFS_FSID_SIZE);
			memcpy(fs_devices->metadata_uuid,
					disk_super->metadata_uuid, BTRFS_FSID_SIZE);

			fs_devices->fsid_change = false;
		}
990
	}
991

992
	if (!device) {
993 994
		if (fs_devices->opened) {
			mutex_unlock(&fs_devices->device_list_mutex);
995
			return ERR_PTR(-EBUSY);
996
		}
Y
Yan Zheng 已提交
997

998 999 1000
		device = btrfs_alloc_device(NULL, &devid,
					    disk_super->dev_item.uuid);
		if (IS_ERR(device)) {
1001
			mutex_unlock(&fs_devices->device_list_mutex);
1002
			/* we can safely leave the fs_devices entry around */
1003
			return device;
1004
		}
1005 1006 1007

		name = rcu_string_strdup(path, GFP_NOFS);
		if (!name) {
1008
			btrfs_free_device(device);
1009
			mutex_unlock(&fs_devices->device_list_mutex);
1010
			return ERR_PTR(-ENOMEM);
1011
		}
1012
		rcu_assign_pointer(device->name, name);
1013

1014
		list_add_rcu(&device->dev_list, &fs_devices->devices);
1015
		fs_devices->num_devices++;
1016

Y
Yan Zheng 已提交
1017
		device->fs_devices = fs_devices;
1018
		*new_device_added = true;
1019 1020 1021 1022 1023 1024 1025 1026

		if (disk_super->label[0])
			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
				disk_super->label, devid, found_transid, path);
		else
			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
				disk_super->fsid, devid, found_transid, path);

1027
	} else if (!device->name || strcmp(device->name->str, path)) {
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		/*
		 * When FS is already mounted.
		 * 1. If you are here and if the device->name is NULL that
		 *    means this device was missing at time of FS mount.
		 * 2. If you are here and if the device->name is different
		 *    from 'path' that means either
		 *      a. The same device disappeared and reappeared with
		 *         different name. or
		 *      b. The missing-disk-which-was-replaced, has
		 *         reappeared now.
		 *
		 * We must allow 1 and 2a above. But 2b would be a spurious
		 * and unintentional.
		 *
		 * Further in case of 1 and 2a above, the disk at 'path'
		 * would have missed some transaction when it was away and
		 * in case of 2a the stale bdev has to be updated as well.
		 * 2b must not be allowed at all time.
		 */

		/*
1049 1050 1051 1052
		 * For now, we do allow update to btrfs_fs_device through the
		 * btrfs dev scan cli after FS has been mounted.  We're still
		 * tracking a problem where systems fail mount by subvolume id
		 * when we reject replacement on a mounted FS.
1053
		 */
1054
		if (!fs_devices->opened && found_transid < device->generation) {
1055 1056 1057 1058 1059 1060 1061
			/*
			 * That is if the FS is _not_ mounted and if you
			 * are here, that means there is more than one
			 * disk with same uuid and devid.We keep the one
			 * with larger generation number or the last-in if
			 * generation are equal.
			 */
1062
			mutex_unlock(&fs_devices->device_list_mutex);
1063
			return ERR_PTR(-EEXIST);
1064
		}
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		/*
		 * We are going to replace the device path for a given devid,
		 * make sure it's the same device if the device is mounted
		 */
		if (device->bdev) {
			struct block_device *path_bdev;

			path_bdev = lookup_bdev(path);
			if (IS_ERR(path_bdev)) {
				mutex_unlock(&fs_devices->device_list_mutex);
				return ERR_CAST(path_bdev);
			}

			if (device->bdev != path_bdev) {
				bdput(path_bdev);
				mutex_unlock(&fs_devices->device_list_mutex);
				btrfs_warn_in_rcu(device->fs_info,
			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
					disk_super->fsid, devid,
					rcu_str_deref(device->name), path);
				return ERR_PTR(-EEXIST);
			}
			bdput(path_bdev);
			btrfs_info_in_rcu(device->fs_info,
				"device fsid %pU devid %llu moved old:%s new:%s",
				disk_super->fsid, devid,
				rcu_str_deref(device->name), path);
		}

1095
		name = rcu_string_strdup(path, GFP_NOFS);
1096 1097
		if (!name) {
			mutex_unlock(&fs_devices->device_list_mutex);
1098
			return ERR_PTR(-ENOMEM);
1099
		}
1100 1101
		rcu_string_free(device->name);
		rcu_assign_pointer(device->name, name);
1102
		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103
			fs_devices->missing_devices--;
1104
			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105
		}
1106 1107
	}

1108 1109 1110 1111 1112 1113
	/*
	 * Unmount does not free the btrfs_device struct but would zero
	 * generation along with most of the other members. So just update
	 * it back. We need it to pick the disk with largest generation
	 * (as above).
	 */
1114
	if (!fs_devices->opened) {
1115
		device->generation = found_transid;
1116 1117 1118
		fs_devices->latest_generation = max_t(u64, found_transid,
						fs_devices->latest_generation);
	}
1119

1120 1121
	fs_devices->total_devices = btrfs_super_num_devices(disk_super);

1122
	mutex_unlock(&fs_devices->device_list_mutex);
1123
	return device;
1124 1125
}

Y
Yan Zheng 已提交
1126 1127 1128 1129 1130 1131
static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
{
	struct btrfs_fs_devices *fs_devices;
	struct btrfs_device *device;
	struct btrfs_device *orig_dev;

1132
	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133 1134
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
1135

1136
	mutex_lock(&orig->device_list_mutex);
J
Josef Bacik 已提交
1137
	fs_devices->total_devices = orig->total_devices;
Y
Yan Zheng 已提交
1138 1139

	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140 1141
		struct rcu_string *name;

1142 1143 1144
		device = btrfs_alloc_device(NULL, &orig_dev->devid,
					    orig_dev->uuid);
		if (IS_ERR(device))
Y
Yan Zheng 已提交
1145 1146
			goto error;

1147 1148 1149 1150
		/*
		 * This is ok to do without rcu read locked because we hold the
		 * uuid mutex so nothing we touch in here is going to disappear.
		 */
1151
		if (orig_dev->name) {
1152 1153
			name = rcu_string_strdup(orig_dev->name->str,
					GFP_KERNEL);
1154
			if (!name) {
1155
				btrfs_free_device(device);
1156 1157 1158
				goto error;
			}
			rcu_assign_pointer(device->name, name);
J
Julia Lawall 已提交
1159
		}
Y
Yan Zheng 已提交
1160 1161 1162 1163 1164

		list_add(&device->dev_list, &fs_devices->devices);
		device->fs_devices = fs_devices;
		fs_devices->num_devices++;
	}
1165
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1166 1167
	return fs_devices;
error:
1168
	mutex_unlock(&orig->device_list_mutex);
Y
Yan Zheng 已提交
1169 1170 1171 1172
	free_fs_devices(fs_devices);
	return ERR_PTR(-ENOMEM);
}

1173 1174 1175 1176 1177
/*
 * After we have read the system tree and know devids belonging to
 * this filesystem, remove the device which does not belong there.
 */
void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178
{
Q
Qinghuang Feng 已提交
1179
	struct btrfs_device *device, *next;
1180
	struct btrfs_device *latest_dev = NULL;
1181

1182 1183
	mutex_lock(&uuid_mutex);
again:
1184
	/* This is the initialized path, it is safe to release the devices. */
Q
Qinghuang Feng 已提交
1185
	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186 1187
		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
							&device->dev_state)) {
1188 1189 1190 1191
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
			     &device->dev_state) &&
			     (!latest_dev ||
			      device->generation > latest_dev->generation)) {
1192
				latest_dev = device;
1193
			}
Y
Yan Zheng 已提交
1194
			continue;
1195
		}
Y
Yan Zheng 已提交
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
			/*
			 * In the first step, keep the device which has
			 * the correct fsid and the devid that is used
			 * for the dev_replace procedure.
			 * In the second step, the dev_replace state is
			 * read from the device tree and it is known
			 * whether the procedure is really active or
			 * not, which means whether this device is
			 * used or whether it should be removed.
			 */
1208 1209
			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
						  &device->dev_state)) {
1210 1211 1212
				continue;
			}
		}
Y
Yan Zheng 已提交
1213
		if (device->bdev) {
1214
			blkdev_put(device->bdev, device->mode);
Y
Yan Zheng 已提交
1215 1216 1217
			device->bdev = NULL;
			fs_devices->open_devices--;
		}
1218
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
1219
			list_del_init(&device->dev_alloc_list);
1220
			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221 1222
			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
				      &device->dev_state))
1223
				fs_devices->rw_devices--;
Y
Yan Zheng 已提交
1224
		}
Y
Yan Zheng 已提交
1225 1226
		list_del_init(&device->dev_list);
		fs_devices->num_devices--;
1227
		btrfs_free_device(device);
1228
	}
Y
Yan Zheng 已提交
1229 1230 1231 1232 1233 1234

	if (fs_devices->seed) {
		fs_devices = fs_devices->seed;
		goto again;
	}

1235
	fs_devices->latest_bdev = latest_dev->bdev;
1236

1237 1238
	mutex_unlock(&uuid_mutex);
}
1239

1240 1241
static void btrfs_close_bdev(struct btrfs_device *device)
{
D
David Sterba 已提交
1242 1243 1244
	if (!device->bdev)
		return;

1245
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246 1247 1248 1249
		sync_blockdev(device->bdev);
		invalidate_bdev(device->bdev);
	}

D
David Sterba 已提交
1250
	blkdev_put(device->bdev, device->mode);
1251 1252
}

1253
static void btrfs_close_one_device(struct btrfs_device *device)
1254 1255 1256 1257 1258 1259 1260 1261
{
	struct btrfs_fs_devices *fs_devices = device->fs_devices;
	struct btrfs_device *new_device;
	struct rcu_string *name;

	if (device->bdev)
		fs_devices->open_devices--;

1262
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263 1264 1265 1266 1267
	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
		list_del_init(&device->dev_alloc_list);
		fs_devices->rw_devices--;
	}

1268
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269 1270
		fs_devices->missing_devices--;

1271 1272
	btrfs_close_bdev(device);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	new_device = btrfs_alloc_device(NULL, &device->devid,
					device->uuid);
	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */

	/* Safe because we are under uuid_mutex */
	if (device->name) {
		name = rcu_string_strdup(device->name->str, GFP_NOFS);
		BUG_ON(!name); /* -ENOMEM */
		rcu_assign_pointer(new_device->name, name);
	}

	list_replace_rcu(&device->dev_list, &new_device->dev_list);
	new_device->fs_devices = device->fs_devices;
1286

1287 1288
	synchronize_rcu();
	btrfs_free_device(device);
1289 1290
}

1291
static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292
{
1293
	struct btrfs_device *device, *tmp;
Y
Yan Zheng 已提交
1294

Y
Yan Zheng 已提交
1295 1296
	if (--fs_devices->opened > 0)
		return 0;
1297

1298
	mutex_lock(&fs_devices->device_list_mutex);
1299
	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300
		btrfs_close_one_device(device);
1301
	}
1302 1303
	mutex_unlock(&fs_devices->device_list_mutex);

Y
Yan Zheng 已提交
1304 1305
	WARN_ON(fs_devices->open_devices);
	WARN_ON(fs_devices->rw_devices);
Y
Yan Zheng 已提交
1306 1307 1308
	fs_devices->opened = 0;
	fs_devices->seeding = 0;

1309 1310 1311
	return 0;
}

Y
Yan Zheng 已提交
1312 1313
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
Y
Yan Zheng 已提交
1314
	struct btrfs_fs_devices *seed_devices = NULL;
Y
Yan Zheng 已提交
1315 1316 1317
	int ret;

	mutex_lock(&uuid_mutex);
1318
	ret = close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
1319 1320 1321 1322
	if (!fs_devices->opened) {
		seed_devices = fs_devices->seed;
		fs_devices->seed = NULL;
	}
Y
Yan Zheng 已提交
1323
	mutex_unlock(&uuid_mutex);
Y
Yan Zheng 已提交
1324 1325 1326 1327

	while (seed_devices) {
		fs_devices = seed_devices;
		seed_devices = fs_devices->seed;
1328
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
1329 1330
		free_fs_devices(fs_devices);
	}
Y
Yan Zheng 已提交
1331 1332 1333
	return ret;
}

1334
static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
Y
Yan Zheng 已提交
1335
				fmode_t flags, void *holder)
1336 1337
{
	struct btrfs_device *device;
1338
	struct btrfs_device *latest_dev = NULL;
1339
	int ret = 0;
1340

1341 1342
	flags |= FMODE_EXCL;

1343
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344
		/* Just open everything we can; ignore failures here */
1345
		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346
			continue;
1347

1348 1349 1350
		if (!latest_dev ||
		    device->generation > latest_dev->generation)
			latest_dev = device;
1351
	}
1352
	if (fs_devices->open_devices == 0) {
1353
		ret = -EINVAL;
1354 1355
		goto out;
	}
Y
Yan Zheng 已提交
1356
	fs_devices->opened = 1;
1357
	fs_devices->latest_bdev = latest_dev->bdev;
Y
Yan Zheng 已提交
1358
	fs_devices->total_rw_bytes = 0;
1359
out:
Y
Yan Zheng 已提交
1360 1361 1362
	return ret;
}

A
Anand Jain 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct btrfs_device *dev1, *dev2;

	dev1 = list_entry(a, struct btrfs_device, dev_list);
	dev2 = list_entry(b, struct btrfs_device, dev_list);

	if (dev1->devid < dev2->devid)
		return -1;
	else if (dev1->devid > dev2->devid)
		return 1;
	return 0;
}

Y
Yan Zheng 已提交
1377
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378
		       fmode_t flags, void *holder)
Y
Yan Zheng 已提交
1379 1380 1381
{
	int ret;

1382 1383
	lockdep_assert_held(&uuid_mutex);

1384
	mutex_lock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
1385
	if (fs_devices->opened) {
Y
Yan Zheng 已提交
1386 1387
		fs_devices->opened++;
		ret = 0;
Y
Yan Zheng 已提交
1388
	} else {
A
Anand Jain 已提交
1389
		list_sort(NULL, &fs_devices->devices, devid_cmp);
1390
		ret = open_fs_devices(fs_devices, flags, holder);
Y
Yan Zheng 已提交
1391
	}
1392 1393
	mutex_unlock(&fs_devices->device_list_mutex);

1394 1395 1396
	return ret;
}

1397
static void btrfs_release_disk_super(struct page *page)
1398 1399 1400 1401 1402
{
	kunmap(page);
	put_page(page);
}

1403 1404 1405
static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
				 struct page **page,
				 struct btrfs_super_block **disk_super)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
{
	void *p;
	pgoff_t index;

	/* make sure our super fits in the device */
	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
		return 1;

	/* make sure our super fits in the page */
	if (sizeof(**disk_super) > PAGE_SIZE)
		return 1;

	/* make sure our super doesn't straddle pages on disk */
	index = bytenr >> PAGE_SHIFT;
	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
		return 1;

	/* pull in the page with our super */
	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
				   index, GFP_KERNEL);

	if (IS_ERR_OR_NULL(*page))
		return 1;

	p = kmap(*page);

	/* align our pointer to the offset of the super block */
1433
	*disk_super = p + offset_in_page(bytenr);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	if (btrfs_super_bytenr(*disk_super) != bytenr ||
	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(*page);
		return 1;
	}

	if ((*disk_super)->label[0] &&
		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';

	return 0;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
int btrfs_forget_devices(const char *path)
{
	int ret;

	mutex_lock(&uuid_mutex);
	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
	mutex_unlock(&uuid_mutex);

	return ret;
}

1459 1460 1461 1462 1463
/*
 * Look for a btrfs signature on a device. This may be called out of the mount path
 * and we are not allowed to call set_blocksize during the scan. The superblock
 * is read via pagecache
 */
1464 1465
struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
					   void *holder)
1466 1467
{
	struct btrfs_super_block *disk_super;
1468
	bool new_device_added = false;
1469
	struct btrfs_device *device = NULL;
1470
	struct block_device *bdev;
1471 1472
	struct page *page;
	u64 bytenr;
1473

1474 1475
	lockdep_assert_held(&uuid_mutex);

1476 1477 1478 1479 1480 1481 1482
	/*
	 * we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	bytenr = btrfs_sb_offset(0);
1483
	flags |= FMODE_EXCL;
1484 1485

	bdev = blkdev_get_by_path(path, flags, holder);
1486
	if (IS_ERR(bdev))
1487
		return ERR_CAST(bdev);
1488

1489
	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490
		device = ERR_PTR(-EINVAL);
1491
		goto error_bdev_put;
1492
	}
1493

1494
	device = device_list_add(path, disk_super, &new_device_added);
1495
	if (!IS_ERR(device)) {
1496 1497 1498
		if (new_device_added)
			btrfs_free_stale_devices(path, device);
	}
1499

1500
	btrfs_release_disk_super(page);
1501 1502

error_bdev_put:
1503
	blkdev_put(bdev, flags);
1504

1505
	return device;
1506
}
1507

1508 1509 1510 1511 1512 1513
/*
 * Try to find a chunk that intersects [start, start + len] range and when one
 * such is found, record the end of it in *start
 */
static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
				    u64 len)
1514
{
1515
	u64 physical_start, physical_end;
1516

1517
	lockdep_assert_held(&device->fs_info->chunk_mutex);
1518

1519 1520 1521
	if (!find_first_extent_bit(&device->alloc_state, *start,
				   &physical_start, &physical_end,
				   CHUNK_ALLOCATED, NULL)) {
1522

1523 1524 1525 1526 1527
		if (in_range(physical_start, *start, len) ||
		    in_range(*start, physical_start,
			     physical_end - physical_start)) {
			*start = physical_end + 1;
			return true;
1528 1529
		}
	}
1530
	return false;
1531 1532 1533
}


1534
/*
1535 1536 1537 1538 1539 1540 1541
 * find_free_dev_extent_start - find free space in the specified device
 * @device:	  the device which we search the free space in
 * @num_bytes:	  the size of the free space that we need
 * @search_start: the position from which to begin the search
 * @start:	  store the start of the free space.
 * @len:	  the size of the free space. that we find, or the size
 *		  of the max free space if we don't find suitable free space
1542
 *
1543 1544 1545
 * this uses a pretty simple search, the expectation is that it is
 * called very infrequently and that a given device has a small number
 * of extents
1546 1547 1548 1549 1550 1551 1552 1553
 *
 * @start is used to store the start of the free space if we find. But if we
 * don't find suitable free space, it will be used to store the start position
 * of the max free space.
 *
 * @len is used to store the size of the free space that we find.
 * But if we don't find suitable free space, it is used to store the size of
 * the max free space.
1554
 */
1555
int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556
			       u64 search_start, u64 *start, u64 *len)
1557
{
1558 1559
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1560
	struct btrfs_key key;
1561
	struct btrfs_dev_extent *dev_extent;
Y
Yan Zheng 已提交
1562
	struct btrfs_path *path;
1563 1564 1565 1566
	u64 hole_size;
	u64 max_hole_start;
	u64 max_hole_size;
	u64 extent_end;
1567 1568
	u64 search_end = device->total_bytes;
	int ret;
1569
	int slot;
1570
	struct extent_buffer *l;
1571 1572 1573 1574 1575 1576

	/*
	 * We don't want to overwrite the superblock on the drive nor any area
	 * used by the boot loader (grub for example), so we make sure to start
	 * at an offset of at least 1MB.
	 */
1577
	search_start = max_t(u64, search_start, SZ_1M);
1578

1579 1580 1581
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1582

1583 1584 1585
	max_hole_start = search_start;
	max_hole_size = 0;

1586
again:
1587 1588
	if (search_start >= search_end ||
		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589
		ret = -ENOSPC;
1590
		goto out;
1591 1592
	}

1593
	path->reada = READA_FORWARD;
1594 1595
	path->search_commit_root = 1;
	path->skip_locking = 1;
1596

1597 1598 1599
	key.objectid = device->devid;
	key.offset = search_start;
	key.type = BTRFS_DEV_EXTENT_KEY;
1600

1601
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602
	if (ret < 0)
1603
		goto out;
1604 1605 1606
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid, key.type);
		if (ret < 0)
1607
			goto out;
1608
	}
1609

1610 1611 1612 1613 1614 1615 1616 1617
	while (1) {
		l = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(l)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
1618 1619 1620
				goto out;

			break;
1621 1622 1623 1624 1625 1626 1627
		}
		btrfs_item_key_to_cpu(l, &key, slot);

		if (key.objectid < device->devid)
			goto next;

		if (key.objectid > device->devid)
1628
			break;
1629

1630
		if (key.type != BTRFS_DEV_EXTENT_KEY)
1631
			goto next;
1632

1633 1634
		if (key.offset > search_start) {
			hole_size = key.offset - search_start;
1635

1636 1637 1638 1639
			/*
			 * Have to check before we set max_hole_start, otherwise
			 * we could end up sending back this offset anyway.
			 */
1640
			if (contains_pending_extent(device, &search_start,
1641
						    hole_size)) {
1642
				if (key.offset >= search_start)
1643
					hole_size = key.offset - search_start;
1644
				else
1645 1646
					hole_size = 0;
			}
1647

1648 1649 1650 1651
			if (hole_size > max_hole_size) {
				max_hole_start = search_start;
				max_hole_size = hole_size;
			}
1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
			/*
			 * If this free space is greater than which we need,
			 * it must be the max free space that we have found
			 * until now, so max_hole_start must point to the start
			 * of this free space and the length of this free space
			 * is stored in max_hole_size. Thus, we return
			 * max_hole_start and max_hole_size and go back to the
			 * caller.
			 */
			if (hole_size >= num_bytes) {
				ret = 0;
				goto out;
1665 1666 1667 1668
			}
		}

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 1670 1671 1672
		extent_end = key.offset + btrfs_dev_extent_length(l,
								  dev_extent);
		if (extent_end > search_start)
			search_start = extent_end;
1673 1674 1675 1676 1677
next:
		path->slots[0]++;
		cond_resched();
	}

1678 1679 1680 1681 1682
	/*
	 * At this point, search_start should be the end of
	 * allocated dev extents, and when shrinking the device,
	 * search_end may be smaller than search_start.
	 */
1683
	if (search_end > search_start) {
1684 1685
		hole_size = search_end - search_start;

1686
		if (contains_pending_extent(device, &search_start, hole_size)) {
1687 1688 1689
			btrfs_release_path(path);
			goto again;
		}
1690

1691 1692 1693 1694
		if (hole_size > max_hole_size) {
			max_hole_start = search_start;
			max_hole_size = hole_size;
		}
1695 1696
	}

1697
	/* See above. */
1698
	if (max_hole_size < num_bytes)
1699 1700 1701 1702 1703
		ret = -ENOSPC;
	else
		ret = 0;

out:
Y
Yan Zheng 已提交
1704
	btrfs_free_path(path);
1705
	*start = max_hole_start;
1706
	if (len)
1707
		*len = max_hole_size;
1708 1709 1710
	return ret;
}

1711
int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712 1713 1714
			 u64 *start, u64 *len)
{
	/* FIXME use last free of some kind */
1715
	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 1717
}

1718
static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719
			  struct btrfs_device *device,
M
Miao Xie 已提交
1720
			  u64 start, u64 *dev_extent_len)
1721
{
1722 1723
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1724 1725 1726
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
1727 1728 1729
	struct btrfs_key found_key;
	struct extent_buffer *leaf = NULL;
	struct btrfs_dev_extent *extent = NULL;
1730 1731 1732 1733 1734 1735 1736 1737

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
	key.offset = start;
	key.type = BTRFS_DEV_EXTENT_KEY;
M
Miao Xie 已提交
1738
again:
1739
	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740 1741 1742
	if (ret > 0) {
		ret = btrfs_previous_item(root, path, key.objectid,
					  BTRFS_DEV_EXTENT_KEY);
1743 1744
		if (ret)
			goto out;
1745 1746 1747 1748 1749 1750
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
		BUG_ON(found_key.offset > start || found_key.offset +
		       btrfs_dev_extent_length(leaf, extent) < start);
M
Miao Xie 已提交
1751 1752 1753
		key = found_key;
		btrfs_release_path(path);
		goto again;
1754 1755 1756 1757
	} else if (ret == 0) {
		leaf = path->nodes[0];
		extent = btrfs_item_ptr(leaf, path->slots[0],
					struct btrfs_dev_extent);
1758
	} else {
1759
		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760
		goto out;
1761
	}
1762

M
Miao Xie 已提交
1763 1764
	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);

1765
	ret = btrfs_del_item(trans, root, path);
1766
	if (ret) {
1767 1768
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to remove dev extent item");
Z
Zhao Lei 已提交
1769
	} else {
1770
		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771
	}
1772
out:
1773 1774 1775 1776
	btrfs_free_path(path);
	return ret;
}

1777 1778 1779
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
				  struct btrfs_device *device,
				  u64 chunk_offset, u64 start, u64 num_bytes)
1780 1781 1782
{
	int ret;
	struct btrfs_path *path;
1783 1784
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
1785 1786 1787 1788
	struct btrfs_dev_extent *extent;
	struct extent_buffer *leaf;
	struct btrfs_key key;

1789
	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790
	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791 1792 1793 1794 1795
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = device->devid;
Y
Yan Zheng 已提交
1796
	key.offset = start;
1797 1798 1799
	key.type = BTRFS_DEV_EXTENT_KEY;
	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*extent));
1800 1801
	if (ret)
		goto out;
1802 1803 1804 1805

	leaf = path->nodes[0];
	extent = btrfs_item_ptr(leaf, path->slots[0],
				struct btrfs_dev_extent);
1806 1807
	btrfs_set_dev_extent_chunk_tree(leaf, extent,
					BTRFS_CHUNK_TREE_OBJECTID);
1808 1809
	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810 1811
	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);

1812 1813
	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
	btrfs_mark_buffer_dirty(leaf);
1814
out:
1815 1816 1817 1818
	btrfs_free_path(path);
	return ret;
}

1819
static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820
{
1821 1822 1823 1824
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct rb_node *n;
	u64 ret = 0;
1825

1826
	em_tree = &fs_info->mapping_tree;
1827
	read_lock(&em_tree->lock);
L
Liu Bo 已提交
1828
	n = rb_last(&em_tree->map.rb_root);
1829 1830 1831
	if (n) {
		em = rb_entry(n, struct extent_map, rb_node);
		ret = em->start + em->len;
1832
	}
1833 1834
	read_unlock(&em_tree->lock);

1835 1836 1837
	return ret;
}

1838 1839
static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
				    u64 *devid_ret)
1840 1841 1842 1843
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
Y
Yan Zheng 已提交
1844 1845 1846 1847 1848
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1849 1850 1851 1852 1853

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = (u64)-1;

1854
	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855 1856 1857
	if (ret < 0)
		goto error;

1858
	BUG_ON(ret == 0); /* Corruption */
1859

1860 1861
	ret = btrfs_previous_item(fs_info->chunk_root, path,
				  BTRFS_DEV_ITEMS_OBJECTID,
1862 1863
				  BTRFS_DEV_ITEM_KEY);
	if (ret) {
1864
		*devid_ret = 1;
1865 1866 1867
	} else {
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
1868
		*devid_ret = found_key.offset + 1;
1869 1870 1871
	}
	ret = 0;
error:
Y
Yan Zheng 已提交
1872
	btrfs_free_path(path);
1873 1874 1875 1876 1877 1878 1879
	return ret;
}

/*
 * the device information is stored in the chunk root
 * the btrfs_device struct should be fully filled in
 */
1880
static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881
			    struct btrfs_device *device)
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
Y
Yan Zheng 已提交
1896
	key.offset = device->devid;
1897

1898 1899
	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
				      &key, sizeof(*dev_item));
1900 1901 1902 1903 1904 1905 1906
	if (ret)
		goto out;

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
Y
Yan Zheng 已提交
1907
	btrfs_set_device_generation(leaf, dev_item, 0);
1908 1909 1910 1911
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 1913 1914 1915
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
1916 1917 1918
	btrfs_set_device_group(leaf, dev_item, 0);
	btrfs_set_device_seek_speed(leaf, dev_item, 0);
	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919
	btrfs_set_device_start_offset(leaf, dev_item, 0);
1920

1921
	ptr = btrfs_device_uuid(dev_item);
1922
	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923
	ptr = btrfs_device_fsid(dev_item);
1924 1925
	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
			    ptr, BTRFS_FSID_SIZE);
1926 1927
	btrfs_mark_buffer_dirty(leaf);

Y
Yan Zheng 已提交
1928
	ret = 0;
1929 1930 1931 1932
out:
	btrfs_free_path(path);
	return ret;
}
1933

1934 1935 1936 1937
/*
 * Function to update ctime/mtime for a given device path.
 * Mainly used for ctime/mtime based probe like libblkid.
 */
1938
static void update_dev_time(const char *path_name)
1939 1940 1941 1942
{
	struct file *filp;

	filp = filp_open(path_name, O_RDWR, 0);
1943
	if (IS_ERR(filp))
1944 1945 1946 1947 1948
		return;
	file_update_time(filp);
	filp_close(filp, NULL);
}

1949
static int btrfs_rm_dev_item(struct btrfs_device *device)
1950
{
1951
	struct btrfs_root *root = device->fs_info->chunk_root;
1952 1953 1954 1955 1956 1957 1958 1959 1960
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_trans_handle *trans;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

1961
	trans = btrfs_start_transaction(root, 0);
1962 1963 1964 1965
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}
1966 1967 1968 1969 1970
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 1972 1973 1974 1975
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
1976 1977 1978 1979
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
1980 1981 1982 1983 1984
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	}

1985 1986
out:
	btrfs_free_path(path);
1987 1988
	if (!ret)
		ret = btrfs_commit_transaction(trans);
1989 1990 1991
	return ret;
}

1992 1993 1994 1995 1996 1997 1998
/*
 * Verify that @num_devices satisfies the RAID profile constraints in the whole
 * filesystem. It's up to the caller to adjust that number regarding eg. device
 * replace.
 */
static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
		u64 num_devices)
1999 2000
{
	u64 all_avail;
2001
	unsigned seq;
2002
	int i;
2003

2004
	do {
2005
		seq = read_seqbegin(&fs_info->profiles_lock);
2006

2007 2008 2009 2010
		all_avail = fs_info->avail_data_alloc_bits |
			    fs_info->avail_system_alloc_bits |
			    fs_info->avail_metadata_alloc_bits;
	} while (read_seqretry(&fs_info->profiles_lock, seq));
2011

2012
	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013
		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014
			continue;
2015

2016
		if (num_devices < btrfs_raid_array[i].devs_min) {
2017
			int ret = btrfs_raid_array[i].mindev_error;
2018

2019 2020 2021
			if (ret)
				return ret;
		}
D
David Woodhouse 已提交
2022 2023
	}

2024
	return 0;
2025 2026
}

2027 2028
static struct btrfs_device * btrfs_find_next_active_device(
		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029
{
Y
Yan Zheng 已提交
2030
	struct btrfs_device *next_device;
2031 2032 2033

	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
		if (next_device != device &&
2034 2035
		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
		    && next_device->bdev)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
			return next_device;
	}

	return NULL;
}

/*
 * Helper function to check if the given device is part of s_bdev / latest_bdev
 * and replace it with the provided or the next active device, in the context
 * where this function called, there should be always be another device (or
 * this_dev) which is active.
 */
2048 2049
void btrfs_assign_next_active_device(struct btrfs_device *device,
				     struct btrfs_device *this_dev)
2050
{
2051
	struct btrfs_fs_info *fs_info = device->fs_info;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	struct btrfs_device *next_device;

	if (this_dev)
		next_device = this_dev;
	else
		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
								device);
	ASSERT(next_device);

	if (fs_info->sb->s_bdev &&
			(fs_info->sb->s_bdev == device->bdev))
		fs_info->sb->s_bdev = next_device->bdev;

	if (fs_info->fs_devices->latest_bdev == device->bdev)
		fs_info->fs_devices->latest_bdev = next_device->bdev;
}

2069 2070 2071 2072 2073 2074 2075 2076
/*
 * Return btrfs_fs_devices::num_devices excluding the device that's being
 * currently replaced.
 */
static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
{
	u64 num_devices = fs_info->fs_devices->num_devices;

2077
	down_read(&fs_info->dev_replace.rwsem);
2078 2079 2080 2081
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
		ASSERT(num_devices > 1);
		num_devices--;
	}
2082
	up_read(&fs_info->dev_replace.rwsem);
2083 2084 2085 2086

	return num_devices;
}

2087 2088
int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
		u64 devid)
2089 2090
{
	struct btrfs_device *device;
2091
	struct btrfs_fs_devices *cur_devices;
2092
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2093
	u64 num_devices;
2094 2095 2096 2097
	int ret = 0;

	mutex_lock(&uuid_mutex);

2098
	num_devices = btrfs_num_devices(fs_info);
2099

2100
	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101
	if (ret)
2102 2103
		goto out;

2104 2105 2106 2107 2108 2109 2110 2111
	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);

	if (IS_ERR(device)) {
		if (PTR_ERR(device) == -ENOENT &&
		    strcmp(device_path, "missing") == 0)
			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
		else
			ret = PTR_ERR(device);
D
David Woodhouse 已提交
2112
		goto out;
2113
	}
2114

2115 2116 2117 2118 2119 2120 2121 2122
	if (btrfs_pinned_by_swapfile(fs_info, device)) {
		btrfs_warn_in_rcu(fs_info,
		  "cannot remove device %s (devid %llu) due to active swapfile",
				  rcu_str_deref(device->name), device->devid);
		ret = -ETXTBSY;
		goto out;
	}

2123
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124
		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125
		goto out;
2126 2127
	}

2128 2129
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
	    fs_info->fs_devices->rw_devices == 1) {
2130
		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131
		goto out;
Y
Yan Zheng 已提交
2132 2133
	}

2134
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135
		mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2136
		list_del_init(&device->dev_alloc_list);
2137
		device->fs_devices->rw_devices--;
2138
		mutex_unlock(&fs_info->chunk_mutex);
2139
	}
2140

2141
	mutex_unlock(&uuid_mutex);
2142
	ret = btrfs_shrink_device(device, 0);
2143
	mutex_lock(&uuid_mutex);
2144
	if (ret)
2145
		goto error_undo;
2146

2147 2148 2149 2150 2151
	/*
	 * TODO: the superblock still includes this device in its num_devices
	 * counter although write_all_supers() is not locked out. This
	 * could give a filesystem state which requires a degraded mount.
	 */
2152
	ret = btrfs_rm_dev_item(device);
2153
	if (ret)
2154
		goto error_undo;
2155

2156
	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157
	btrfs_scrub_cancel_dev(device);
2158 2159 2160 2161

	/*
	 * the device list mutex makes sure that we don't change
	 * the device list while someone else is writing out all
2162 2163 2164 2165 2166
	 * the device supers. Whoever is writing all supers, should
	 * lock the device list mutex before getting the number of
	 * devices in the super block (super_copy). Conversely,
	 * whoever updates the number of devices in the super block
	 * (super_copy) should hold the device list mutex.
2167
	 */
2168

2169 2170 2171 2172 2173
	/*
	 * In normal cases the cur_devices == fs_devices. But in case
	 * of deleting a seed device, the cur_devices should point to
	 * its own fs_devices listed under the fs_devices->seed.
	 */
2174
	cur_devices = device->fs_devices;
2175
	mutex_lock(&fs_devices->device_list_mutex);
2176
	list_del_rcu(&device->dev_list);
2177

2178 2179
	cur_devices->num_devices--;
	cur_devices->total_devices--;
2180 2181 2182
	/* Update total_devices of the parent fs_devices if it's seed */
	if (cur_devices != fs_devices)
		fs_devices->total_devices--;
Y
Yan Zheng 已提交
2183

2184
	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185
		cur_devices->missing_devices--;
2186

2187
	btrfs_assign_next_active_device(device, NULL);
Y
Yan Zheng 已提交
2188

2189
	if (device->bdev) {
2190
		cur_devices->open_devices--;
2191
		/* remove sysfs entry */
2192
		btrfs_sysfs_rm_device_link(fs_devices, device);
2193
	}
2194

2195 2196
	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197
	mutex_unlock(&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2198

2199 2200 2201 2202 2203
	/*
	 * at this point, the device is zero sized and detached from
	 * the devices list.  All that's left is to zero out the old
	 * supers and free the device.
	 */
2204
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205 2206 2207
		btrfs_scratch_superblocks(device->bdev, device->name->str);

	btrfs_close_bdev(device);
2208 2209
	synchronize_rcu();
	btrfs_free_device(device);
2210

2211
	if (cur_devices->open_devices == 0) {
Y
Yan Zheng 已提交
2212
		while (fs_devices) {
2213 2214
			if (fs_devices->seed == cur_devices) {
				fs_devices->seed = cur_devices->seed;
Y
Yan Zheng 已提交
2215
				break;
2216
			}
Y
Yan Zheng 已提交
2217
			fs_devices = fs_devices->seed;
Y
Yan Zheng 已提交
2218
		}
2219
		cur_devices->seed = NULL;
2220
		close_fs_devices(cur_devices);
2221
		free_fs_devices(cur_devices);
Y
Yan Zheng 已提交
2222 2223
	}

2224 2225 2226
out:
	mutex_unlock(&uuid_mutex);
	return ret;
2227

2228
error_undo:
2229
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230
		mutex_lock(&fs_info->chunk_mutex);
2231
		list_add(&device->dev_alloc_list,
2232
			 &fs_devices->alloc_list);
2233
		device->fs_devices->rw_devices++;
2234
		mutex_unlock(&fs_info->chunk_mutex);
2235
	}
2236
	goto out;
2237 2238
}

2239
void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240
{
2241 2242
	struct btrfs_fs_devices *fs_devices;

2243
	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244

2245 2246 2247 2248 2249 2250 2251
	/*
	 * in case of fs with no seed, srcdev->fs_devices will point
	 * to fs_devices of fs_info. However when the dev being replaced is
	 * a seed dev it will point to the seed's local fs_devices. In short
	 * srcdev will have its correct fs_devices in both the cases.
	 */
	fs_devices = srcdev->fs_devices;
2252

2253
	list_del_rcu(&srcdev->dev_list);
2254
	list_del(&srcdev->dev_alloc_list);
2255
	fs_devices->num_devices--;
2256
	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257
		fs_devices->missing_devices--;
2258

2259
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260
		fs_devices->rw_devices--;
2261

2262
	if (srcdev->bdev)
2263
		fs_devices->open_devices--;
2264 2265
}

2266
void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267
{
2268
	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269
	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270

2271
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272 2273 2274
		/* zero out the old super if it is writable */
		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
	}
2275 2276

	btrfs_close_bdev(srcdev);
2277 2278
	synchronize_rcu();
	btrfs_free_device(srcdev);
2279 2280 2281 2282 2283

	/* if this is no devs we rather delete the fs_devices */
	if (!fs_devices->num_devices) {
		struct btrfs_fs_devices *tmp_fs_devices;

2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * On a mounted FS, num_devices can't be zero unless it's a
		 * seed. In case of a seed device being replaced, the replace
		 * target added to the sprout FS, so there will be no more
		 * device left under the seed FS.
		 */
		ASSERT(fs_devices->seeding);

2292 2293 2294 2295 2296 2297 2298 2299 2300
		tmp_fs_devices = fs_info->fs_devices;
		while (tmp_fs_devices) {
			if (tmp_fs_devices->seed == fs_devices) {
				tmp_fs_devices->seed = fs_devices->seed;
				break;
			}
			tmp_fs_devices = tmp_fs_devices->seed;
		}
		fs_devices->seed = NULL;
2301
		close_fs_devices(fs_devices);
2302
		free_fs_devices(fs_devices);
2303
	}
2304 2305
}

2306
void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307
{
2308
	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309

2310
	WARN_ON(!tgtdev);
2311
	mutex_lock(&fs_devices->device_list_mutex);
2312

2313
	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314

2315
	if (tgtdev->bdev)
2316
		fs_devices->open_devices--;
2317

2318
	fs_devices->num_devices--;
2319

2320
	btrfs_assign_next_active_device(tgtdev, NULL);
2321 2322 2323

	list_del_rcu(&tgtdev->dev_list);

2324
	mutex_unlock(&fs_devices->device_list_mutex);
2325 2326 2327 2328 2329 2330 2331 2332 2333

	/*
	 * The update_dev_time() with in btrfs_scratch_superblocks()
	 * may lead to a call to btrfs_show_devname() which will try
	 * to hold device_list_mutex. And here this device
	 * is already out of device list, so we don't have to hold
	 * the device_list_mutex lock.
	 */
	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334 2335

	btrfs_close_bdev(tgtdev);
2336 2337
	synchronize_rcu();
	btrfs_free_device(tgtdev);
2338 2339
}

2340 2341
static struct btrfs_device *btrfs_find_device_by_path(
		struct btrfs_fs_info *fs_info, const char *device_path)
2342 2343 2344 2345 2346 2347 2348
{
	int ret = 0;
	struct btrfs_super_block *disk_super;
	u64 devid;
	u8 *dev_uuid;
	struct block_device *bdev;
	struct buffer_head *bh;
2349
	struct btrfs_device *device;
2350 2351

	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352
				    fs_info->bdev_holder, 0, &bdev, &bh);
2353
	if (ret)
2354
		return ERR_PTR(ret);
2355 2356 2357
	disk_super = (struct btrfs_super_block *)bh->b_data;
	devid = btrfs_stack_device_id(&disk_super->dev_item);
	dev_uuid = disk_super->dev_item.uuid;
2358
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360
					   disk_super->metadata_uuid, true);
2361
	else
2362
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363
					   disk_super->fsid, true);
2364

2365
	brelse(bh);
2366 2367
	if (!device)
		device = ERR_PTR(-ENOENT);
2368
	blkdev_put(bdev, FMODE_READ);
2369
	return device;
2370 2371
}

2372 2373 2374
/*
 * Lookup a device given by device id, or the path if the id is 0.
 */
2375
struct btrfs_device *btrfs_find_device_by_devspec(
2376 2377
		struct btrfs_fs_info *fs_info, u64 devid,
		const char *device_path)
2378
{
2379
	struct btrfs_device *device;
2380

2381
	if (devid) {
2382
		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383
					   NULL, true);
2384 2385
		if (!device)
			return ERR_PTR(-ENOENT);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
		return device;
	}

	if (!device_path || !device_path[0])
		return ERR_PTR(-EINVAL);

	if (strcmp(device_path, "missing") == 0) {
		/* Find first missing device */
		list_for_each_entry(device, &fs_info->fs_devices->devices,
				    dev_list) {
			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				     &device->dev_state) && !device->bdev)
				return device;
2399
		}
2400
		return ERR_PTR(-ENOENT);
2401
	}
2402 2403

	return btrfs_find_device_by_path(fs_info, device_path);
2404 2405
}

Y
Yan Zheng 已提交
2406 2407 2408
/*
 * does all the dirty work required for changing file system's UUID.
 */
2409
static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
2410
{
2411
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
Y
Yan Zheng 已提交
2412
	struct btrfs_fs_devices *old_devices;
Y
Yan Zheng 已提交
2413
	struct btrfs_fs_devices *seed_devices;
2414
	struct btrfs_super_block *disk_super = fs_info->super_copy;
Y
Yan Zheng 已提交
2415 2416 2417
	struct btrfs_device *device;
	u64 super_flags;

2418
	lockdep_assert_held(&uuid_mutex);
Y
Yan Zheng 已提交
2419
	if (!fs_devices->seeding)
Y
Yan Zheng 已提交
2420 2421
		return -EINVAL;

2422
	seed_devices = alloc_fs_devices(NULL, NULL);
2423 2424
	if (IS_ERR(seed_devices))
		return PTR_ERR(seed_devices);
Y
Yan Zheng 已提交
2425

Y
Yan Zheng 已提交
2426 2427 2428 2429
	old_devices = clone_fs_devices(fs_devices);
	if (IS_ERR(old_devices)) {
		kfree(seed_devices);
		return PTR_ERR(old_devices);
Y
Yan Zheng 已提交
2430
	}
Y
Yan Zheng 已提交
2431

2432
	list_add(&old_devices->fs_list, &fs_uuids);
Y
Yan Zheng 已提交
2433

Y
Yan Zheng 已提交
2434 2435 2436 2437
	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
	seed_devices->opened = 1;
	INIT_LIST_HEAD(&seed_devices->devices);
	INIT_LIST_HEAD(&seed_devices->alloc_list);
2438
	mutex_init(&seed_devices->device_list_mutex);
2439

2440
	mutex_lock(&fs_devices->device_list_mutex);
2441 2442
	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
			      synchronize_rcu);
M
Miao Xie 已提交
2443 2444
	list_for_each_entry(device, &seed_devices->devices, dev_list)
		device->fs_devices = seed_devices;
2445

2446
	mutex_lock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2447
	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448
	mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2449

Y
Yan Zheng 已提交
2450 2451 2452
	fs_devices->seeding = 0;
	fs_devices->num_devices = 0;
	fs_devices->open_devices = 0;
2453 2454
	fs_devices->missing_devices = 0;
	fs_devices->rotating = 0;
Y
Yan Zheng 已提交
2455
	fs_devices->seed = seed_devices;
Y
Yan Zheng 已提交
2456 2457

	generate_random_uuid(fs_devices->fsid);
2458
	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
2459
	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460
	mutex_unlock(&fs_devices->device_list_mutex);
2461

Y
Yan Zheng 已提交
2462 2463 2464 2465 2466 2467 2468 2469
	super_flags = btrfs_super_flags(disk_super) &
		      ~BTRFS_SUPER_FLAG_SEEDING;
	btrfs_set_super_flags(disk_super, super_flags);

	return 0;
}

/*
2470
 * Store the expected generation for seed devices in device items.
Y
Yan Zheng 已提交
2471
 */
2472
static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
2473
{
2474
	struct btrfs_fs_info *fs_info = trans->fs_info;
2475
	struct btrfs_root *root = fs_info->chunk_root;
Y
Yan Zheng 已提交
2476 2477 2478 2479 2480
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_dev_item *dev_item;
	struct btrfs_device *device;
	struct btrfs_key key;
2481
	u8 fs_uuid[BTRFS_FSID_SIZE];
Y
Yan Zheng 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	u8 dev_uuid[BTRFS_UUID_SIZE];
	u64 devid;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = BTRFS_DEV_ITEM_KEY;

	while (1) {
		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
		if (ret < 0)
			goto error;

		leaf = path->nodes[0];
next_slot:
		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret > 0)
				break;
			if (ret < 0)
				goto error;
			leaf = path->nodes[0];
			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509
			btrfs_release_path(path);
Y
Yan Zheng 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
		    key.type != BTRFS_DEV_ITEM_KEY)
			break;

		dev_item = btrfs_item_ptr(leaf, path->slots[0],
					  struct btrfs_dev_item);
		devid = btrfs_device_id(leaf, dev_item);
2521
		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
Y
Yan Zheng 已提交
2522
				   BTRFS_UUID_SIZE);
2523
		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524
				   BTRFS_FSID_SIZE);
2525
		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526
					   fs_uuid, true);
2527
		BUG_ON(!device); /* Logic error */
Y
Yan Zheng 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

		if (device->fs_devices->seeding) {
			btrfs_set_device_generation(leaf, dev_item,
						    device->generation);
			btrfs_mark_buffer_dirty(leaf);
		}

		path->slots[0]++;
		goto next_slot;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

2544
int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545
{
2546
	struct btrfs_root *root = fs_info->dev_root;
2547
	struct request_queue *q;
2548 2549 2550
	struct btrfs_trans_handle *trans;
	struct btrfs_device *device;
	struct block_device *bdev;
2551
	struct super_block *sb = fs_info->sb;
2552
	struct rcu_string *name;
2553
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554 2555
	u64 orig_super_total_bytes;
	u64 orig_super_num_devices;
Y
Yan Zheng 已提交
2556
	int seeding_dev = 0;
2557
	int ret = 0;
2558
	bool unlocked = false;
2559

2560
	if (sb_rdonly(sb) && !fs_devices->seeding)
2561
		return -EROFS;
2562

2563
	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564
				  fs_info->bdev_holder);
2565 2566
	if (IS_ERR(bdev))
		return PTR_ERR(bdev);
2567

2568
	if (fs_devices->seeding) {
Y
Yan Zheng 已提交
2569 2570 2571 2572 2573
		seeding_dev = 1;
		down_write(&sb->s_umount);
		mutex_lock(&uuid_mutex);
	}

2574
	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575

2576
	mutex_lock(&fs_devices->device_list_mutex);
2577
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578 2579
		if (device->bdev == bdev) {
			ret = -EEXIST;
2580
			mutex_unlock(
2581
				&fs_devices->device_list_mutex);
Y
Yan Zheng 已提交
2582
			goto error;
2583 2584
		}
	}
2585
	mutex_unlock(&fs_devices->device_list_mutex);
2586

2587
	device = btrfs_alloc_device(fs_info, NULL, NULL);
2588
	if (IS_ERR(device)) {
2589
		/* we can safely leave the fs_devices entry around */
2590
		ret = PTR_ERR(device);
Y
Yan Zheng 已提交
2591
		goto error;
2592 2593
	}

2594
	name = rcu_string_strdup(device_path, GFP_KERNEL);
2595
	if (!name) {
Y
Yan Zheng 已提交
2596
		ret = -ENOMEM;
2597
		goto error_free_device;
2598
	}
2599
	rcu_assign_pointer(device->name, name);
Y
Yan Zheng 已提交
2600

2601
	trans = btrfs_start_transaction(root, 0);
2602 2603
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
2604
		goto error_free_device;
2605 2606
	}

2607
	q = bdev_get_queue(bdev);
2608
	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
Y
Yan Zheng 已提交
2609
	device->generation = trans->transid;
2610 2611 2612
	device->io_width = fs_info->sectorsize;
	device->io_align = fs_info->sectorsize;
	device->sector_size = fs_info->sectorsize;
2613 2614
	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
					 fs_info->sectorsize);
2615
	device->disk_total_bytes = device->total_bytes;
2616
	device->commit_total_bytes = device->total_bytes;
2617
	device->fs_info = fs_info;
2618
	device->bdev = bdev;
2619
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621
	device->mode = FMODE_EXCL;
2622
	device->dev_stats_valid = 1;
2623
	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624

Y
Yan Zheng 已提交
2625
	if (seeding_dev) {
2626
		sb->s_flags &= ~SB_RDONLY;
2627
		ret = btrfs_prepare_sprout(fs_info);
2628 2629 2630 2631
		if (ret) {
			btrfs_abort_transaction(trans, ret);
			goto error_trans;
		}
Y
Yan Zheng 已提交
2632
	}
2633

2634
	device->fs_devices = fs_devices;
2635

2636
	mutex_lock(&fs_devices->device_list_mutex);
2637
	mutex_lock(&fs_info->chunk_mutex);
2638 2639 2640 2641 2642 2643 2644
	list_add_rcu(&device->dev_list, &fs_devices->devices);
	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
	fs_devices->num_devices++;
	fs_devices->open_devices++;
	fs_devices->rw_devices++;
	fs_devices->total_devices++;
	fs_devices->total_rw_bytes += device->total_bytes;
2645

2646
	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647

2648
	if (!blk_queue_nonrot(q))
2649
		fs_devices->rotating = 1;
C
Chris Mason 已提交
2650

2651
	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652
	btrfs_set_super_total_bytes(fs_info->super_copy,
2653 2654
		round_down(orig_super_total_bytes + device->total_bytes,
			   fs_info->sectorsize));
2655

2656 2657 2658
	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices + 1);
2659 2660

	/* add sysfs device entry */
2661
	btrfs_sysfs_add_device_link(fs_devices, device);
2662

M
Miao Xie 已提交
2663 2664 2665 2666
	/*
	 * we've got more storage, clear any full flags on the space
	 * infos
	 */
2667
	btrfs_clear_space_info_full(fs_info);
M
Miao Xie 已提交
2668

2669
	mutex_unlock(&fs_info->chunk_mutex);
2670
	mutex_unlock(&fs_devices->device_list_mutex);
2671

Y
Yan Zheng 已提交
2672
	if (seeding_dev) {
2673
		mutex_lock(&fs_info->chunk_mutex);
2674
		ret = init_first_rw_device(trans);
2675
		mutex_unlock(&fs_info->chunk_mutex);
2676
		if (ret) {
2677
			btrfs_abort_transaction(trans, ret);
2678
			goto error_sysfs;
2679
		}
M
Miao Xie 已提交
2680 2681
	}

2682
	ret = btrfs_add_dev_item(trans, device);
M
Miao Xie 已提交
2683
	if (ret) {
2684
		btrfs_abort_transaction(trans, ret);
2685
		goto error_sysfs;
M
Miao Xie 已提交
2686 2687 2688 2689 2690
	}

	if (seeding_dev) {
		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];

2691
		ret = btrfs_finish_sprout(trans);
2692
		if (ret) {
2693
			btrfs_abort_transaction(trans, ret);
2694
			goto error_sysfs;
2695
		}
2696 2697 2698 2699 2700

		/* Sprouting would change fsid of the mounted root,
		 * so rename the fsid on the sysfs
		 */
		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701
						fs_info->fs_devices->fsid);
2702
		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703 2704
			btrfs_warn(fs_info,
				   "sysfs: failed to create fsid for sprout");
Y
Yan Zheng 已提交
2705 2706
	}

2707
	ret = btrfs_commit_transaction(trans);
2708

Y
Yan Zheng 已提交
2709 2710 2711
	if (seeding_dev) {
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
2712
		unlocked = true;
2713

2714 2715 2716
		if (ret) /* transaction commit */
			return ret;

2717
		ret = btrfs_relocate_sys_chunks(fs_info);
2718
		if (ret < 0)
2719
			btrfs_handle_fs_error(fs_info, ret,
J
Jeff Mahoney 已提交
2720
				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721 2722 2723 2724
		trans = btrfs_attach_transaction(root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) == -ENOENT)
				return 0;
2725 2726 2727
			ret = PTR_ERR(trans);
			trans = NULL;
			goto error_sysfs;
2728
		}
2729
		ret = btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
2730
	}
2731

2732 2733
	/* Update ctime/mtime for libblkid */
	update_dev_time(device_path);
Y
Yan Zheng 已提交
2734
	return ret;
2735

2736
error_sysfs:
2737
	btrfs_sysfs_rm_device_link(fs_devices, device);
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	mutex_lock(&fs_info->chunk_mutex);
	list_del_rcu(&device->dev_list);
	list_del(&device->dev_alloc_list);
	fs_info->fs_devices->num_devices--;
	fs_info->fs_devices->open_devices--;
	fs_info->fs_devices->rw_devices--;
	fs_info->fs_devices->total_devices--;
	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
	btrfs_set_super_total_bytes(fs_info->super_copy,
				    orig_super_total_bytes);
	btrfs_set_super_num_devices(fs_info->super_copy,
				    orig_super_num_devices);
	mutex_unlock(&fs_info->chunk_mutex);
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754
error_trans:
2755
	if (seeding_dev)
2756
		sb->s_flags |= SB_RDONLY;
2757 2758
	if (trans)
		btrfs_end_transaction(trans);
2759
error_free_device:
2760
	btrfs_free_device(device);
Y
Yan Zheng 已提交
2761
error:
2762
	blkdev_put(bdev, FMODE_EXCL);
2763
	if (seeding_dev && !unlocked) {
Y
Yan Zheng 已提交
2764 2765 2766
		mutex_unlock(&uuid_mutex);
		up_write(&sb->s_umount);
	}
2767
	return ret;
2768 2769
}

C
Chris Mason 已提交
2770 2771
static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
					struct btrfs_device *device)
2772 2773 2774
{
	int ret;
	struct btrfs_path *path;
2775
	struct btrfs_root *root = device->fs_info->chunk_root;
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	struct btrfs_dev_item *dev_item;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.type = BTRFS_DEV_ITEM_KEY;
	key.offset = device->devid;

	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
	if (ret < 0)
		goto out;

	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);

	btrfs_set_device_id(leaf, dev_item, device->devid);
	btrfs_set_device_type(leaf, dev_item, device->type);
	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805 2806 2807 2808
	btrfs_set_device_total_bytes(leaf, dev_item,
				     btrfs_device_get_disk_total_bytes(device));
	btrfs_set_device_bytes_used(leaf, dev_item,
				    btrfs_device_get_bytes_used(device));
2809 2810 2811 2812 2813 2814 2815
	btrfs_mark_buffer_dirty(leaf);

out:
	btrfs_free_path(path);
	return ret;
}

M
Miao Xie 已提交
2816
int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817 2818
		      struct btrfs_device *device, u64 new_size)
{
2819 2820
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_super_block *super_copy = fs_info->super_copy;
M
Miao Xie 已提交
2821 2822
	u64 old_total;
	u64 diff;
2823

2824
	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
Y
Yan Zheng 已提交
2825
		return -EACCES;
M
Miao Xie 已提交
2826

2827 2828
	new_size = round_down(new_size, fs_info->sectorsize);

2829
	mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
2830
	old_total = btrfs_super_total_bytes(super_copy);
2831
	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
M
Miao Xie 已提交
2832

2833
	if (new_size <= device->total_bytes ||
2834
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835
		mutex_unlock(&fs_info->chunk_mutex);
Y
Yan Zheng 已提交
2836
		return -EINVAL;
M
Miao Xie 已提交
2837
	}
Y
Yan Zheng 已提交
2838

2839 2840
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total + diff, fs_info->sectorsize));
Y
Yan Zheng 已提交
2841 2842
	device->fs_devices->total_rw_bytes += diff;

2843 2844
	btrfs_device_set_total_bytes(device, new_size);
	btrfs_device_set_disk_total_bytes(device, new_size);
2845
	btrfs_clear_space_info_full(device->fs_info);
2846 2847 2848
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
2849
	mutex_unlock(&fs_info->chunk_mutex);
2850

2851 2852 2853
	return btrfs_update_device(trans, device);
}

2854
static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855
{
2856
	struct btrfs_fs_info *fs_info = trans->fs_info;
2857
	struct btrfs_root *root = fs_info->chunk_root;
2858 2859 2860 2861 2862 2863 2864 2865
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2866
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867 2868 2869 2870
	key.offset = chunk_offset;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871 2872 2873
	if (ret < 0)
		goto out;
	else if (ret > 0) { /* Logic error or corruption */
2874 2875
		btrfs_handle_fs_error(fs_info, -ENOENT,
				      "Failed lookup while freeing chunk.");
2876 2877 2878
		ret = -ENOENT;
		goto out;
	}
2879 2880

	ret = btrfs_del_item(trans, root, path);
2881
	if (ret < 0)
2882 2883
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to delete chunk item.");
2884
out:
2885
	btrfs_free_path(path);
2886
	return ret;
2887 2888
}

2889
static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890
{
2891
	struct btrfs_super_block *super_copy = fs_info->super_copy;
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
	u8 *ptr;
	int ret = 0;
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
	u32 cur;
	struct btrfs_key key;

2902
	mutex_lock(&fs_info->chunk_mutex);
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	array_size = btrfs_super_sys_array_size(super_copy);

	ptr = super_copy->sys_chunk_array;
	cur = 0;

	while (cur < array_size) {
		disk_key = (struct btrfs_disk_key *)ptr;
		btrfs_disk_key_to_cpu(&key, disk_key);

		len = sizeof(*disk_key);

		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
			chunk = (struct btrfs_chunk *)(ptr + len);
			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
			len += btrfs_chunk_item_size(num_stripes);
		} else {
			ret = -EIO;
			break;
		}
2922
		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923 2924 2925 2926 2927 2928 2929 2930 2931
		    key.offset == chunk_offset) {
			memmove(ptr, ptr + len, array_size - (cur + len));
			array_size -= len;
			btrfs_set_super_sys_array_size(super_copy, array_size);
		} else {
			ptr += len;
			cur += len;
		}
	}
2932
	mutex_unlock(&fs_info->chunk_mutex);
2933 2934 2935
	return ret;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944
/*
 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 * @logical: Logical block offset in bytes.
 * @length: Length of extent in bytes.
 *
 * Return: Chunk mapping or ERR_PTR.
 */
struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
				       u64 logical, u64 length)
2945 2946 2947 2948
{
	struct extent_map_tree *em_tree;
	struct extent_map *em;

2949
	em_tree = &fs_info->mapping_tree;
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, logical, length);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
			   logical, length);
		return ERR_PTR(-EINVAL);
	}

	if (em->start > logical || em->start + em->len < logical) {
		btrfs_crit(fs_info,
			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
			   logical, length, em->start, em->start + em->len);
		free_extent_map(em);
		return ERR_PTR(-EINVAL);
	}

	/* callers are responsible for dropping em's ref. */
	return em;
}

2972
int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973
{
2974
	struct btrfs_fs_info *fs_info = trans->fs_info;
2975 2976
	struct extent_map *em;
	struct map_lookup *map;
M
Miao Xie 已提交
2977
	u64 dev_extent_len = 0;
2978
	int i, ret = 0;
2979
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980

2981
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982
	if (IS_ERR(em)) {
2983 2984
		/*
		 * This is a logic error, but we don't want to just rely on the
2985
		 * user having built with ASSERT enabled, so if ASSERT doesn't
2986 2987 2988
		 * do anything we still error out.
		 */
		ASSERT(0);
2989
		return PTR_ERR(em);
2990
	}
2991
	map = em->map_lookup;
2992
	mutex_lock(&fs_info->chunk_mutex);
2993
	check_system_chunk(trans, map->type);
2994
	mutex_unlock(&fs_info->chunk_mutex);
2995

2996 2997 2998 2999 3000 3001
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
	mutex_lock(&fs_devices->device_list_mutex);
3002
	for (i = 0; i < map->num_stripes; i++) {
3003
		struct btrfs_device *device = map->stripes[i].dev;
M
Miao Xie 已提交
3004 3005 3006
		ret = btrfs_free_dev_extent(trans, device,
					    map->stripes[i].physical,
					    &dev_extent_len);
3007
		if (ret) {
3008
			mutex_unlock(&fs_devices->device_list_mutex);
3009
			btrfs_abort_transaction(trans, ret);
3010 3011
			goto out;
		}
3012

M
Miao Xie 已提交
3013
		if (device->bytes_used > 0) {
3014
			mutex_lock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
3015 3016
			btrfs_device_set_bytes_used(device,
					device->bytes_used - dev_extent_len);
3017
			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018
			btrfs_clear_space_info_full(fs_info);
3019
			mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
3020
		}
3021

3022 3023 3024 3025 3026
		ret = btrfs_update_device(trans, device);
		if (ret) {
			mutex_unlock(&fs_devices->device_list_mutex);
			btrfs_abort_transaction(trans, ret);
			goto out;
3027
		}
3028
	}
3029 3030
	mutex_unlock(&fs_devices->device_list_mutex);

3031
	ret = btrfs_free_chunk(trans, chunk_offset);
3032
	if (ret) {
3033
		btrfs_abort_transaction(trans, ret);
3034 3035
		goto out;
	}
3036

3037
	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038

3039
	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040
		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041
		if (ret) {
3042
			btrfs_abort_transaction(trans, ret);
3043 3044
			goto out;
		}
3045 3046
	}

3047
	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048
	if (ret) {
3049
		btrfs_abort_transaction(trans, ret);
3050 3051
		goto out;
	}
Y
Yan Zheng 已提交
3052

3053
out:
Y
Yan Zheng 已提交
3054 3055
	/* once for us */
	free_extent_map(em);
3056 3057
	return ret;
}
Y
Yan Zheng 已提交
3058

3059
static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060
{
3061
	struct btrfs_root *root = fs_info->chunk_root;
3062
	struct btrfs_trans_handle *trans;
3063
	int ret;
Y
Yan Zheng 已提交
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	/*
	 * Prevent races with automatic removal of unused block groups.
	 * After we relocate and before we remove the chunk with offset
	 * chunk_offset, automatic removal of the block group can kick in,
	 * resulting in a failure when calling btrfs_remove_chunk() below.
	 *
	 * Make sure to acquire this mutex before doing a tree search (dev
	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
	 * we release the path used to search the chunk/dev tree and before
	 * the current task acquires this mutex and calls us.
	 */
3077
	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078

3079
	ret = btrfs_can_relocate(fs_info, chunk_offset);
3080 3081 3082 3083
	if (ret)
		return -ENOSPC;

	/* step one, relocate all the extents inside this chunk */
3084
	btrfs_scrub_pause(fs_info);
3085
	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086
	btrfs_scrub_continue(fs_info);
3087 3088 3089
	if (ret)
		return ret;

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	/*
	 * We add the kobjects here (and after forcing data chunk creation)
	 * since relocation is the only place we'll create chunks of a new
	 * type at runtime.  The only place where we'll remove the last
	 * chunk of a type is the call immediately below this one.  Even
	 * so, we're protected against races with the cleaner thread since
	 * we're covered by the delete_unused_bgs_mutex.
	 */
	btrfs_add_raid_kobjects(fs_info);

3100 3101 3102 3103 3104 3105 3106 3107
	trans = btrfs_start_trans_remove_block_group(root->fs_info,
						     chunk_offset);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		btrfs_handle_fs_error(root->fs_info, ret, NULL);
		return ret;
	}

3108
	/*
3109 3110
	 * step two, delete the device extents and the
	 * chunk tree entries
3111
	 */
3112
	ret = btrfs_remove_chunk(trans, chunk_offset);
3113
	btrfs_end_transaction(trans);
3114
	return ret;
Y
Yan Zheng 已提交
3115 3116
}

3117
static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
3118
{
3119
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
3120 3121 3122 3123 3124 3125
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_chunk *chunk;
	struct btrfs_key key;
	struct btrfs_key found_key;
	u64 chunk_type;
3126 3127
	bool retried = false;
	int failed = 0;
Y
Yan Zheng 已提交
3128 3129 3130 3131 3132 3133
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3134
again:
Y
Yan Zheng 已提交
3135 3136 3137 3138 3139
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

	while (1) {
3140
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3141
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3142
		if (ret < 0) {
3143
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3144
			goto error;
3145
		}
3146
		BUG_ON(ret == 0); /* Corruption */
Y
Yan Zheng 已提交
3147 3148 3149

		ret = btrfs_previous_item(chunk_root, path, key.objectid,
					  key.type);
3150
		if (ret)
3151
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
Y
Yan Zheng 已提交
3152 3153 3154 3155
		if (ret < 0)
			goto error;
		if (ret > 0)
			break;
Z
Zheng Yan 已提交
3156

Y
Yan Zheng 已提交
3157 3158
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
Z
Zheng Yan 已提交
3159

Y
Yan Zheng 已提交
3160 3161 3162
		chunk = btrfs_item_ptr(leaf, path->slots[0],
				       struct btrfs_chunk);
		chunk_type = btrfs_chunk_type(leaf, chunk);
3163
		btrfs_release_path(path);
3164

Y
Yan Zheng 已提交
3165
		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3166
			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3167 3168
			if (ret == -ENOSPC)
				failed++;
H
HIMANGI SARAOGI 已提交
3169 3170
			else
				BUG_ON(ret);
Y
Yan Zheng 已提交
3171
		}
3172
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3173

Y
Yan Zheng 已提交
3174 3175 3176 3177 3178
		if (found_key.offset == 0)
			break;
		key.offset = found_key.offset - 1;
	}
	ret = 0;
3179 3180 3181 3182
	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
3183
	} else if (WARN_ON(failed && retried)) {
3184 3185
		ret = -ENOSPC;
	}
Y
Yan Zheng 已提交
3186 3187 3188
error:
	btrfs_free_path(path);
	return ret;
3189 3190
}

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/*
 * return 1 : allocate a data chunk successfully,
 * return <0: errors during allocating a data chunk,
 * return 0 : no need to allocate a data chunk.
 */
static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
				      u64 chunk_offset)
{
	struct btrfs_block_group_cache *cache;
	u64 bytes_used;
	u64 chunk_type;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	ASSERT(cache);
	chunk_type = cache->flags;
	btrfs_put_block_group(cache);

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
		spin_lock(&fs_info->data_sinfo->lock);
		bytes_used = fs_info->data_sinfo->bytes_used;
		spin_unlock(&fs_info->data_sinfo->lock);

		if (!bytes_used) {
			struct btrfs_trans_handle *trans;
			int ret;

			trans =	btrfs_join_transaction(fs_info->tree_root);
			if (IS_ERR(trans))
				return PTR_ERR(trans);

3221
			ret = btrfs_force_chunk_alloc(trans,
3222 3223 3224 3225 3226
						      BTRFS_BLOCK_GROUP_DATA);
			btrfs_end_transaction(trans);
			if (ret < 0)
				return ret;

3227 3228
			btrfs_add_raid_kobjects(fs_info);

3229 3230 3231 3232 3233 3234
			return 1;
		}
	}
	return 0;
}

3235
static int insert_balance_item(struct btrfs_fs_info *fs_info,
3236 3237
			       struct btrfs_balance_control *bctl)
{
3238
	struct btrfs_root *root = fs_info->tree_root;
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	struct btrfs_trans_handle *trans;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3258
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	key.offset = 0;

	ret = btrfs_insert_empty_item(trans, root, path, &key,
				      sizeof(*item));
	if (ret)
		goto out;

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

3269
	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
	btrfs_set_balance_data(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
	btrfs_set_balance_meta(leaf, item, &disk_bargs);
	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
	btrfs_set_balance_sys(leaf, item, &disk_bargs);

	btrfs_set_balance_flags(leaf, item, bctl->flags);

	btrfs_mark_buffer_dirty(leaf);
out:
	btrfs_free_path(path);
3283
	err = btrfs_commit_transaction(trans);
3284 3285 3286 3287 3288
	if (err && !ret)
		ret = err;
	return ret;
}

3289
static int del_balance_item(struct btrfs_fs_info *fs_info)
3290
{
3291
	struct btrfs_root *root = fs_info->tree_root;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_key key;
	int ret, err;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

	key.objectid = BTRFS_BALANCE_OBJECTID;
3308
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
	key.offset = 0;

	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = -ENOENT;
		goto out;
	}

	ret = btrfs_del_item(trans, root, path);
out:
	btrfs_free_path(path);
3322
	err = btrfs_commit_transaction(trans);
3323 3324 3325 3326 3327
	if (err && !ret)
		ret = err;
	return ret;
}

I
Ilya Dryomov 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/*
 * This is a heuristic used to reduce the number of chunks balanced on
 * resume after balance was interrupted.
 */
static void update_balance_args(struct btrfs_balance_control *bctl)
{
	/*
	 * Turn on soft mode for chunk types that were being converted.
	 */
	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;

	/*
	 * Turn on usage filter if is not already used.  The idea is
	 * that chunks that we have already balanced should be
	 * reasonably full.  Don't do it for chunks that are being
	 * converted - that will keep us from relocating unconverted
	 * (albeit full) chunks.
	 */
	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3352
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3353 3354 3355 3356 3357
	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->data.usage = 90;
	}
	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3358
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3359 3360 3361 3362 3363
	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->sys.usage = 90;
	}
	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
I
Ilya Dryomov 已提交
3365 3366 3367 3368 3369 3370
	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
		bctl->meta.usage = 90;
	}
}

3371 3372 3373 3374
/*
 * Clear the balance status in fs_info and delete the balance item from disk.
 */
static void reset_balance_state(struct btrfs_fs_info *fs_info)
3375 3376
{
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377
	int ret;
3378 3379 3380 3381 3382 3383 3384 3385

	BUG_ON(!fs_info->balance_ctl);

	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = NULL;
	spin_unlock(&fs_info->balance_lock);

	kfree(bctl);
3386 3387 3388
	ret = del_balance_item(fs_info);
	if (ret)
		btrfs_handle_fs_error(fs_info, ret, NULL);
3389 3390
}

I
Ilya Dryomov 已提交
3391 3392 3393 3394
/*
 * Balance filters.  Return 1 if chunk should be filtered out
 * (should not be balanced).
 */
3395
static int chunk_profiles_filter(u64 chunk_type,
I
Ilya Dryomov 已提交
3396 3397
				 struct btrfs_balance_args *bargs)
{
3398 3399
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
I
Ilya Dryomov 已提交
3400

3401
	if (bargs->profiles & chunk_type)
I
Ilya Dryomov 已提交
3402 3403 3404 3405 3406
		return 0;

	return 1;
}

3407
static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
I
Ilya Dryomov 已提交
3408
			      struct btrfs_balance_args *bargs)
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
{
	struct btrfs_block_group_cache *cache;
	u64 chunk_used;
	u64 user_thresh_min;
	u64 user_thresh_max;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	chunk_used = btrfs_block_group_used(&cache->item);

	if (bargs->usage_min == 0)
		user_thresh_min = 0;
	else
		user_thresh_min = div_factor_fine(cache->key.offset,
					bargs->usage_min);

	if (bargs->usage_max == 0)
		user_thresh_max = 1;
	else if (bargs->usage_max > 100)
		user_thresh_max = cache->key.offset;
	else
		user_thresh_max = div_factor_fine(cache->key.offset,
					bargs->usage_max);

	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

3440
static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3441
		u64 chunk_offset, struct btrfs_balance_args *bargs)
I
Ilya Dryomov 已提交
3442 3443 3444 3445 3446 3447 3448 3449
{
	struct btrfs_block_group_cache *cache;
	u64 chunk_used, user_thresh;
	int ret = 1;

	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
	chunk_used = btrfs_block_group_used(&cache->item);

3450
	if (bargs->usage_min == 0)
3451
		user_thresh = 1;
3452 3453 3454 3455 3456 3457
	else if (bargs->usage > 100)
		user_thresh = cache->key.offset;
	else
		user_thresh = div_factor_fine(cache->key.offset,
					      bargs->usage);

I
Ilya Dryomov 已提交
3458 3459 3460 3461 3462 3463 3464
	if (chunk_used < user_thresh)
		ret = 0;

	btrfs_put_block_group(cache);
	return ret;
}

I
Ilya Dryomov 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
static int chunk_devid_filter(struct extent_buffer *leaf,
			      struct btrfs_chunk *chunk,
			      struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	int i;

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
			return 0;
	}

	return 1;
}

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
static u64 calc_data_stripes(u64 type, int num_stripes)
{
	const int index = btrfs_bg_flags_to_raid_index(type);
	const int ncopies = btrfs_raid_array[index].ncopies;
	const int nparity = btrfs_raid_array[index].nparity;

	if (nparity)
		return num_stripes - nparity;
	else
		return num_stripes / ncopies;
}

I
Ilya Dryomov 已提交
3494 3495 3496 3497 3498 3499 3500 3501 3502
/* [pstart, pend) */
static int chunk_drange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	struct btrfs_stripe *stripe;
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
	u64 stripe_offset;
	u64 stripe_length;
3503
	u64 type;
I
Ilya Dryomov 已提交
3504 3505 3506 3507 3508 3509
	int factor;
	int i;

	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
		return 0;

3510 3511
	type = btrfs_chunk_type(leaf, chunk);
	factor = calc_data_stripes(type, num_stripes);
I
Ilya Dryomov 已提交
3512 3513 3514 3515 3516 3517 3518 3519

	for (i = 0; i < num_stripes; i++) {
		stripe = btrfs_stripe_nr(chunk, i);
		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
			continue;

		stripe_offset = btrfs_stripe_offset(leaf, stripe);
		stripe_length = btrfs_chunk_length(leaf, chunk);
3520
		stripe_length = div_u64(stripe_length, factor);
I
Ilya Dryomov 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529

		if (stripe_offset < bargs->pend &&
		    stripe_offset + stripe_length > bargs->pstart)
			return 0;
	}

	return 1;
}

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
/* [vstart, vend) */
static int chunk_vrange_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       u64 chunk_offset,
			       struct btrfs_balance_args *bargs)
{
	if (chunk_offset < bargs->vend &&
	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
		/* at least part of the chunk is inside this vrange */
		return 0;

	return 1;
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
static int chunk_stripes_range_filter(struct extent_buffer *leaf,
			       struct btrfs_chunk *chunk,
			       struct btrfs_balance_args *bargs)
{
	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

	if (bargs->stripes_min <= num_stripes
			&& num_stripes <= bargs->stripes_max)
		return 0;

	return 1;
}

3557
static int chunk_soft_convert_filter(u64 chunk_type,
3558 3559 3560 3561 3562
				     struct btrfs_balance_args *bargs)
{
	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
		return 0;

3563 3564
	chunk_type = chunk_to_extended(chunk_type) &
				BTRFS_EXTENDED_PROFILE_MASK;
3565

3566
	if (bargs->target == chunk_type)
3567 3568 3569 3570 3571
		return 1;

	return 0;
}

3572
static int should_balance_chunk(struct extent_buffer *leaf,
3573 3574
				struct btrfs_chunk *chunk, u64 chunk_offset)
{
3575
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3576
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	struct btrfs_balance_args *bargs = NULL;
	u64 chunk_type = btrfs_chunk_type(leaf, chunk);

	/* type filter */
	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
		return 0;
	}

	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
		bargs = &bctl->data;
	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
		bargs = &bctl->sys;
	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
		bargs = &bctl->meta;

I
Ilya Dryomov 已提交
3593 3594 3595 3596
	/* profiles filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
	    chunk_profiles_filter(chunk_type, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3597 3598 3599 3600
	}

	/* usage filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3601
	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
I
Ilya Dryomov 已提交
3602
		return 0;
3603
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3604
	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3605
		return 0;
I
Ilya Dryomov 已提交
3606 3607 3608 3609 3610 3611
	}

	/* devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
	    chunk_devid_filter(leaf, chunk, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3612 3613 3614 3615
	}

	/* drange filter, makes sense only with devid filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3616
	    chunk_drange_filter(leaf, chunk, bargs)) {
I
Ilya Dryomov 已提交
3617
		return 0;
3618 3619 3620 3621 3622 3623
	}

	/* vrange filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
		return 0;
I
Ilya Dryomov 已提交
3624 3625
	}

3626 3627 3628 3629 3630 3631
	/* stripes filter */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
		return 0;
	}

3632 3633 3634 3635 3636 3637
	/* soft profile changing mode */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
	    chunk_soft_convert_filter(chunk_type, bargs)) {
		return 0;
	}

3638 3639 3640 3641 3642 3643 3644 3645
	/*
	 * limited by count, must be the last filter
	 */
	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
		if (bargs->limit == 0)
			return 0;
		else
			bargs->limit--;
3646 3647 3648
	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
		/*
		 * Same logic as the 'limit' filter; the minimum cannot be
3649
		 * determined here because we do not have the global information
3650 3651 3652 3653 3654 3655
		 * about the count of all chunks that satisfy the filters.
		 */
		if (bargs->limit_max == 0)
			return 0;
		else
			bargs->limit_max--;
3656 3657
	}

3658 3659 3660
	return 1;
}

3661
static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3662
{
3663
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3664
	struct btrfs_root *chunk_root = fs_info->chunk_root;
3665
	u64 chunk_type;
3666
	struct btrfs_chunk *chunk;
3667
	struct btrfs_path *path = NULL;
3668 3669
	struct btrfs_key key;
	struct btrfs_key found_key;
3670 3671
	struct extent_buffer *leaf;
	int slot;
3672 3673
	int ret;
	int enospc_errors = 0;
3674
	bool counting = true;
3675
	/* The single value limit and min/max limits use the same bytes in the */
3676 3677 3678
	u64 limit_data = bctl->data.limit;
	u64 limit_meta = bctl->meta.limit;
	u64 limit_sys = bctl->sys.limit;
3679 3680 3681
	u32 count_data = 0;
	u32 count_meta = 0;
	u32 count_sys = 0;
3682
	int chunk_reserved = 0;
3683 3684

	path = btrfs_alloc_path();
3685 3686 3687 3688
	if (!path) {
		ret = -ENOMEM;
		goto error;
	}
3689 3690 3691 3692 3693 3694

	/* zero out stat counters */
	spin_lock(&fs_info->balance_lock);
	memset(&bctl->stat, 0, sizeof(bctl->stat));
	spin_unlock(&fs_info->balance_lock);
again:
3695
	if (!counting) {
3696 3697 3698 3699
		/*
		 * The single value limit and min/max limits use the same bytes
		 * in the
		 */
3700 3701 3702 3703
		bctl->data.limit = limit_data;
		bctl->meta.limit = limit_meta;
		bctl->sys.limit = limit_sys;
	}
3704 3705 3706 3707
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.offset = (u64)-1;
	key.type = BTRFS_CHUNK_ITEM_KEY;

C
Chris Mason 已提交
3708
	while (1) {
3709
		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3710
		    atomic_read(&fs_info->balance_cancel_req)) {
3711 3712 3713 3714
			ret = -ECANCELED;
			goto error;
		}

3715
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3716
		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3717 3718
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3719
			goto error;
3720
		}
3721 3722 3723 3724 3725 3726

		/*
		 * this shouldn't happen, it means the last relocate
		 * failed
		 */
		if (ret == 0)
3727
			BUG(); /* FIXME break ? */
3728 3729 3730

		ret = btrfs_previous_item(chunk_root, path, 0,
					  BTRFS_CHUNK_ITEM_KEY);
3731
		if (ret) {
3732
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733
			ret = 0;
3734
			break;
3735
		}
3736

3737 3738 3739
		leaf = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3740

3741 3742
		if (found_key.objectid != key.objectid) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743
			break;
3744
		}
3745

3746
		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3747
		chunk_type = btrfs_chunk_type(leaf, chunk);
3748

3749 3750 3751 3752 3753 3754
		if (!counting) {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.considered++;
			spin_unlock(&fs_info->balance_lock);
		}

3755
		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3756

3757
		btrfs_release_path(path);
3758 3759
		if (!ret) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760
			goto loop;
3761
		}
3762

3763
		if (counting) {
3764
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765 3766 3767
			spin_lock(&fs_info->balance_lock);
			bctl->stat.expected++;
			spin_unlock(&fs_info->balance_lock);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
				count_data++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
				count_sys++;
			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
				count_meta++;

			goto loop;
		}

		/*
		 * Apply limit_min filter, no need to check if the LIMITS
		 * filter is used, limit_min is 0 by default
		 */
		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
					count_data < bctl->data.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
					count_meta < bctl->meta.limit_min)
				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
					count_sys < bctl->sys.limit_min)) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 3791 3792
			goto loop;
		}

3793 3794 3795 3796 3797 3798 3799 3800 3801
		if (!chunk_reserved) {
			/*
			 * We may be relocating the only data chunk we have,
			 * which could potentially end up with losing data's
			 * raid profile, so lets allocate an empty one in
			 * advance.
			 */
			ret = btrfs_may_alloc_data_chunk(fs_info,
							 found_key.offset);
3802 3803 3804
			if (ret < 0) {
				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
				goto error;
3805 3806
			} else if (ret == 1) {
				chunk_reserved = 1;
3807 3808 3809
			}
		}

3810
		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3811
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3812
		if (ret == -ENOSPC) {
3813
			enospc_errors++;
3814 3815 3816 3817 3818 3819 3820
		} else if (ret == -ETXTBSY) {
			btrfs_info(fs_info,
	   "skipping relocation of block group %llu due to active swapfile",
				   found_key.offset);
			ret = 0;
		} else if (ret) {
			goto error;
3821 3822 3823 3824 3825
		} else {
			spin_lock(&fs_info->balance_lock);
			bctl->stat.completed++;
			spin_unlock(&fs_info->balance_lock);
		}
3826
loop:
3827 3828
		if (found_key.offset == 0)
			break;
3829
		key.offset = found_key.offset - 1;
3830
	}
3831

3832 3833 3834 3835 3836
	if (counting) {
		btrfs_release_path(path);
		counting = false;
		goto again;
	}
3837 3838
error:
	btrfs_free_path(path);
3839
	if (enospc_errors) {
3840
		btrfs_info(fs_info, "%d enospc errors during balance",
J
Jeff Mahoney 已提交
3841
			   enospc_errors);
3842 3843 3844 3845
		if (!ret)
			ret = -ENOSPC;
	}

3846 3847 3848
	return ret;
}

3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
/**
 * alloc_profile_is_valid - see if a given profile is valid and reduced
 * @flags: profile to validate
 * @extended: if true @flags is treated as an extended profile
 */
static int alloc_profile_is_valid(u64 flags, int extended)
{
	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
			       BTRFS_BLOCK_GROUP_PROFILE_MASK);

	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;

	/* 1) check that all other bits are zeroed */
	if (flags & ~mask)
		return 0;

	/* 2) see if profile is reduced */
	if (flags == 0)
		return !extended; /* "0" is valid for usual profiles */

	/* true if exactly one bit set */
3870
	return is_power_of_2(flags);
3871 3872
}

3873 3874
static inline int balance_need_close(struct btrfs_fs_info *fs_info)
{
3875 3876 3877 3878
	/* cancel requested || normal exit path */
	return atomic_read(&fs_info->balance_cancel_req) ||
		(atomic_read(&fs_info->balance_pause_req) == 0 &&
		 atomic_read(&fs_info->balance_cancel_req) == 0);
3879 3880
}

3881 3882 3883 3884 3885 3886 3887 3888 3889
/* Non-zero return value signifies invalidity */
static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
		u64 allowed)
{
	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
		 (bctl_arg->target & ~allowed)));
}

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
/*
 * Fill @buf with textual description of balance filter flags @bargs, up to
 * @size_buf including the terminating null. The output may be trimmed if it
 * does not fit into the provided buffer.
 */
static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
				 u32 size_buf)
{
	int ret;
	u32 size_bp = size_buf;
	char *bp = buf;
	u64 flags = bargs->flags;
	char tmp_buf[128] = {'\0'};

	if (!flags)
		return;

#define CHECK_APPEND_NOARG(a)						\
	do {								\
		ret = snprintf(bp, size_bp, (a));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

#define CHECK_APPEND_2ARG(a, v1, v2)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

3934 3935 3936
	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
		CHECK_APPEND_1ARG("convert=%s,",
				  btrfs_bg_type_to_raid_name(bargs->target));
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043

	if (flags & BTRFS_BALANCE_ARGS_SOFT)
		CHECK_APPEND_NOARG("soft,");

	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
					    sizeof(tmp_buf));
		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
	}

	if (flags & BTRFS_BALANCE_ARGS_USAGE)
		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);

	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
		CHECK_APPEND_2ARG("usage=%u..%u,",
				  bargs->usage_min, bargs->usage_max);

	if (flags & BTRFS_BALANCE_ARGS_DEVID)
		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);

	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
		CHECK_APPEND_2ARG("drange=%llu..%llu,",
				  bargs->pstart, bargs->pend);

	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
				  bargs->vstart, bargs->vend);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);

	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
		CHECK_APPEND_2ARG("limit=%u..%u,",
				bargs->limit_min, bargs->limit_max);

	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
		CHECK_APPEND_2ARG("stripes=%u..%u,",
				  bargs->stripes_min, bargs->stripes_max);

#undef CHECK_APPEND_2ARG
#undef CHECK_APPEND_1ARG
#undef CHECK_APPEND_NOARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
	else
		buf[0] = '\0';
}

static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
{
	u32 size_buf = 1024;
	char tmp_buf[192] = {'\0'};
	char *buf;
	char *bp;
	u32 size_bp = size_buf;
	int ret;
	struct btrfs_balance_control *bctl = fs_info->balance_ctl;

	buf = kzalloc(size_buf, GFP_KERNEL);
	if (!buf)
		return;

	bp = buf;

#define CHECK_APPEND_1ARG(a, v1)					\
	do {								\
		ret = snprintf(bp, size_bp, (a), (v1));			\
		if (ret < 0 || ret >= size_bp)				\
			goto out_overflow;				\
		size_bp -= ret;						\
		bp += ret;						\
	} while (0)

	if (bctl->flags & BTRFS_BALANCE_FORCE)
		CHECK_APPEND_1ARG("%s", "-f ");

	if (bctl->flags & BTRFS_BALANCE_DATA) {
		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_METADATA) {
		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
	}

	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
	}

#undef CHECK_APPEND_1ARG

out_overflow:

	if (size_bp < size_buf)
		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
	btrfs_info(fs_info, "balance: %s %s",
		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
		   "resume" : "start", buf);

	kfree(buf);
}

4044
/*
4045
 * Should be called with balance mutexe held
4046
 */
4047 4048
int btrfs_balance(struct btrfs_fs_info *fs_info,
		  struct btrfs_balance_control *bctl,
4049 4050
		  struct btrfs_ioctl_balance_args *bargs)
{
4051
	u64 meta_target, data_target;
4052
	u64 allowed;
4053
	int mixed = 0;
4054
	int ret;
4055
	u64 num_devices;
4056
	unsigned seq;
4057
	bool reducing_integrity;
4058
	int i;
4059

4060
	if (btrfs_fs_closing(fs_info) ||
4061 4062
	    atomic_read(&fs_info->balance_pause_req) ||
	    atomic_read(&fs_info->balance_cancel_req)) {
4063 4064 4065 4066
		ret = -EINVAL;
		goto out;
	}

4067 4068 4069 4070
	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
		mixed = 1;

4071 4072 4073 4074
	/*
	 * In case of mixed groups both data and meta should be picked,
	 * and identical options should be given for both of them.
	 */
4075 4076
	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
	if (mixed && (bctl->flags & allowed)) {
4077 4078 4079
		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
J
Jeff Mahoney 已提交
4080
			btrfs_err(fs_info,
4081
	  "balance: mixed groups data and metadata options must be the same");
4082 4083 4084 4085 4086
			ret = -EINVAL;
			goto out;
		}
	}

4087
	num_devices = btrfs_num_devices(fs_info);
4088 4089 4090 4091
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
		if (num_devices >= btrfs_raid_array[i].devs_min)
			allowed |= btrfs_raid_array[i].bg_flag;
4092

4093
	if (validate_convert_profile(&bctl->data, allowed)) {
J
Jeff Mahoney 已提交
4094
		btrfs_err(fs_info,
4095
			  "balance: invalid convert data profile %s",
4096
			  btrfs_bg_type_to_raid_name(bctl->data.target));
4097 4098 4099
		ret = -EINVAL;
		goto out;
	}
4100
	if (validate_convert_profile(&bctl->meta, allowed)) {
4101
		btrfs_err(fs_info,
4102
			  "balance: invalid convert metadata profile %s",
4103
			  btrfs_bg_type_to_raid_name(bctl->meta.target));
4104 4105 4106
		ret = -EINVAL;
		goto out;
	}
4107
	if (validate_convert_profile(&bctl->sys, allowed)) {
4108
		btrfs_err(fs_info,
4109
			  "balance: invalid convert system profile %s",
4110
			  btrfs_bg_type_to_raid_name(bctl->sys.target));
4111 4112 4113 4114
		ret = -EINVAL;
		goto out;
	}

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	/*
	 * Allow to reduce metadata or system integrity only if force set for
	 * profiles with redundancy (copies, parity)
	 */
	allowed = 0;
	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
		if (btrfs_raid_array[i].ncopies >= 2 ||
		    btrfs_raid_array[i].tolerated_failures >= 1)
			allowed |= btrfs_raid_array[i].bg_flag;
	}
4125 4126 4127 4128 4129 4130 4131 4132
	do {
		seq = read_seqbegin(&fs_info->profiles_lock);

		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_system_alloc_bits & allowed) &&
		     !(bctl->sys.target & allowed)) ||
		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		     !(bctl->meta.target & allowed)))
			reducing_integrity = true;
		else
			reducing_integrity = false;

		/* if we're not converting, the target field is uninitialized */
		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
			bctl->data.target : fs_info->avail_data_alloc_bits;
4143
	} while (read_seqretry(&fs_info->profiles_lock, seq));
4144

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	if (reducing_integrity) {
		if (bctl->flags & BTRFS_BALANCE_FORCE) {
			btrfs_info(fs_info,
				   "balance: force reducing metadata integrity");
		} else {
			btrfs_err(fs_info,
	  "balance: reduces metadata integrity, use --force if you want this");
			ret = -EINVAL;
			goto out;
		}
	}

4157 4158
	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4159
		btrfs_warn(fs_info,
4160
	"balance: metadata profile %s has lower redundancy than data profile %s",
4161 4162
				btrfs_bg_type_to_raid_name(meta_target),
				btrfs_bg_type_to_raid_name(data_target));
4163 4164
	}

4165 4166 4167 4168 4169 4170 4171 4172
	if (fs_info->send_in_progress) {
		btrfs_warn_rl(fs_info,
"cannot run balance while send operations are in progress (%d in progress)",
			      fs_info->send_in_progress);
		ret = -EAGAIN;
		goto out;
	}

4173
	ret = insert_balance_item(fs_info, bctl);
I
Ilya Dryomov 已提交
4174
	if (ret && ret != -EEXIST)
4175 4176
		goto out;

I
Ilya Dryomov 已提交
4177 4178
	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
		BUG_ON(ret == -EEXIST);
4179 4180 4181 4182
		BUG_ON(fs_info->balance_ctl);
		spin_lock(&fs_info->balance_lock);
		fs_info->balance_ctl = bctl;
		spin_unlock(&fs_info->balance_lock);
I
Ilya Dryomov 已提交
4183 4184 4185 4186 4187 4188
	} else {
		BUG_ON(ret != -EEXIST);
		spin_lock(&fs_info->balance_lock);
		update_balance_args(bctl);
		spin_unlock(&fs_info->balance_lock);
	}
4189

4190 4191
	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4192
	describe_balance_start_or_resume(fs_info);
4193 4194 4195 4196 4197
	mutex_unlock(&fs_info->balance_mutex);

	ret = __btrfs_balance(fs_info);

	mutex_lock(&fs_info->balance_mutex);
4198 4199 4200 4201 4202 4203 4204
	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
		btrfs_info(fs_info, "balance: paused");
	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
		btrfs_info(fs_info, "balance: canceled");
	else
		btrfs_info(fs_info, "balance: ended with status: %d", ret);

4205
	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4206 4207 4208

	if (bargs) {
		memset(bargs, 0, sizeof(*bargs));
4209
		btrfs_update_ioctl_balance_args(fs_info, bargs);
4210 4211
	}

4212 4213
	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
	    balance_need_close(fs_info)) {
4214
		reset_balance_state(fs_info);
4215
		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4216 4217
	}

4218
	wake_up(&fs_info->balance_wait_q);
4219 4220 4221

	return ret;
out:
I
Ilya Dryomov 已提交
4222
	if (bctl->flags & BTRFS_BALANCE_RESUME)
4223
		reset_balance_state(fs_info);
4224
	else
I
Ilya Dryomov 已提交
4225
		kfree(bctl);
4226 4227
	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);

I
Ilya Dryomov 已提交
4228 4229 4230 4231 4232
	return ret;
}

static int balance_kthread(void *data)
{
4233
	struct btrfs_fs_info *fs_info = data;
4234
	int ret = 0;
I
Ilya Dryomov 已提交
4235 4236

	mutex_lock(&fs_info->balance_mutex);
4237
	if (fs_info->balance_ctl)
4238
		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
I
Ilya Dryomov 已提交
4239
	mutex_unlock(&fs_info->balance_mutex);
4240

I
Ilya Dryomov 已提交
4241 4242 4243
	return ret;
}

4244 4245 4246 4247
int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
{
	struct task_struct *tsk;

4248
	mutex_lock(&fs_info->balance_mutex);
4249
	if (!fs_info->balance_ctl) {
4250
		mutex_unlock(&fs_info->balance_mutex);
4251 4252
		return 0;
	}
4253
	mutex_unlock(&fs_info->balance_mutex);
4254

4255
	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4256
		btrfs_info(fs_info, "balance: resume skipped");
4257 4258 4259
		return 0;
	}

4260 4261 4262 4263 4264 4265 4266 4267 4268
	/*
	 * A ro->rw remount sequence should continue with the paused balance
	 * regardless of who pauses it, system or the user as of now, so set
	 * the resume flag.
	 */
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
	spin_unlock(&fs_info->balance_lock);

4269
	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4270
	return PTR_ERR_OR_ZERO(tsk);
4271 4272
}

4273
int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
I
Ilya Dryomov 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
{
	struct btrfs_balance_control *bctl;
	struct btrfs_balance_item *item;
	struct btrfs_disk_balance_args disk_bargs;
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	key.objectid = BTRFS_BALANCE_OBJECTID;
4288
	key.type = BTRFS_TEMPORARY_ITEM_KEY;
I
Ilya Dryomov 已提交
4289 4290
	key.offset = 0;

4291
	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
I
Ilya Dryomov 已提交
4292
	if (ret < 0)
4293
		goto out;
I
Ilya Dryomov 已提交
4294 4295
	if (ret > 0) { /* ret = -ENOENT; */
		ret = 0;
4296 4297 4298 4299 4300 4301 4302
		goto out;
	}

	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
	if (!bctl) {
		ret = -ENOMEM;
		goto out;
I
Ilya Dryomov 已提交
4303 4304 4305 4306 4307
	}

	leaf = path->nodes[0];
	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);

4308 4309
	bctl->flags = btrfs_balance_flags(leaf, item);
	bctl->flags |= BTRFS_BALANCE_RESUME;
I
Ilya Dryomov 已提交
4310 4311 4312 4313 4314 4315 4316 4317

	btrfs_balance_data(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
	btrfs_balance_meta(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
	btrfs_balance_sys(leaf, item, &disk_bargs);
	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * This should never happen, as the paused balance state is recovered
	 * during mount without any chance of other exclusive ops to collide.
	 *
	 * This gives the exclusive op status to balance and keeps in paused
	 * state until user intervention (cancel or umount). If the ownership
	 * cannot be assigned, show a message but do not fail. The balance
	 * is in a paused state and must have fs_info::balance_ctl properly
	 * set up.
	 */
	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
		btrfs_warn(fs_info,
4330
	"balance: cannot set exclusive op status, resume manually");
4331

4332
	mutex_lock(&fs_info->balance_mutex);
4333 4334 4335 4336
	BUG_ON(fs_info->balance_ctl);
	spin_lock(&fs_info->balance_lock);
	fs_info->balance_ctl = bctl;
	spin_unlock(&fs_info->balance_lock);
4337
	mutex_unlock(&fs_info->balance_mutex);
I
Ilya Dryomov 已提交
4338 4339
out:
	btrfs_free_path(path);
4340 4341 4342
	return ret;
}

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
{
	int ret = 0;

	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4353
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4354 4355 4356 4357
		atomic_inc(&fs_info->balance_pause_req);
		mutex_unlock(&fs_info->balance_mutex);

		wait_event(fs_info->balance_wait_q,
4358
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4359 4360 4361

		mutex_lock(&fs_info->balance_mutex);
		/* we are good with balance_ctl ripped off from under us */
4362
		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4363 4364 4365 4366 4367 4368 4369 4370 4371
		atomic_dec(&fs_info->balance_pause_req);
	} else {
		ret = -ENOTCONN;
	}

	mutex_unlock(&fs_info->balance_mutex);
	return ret;
}

4372 4373 4374 4375 4376 4377 4378 4379
int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
{
	mutex_lock(&fs_info->balance_mutex);
	if (!fs_info->balance_ctl) {
		mutex_unlock(&fs_info->balance_mutex);
		return -ENOTCONN;
	}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	/*
	 * A paused balance with the item stored on disk can be resumed at
	 * mount time if the mount is read-write. Otherwise it's still paused
	 * and we must not allow cancelling as it deletes the item.
	 */
	if (sb_rdonly(fs_info->sb)) {
		mutex_unlock(&fs_info->balance_mutex);
		return -EROFS;
	}

4390 4391 4392 4393 4394
	atomic_inc(&fs_info->balance_cancel_req);
	/*
	 * if we are running just wait and return, balance item is
	 * deleted in btrfs_balance in this case
	 */
4395
	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4396 4397
		mutex_unlock(&fs_info->balance_mutex);
		wait_event(fs_info->balance_wait_q,
4398
			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4399 4400 4401
		mutex_lock(&fs_info->balance_mutex);
	} else {
		mutex_unlock(&fs_info->balance_mutex);
4402 4403 4404 4405
		/*
		 * Lock released to allow other waiters to continue, we'll
		 * reexamine the status again.
		 */
4406 4407
		mutex_lock(&fs_info->balance_mutex);

4408
		if (fs_info->balance_ctl) {
4409
			reset_balance_state(fs_info);
4410
			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4411
			btrfs_info(fs_info, "balance: canceled");
4412
		}
4413 4414
	}

4415 4416
	BUG_ON(fs_info->balance_ctl ||
		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4417 4418 4419 4420 4421
	atomic_dec(&fs_info->balance_cancel_req);
	mutex_unlock(&fs_info->balance_mutex);
	return 0;
}

S
Stefan Behrens 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
static int btrfs_uuid_scan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = data;
	struct btrfs_root *root = fs_info->tree_root;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	int ret = 0;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_root_item root_item;
	u32 item_size;
4433
	struct btrfs_trans_handle *trans = NULL;
S
Stefan Behrens 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = 0;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;

	while (1) {
4446 4447
		ret = btrfs_search_forward(root, &key, path,
				BTRFS_OLDEST_GENERATION);
S
Stefan Behrens 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
		if (ret) {
			if (ret > 0)
				ret = 0;
			break;
		}

		if (key.type != BTRFS_ROOT_ITEM_KEY ||
		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
			goto skip;

		eb = path->nodes[0];
		slot = path->slots[0];
		item_size = btrfs_item_size_nr(eb, slot);
		if (item_size < sizeof(root_item))
			goto skip;

		read_extent_buffer(eb, &root_item,
				   btrfs_item_ptr_offset(eb, slot),
				   (int)sizeof(root_item));
		if (btrfs_root_refs(&root_item) == 0)
			goto skip;
4471 4472 4473 4474 4475 4476 4477

		if (!btrfs_is_empty_uuid(root_item.uuid) ||
		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
			if (trans)
				goto update_tree;

			btrfs_release_path(path);
S
Stefan Behrens 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486
			/*
			 * 1 - subvol uuid item
			 * 1 - received_subvol uuid item
			 */
			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
			if (IS_ERR(trans)) {
				ret = PTR_ERR(trans);
				break;
			}
4487 4488 4489 4490 4491 4492
			continue;
		} else {
			goto skip;
		}
update_tree:
		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4493
			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
S
Stefan Behrens 已提交
4494 4495 4496
						  BTRFS_UUID_KEY_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4497
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4498 4499 4500 4501 4502 4503
					ret);
				break;
			}
		}

		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4504
			ret = btrfs_uuid_tree_add(trans,
S
Stefan Behrens 已提交
4505 4506 4507 4508
						  root_item.received_uuid,
						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
						  key.objectid);
			if (ret < 0) {
4509
				btrfs_warn(fs_info, "uuid_tree_add failed %d",
S
Stefan Behrens 已提交
4510 4511 4512 4513 4514
					ret);
				break;
			}
		}

4515
skip:
S
Stefan Behrens 已提交
4516
		if (trans) {
4517
			ret = btrfs_end_transaction(trans);
4518
			trans = NULL;
S
Stefan Behrens 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
			if (ret)
				break;
		}

		btrfs_release_path(path);
		if (key.offset < (u64)-1) {
			key.offset++;
		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
		} else if (key.objectid < (u64)-1) {
			key.offset = 0;
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.objectid++;
		} else {
			break;
		}
		cond_resched();
	}

out:
	btrfs_free_path(path);
4541
	if (trans && !IS_ERR(trans))
4542
		btrfs_end_transaction(trans);
S
Stefan Behrens 已提交
4543
	if (ret)
4544
		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4545
	else
4546
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
S
Stefan Behrens 已提交
4547 4548 4549 4550
	up(&fs_info->uuid_tree_rescan_sem);
	return 0;
}

4551 4552 4553 4554
/*
 * Callback for btrfs_uuid_tree_iterate().
 * returns:
 * 0	check succeeded, the entry is not outdated.
4555
 * < 0	if an error occurred.
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
 * > 0	if the check failed, which means the caller shall remove the entry.
 */
static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
				       u8 *uuid, u8 type, u64 subid)
{
	struct btrfs_key key;
	int ret = 0;
	struct btrfs_root *subvol_root;

	if (type != BTRFS_UUID_KEY_SUBVOL &&
	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
		goto out;

	key.objectid = subid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(subvol_root)) {
		ret = PTR_ERR(subvol_root);
		if (ret == -ENOENT)
			ret = 1;
		goto out;
	}

	switch (type) {
	case BTRFS_UUID_KEY_SUBVOL:
		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
			ret = 1;
		break;
	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
		if (memcmp(uuid, subvol_root->root_item.received_uuid,
			   BTRFS_UUID_SIZE))
			ret = 1;
		break;
	}

out:
	return ret;
}

static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
	if (ret < 0) {
4608
		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4609 4610 4611 4612 4613 4614
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

4615 4616 4617 4618 4619
int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *uuid_root;
S
Stefan Behrens 已提交
4620 4621
	struct task_struct *task;
	int ret;
4622 4623 4624 4625 4626 4627 4628 4629 4630

	/*
	 * 1 - root node
	 * 1 - root item
	 */
	trans = btrfs_start_transaction(tree_root, 2);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

4631
	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4632
	if (IS_ERR(uuid_root)) {
4633
		ret = PTR_ERR(uuid_root);
4634
		btrfs_abort_transaction(trans, ret);
4635
		btrfs_end_transaction(trans);
4636
		return ret;
4637 4638 4639 4640
	}

	fs_info->uuid_root = uuid_root;

4641
	ret = btrfs_commit_transaction(trans);
S
Stefan Behrens 已提交
4642 4643 4644 4645 4646 4647
	if (ret)
		return ret;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
4648
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4649
		btrfs_warn(fs_info, "failed to start uuid_scan task");
S
Stefan Behrens 已提交
4650 4651 4652 4653 4654
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
4655
}
S
Stefan Behrens 已提交
4656

4657 4658 4659 4660 4661 4662 4663 4664
int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4665
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4666 4667 4668 4669 4670 4671 4672
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

4673 4674 4675 4676 4677 4678 4679
/*
 * shrinking a device means finding all of the device extents past
 * the new size, and then following the back refs to the chunks.
 * The chunk relocation code actually frees the device extent
 */
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
4680 4681
	struct btrfs_fs_info *fs_info = device->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
4682 4683 4684 4685 4686 4687 4688
	struct btrfs_trans_handle *trans;
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
	u64 length;
	u64 chunk_offset;
	int ret;
	int slot;
4689 4690
	int failed = 0;
	bool retried = false;
4691 4692
	struct extent_buffer *l;
	struct btrfs_key key;
4693
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4694
	u64 old_total = btrfs_super_total_bytes(super_copy);
4695
	u64 old_size = btrfs_device_get_total_bytes(device);
4696
	u64 diff;
4697
	u64 start;
4698 4699

	new_size = round_down(new_size, fs_info->sectorsize);
4700
	start = new_size;
4701
	diff = round_down(old_size - new_size, fs_info->sectorsize);
4702

4703
	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4704 4705
		return -EINVAL;

4706 4707 4708 4709
	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

4710
	path->reada = READA_BACK;
4711

4712 4713 4714 4715 4716 4717
	trans = btrfs_start_transaction(root, 0);
	if (IS_ERR(trans)) {
		btrfs_free_path(path);
		return PTR_ERR(trans);
	}

4718
	mutex_lock(&fs_info->chunk_mutex);
4719

4720
	btrfs_device_set_total_bytes(device, new_size);
4721
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
Y
Yan Zheng 已提交
4722
		device->fs_devices->total_rw_bytes -= diff;
4723
		atomic64_sub(diff, &fs_info->free_chunk_space);
4724
	}
4725 4726 4727 4728 4729 4730

	/*
	 * Once the device's size has been set to the new size, ensure all
	 * in-memory chunks are synced to disk so that the loop below sees them
	 * and relocates them accordingly.
	 */
4731
	if (contains_pending_extent(device, &start, diff)) {
4732 4733 4734 4735 4736 4737 4738 4739
		mutex_unlock(&fs_info->chunk_mutex);
		ret = btrfs_commit_transaction(trans);
		if (ret)
			goto done;
	} else {
		mutex_unlock(&fs_info->chunk_mutex);
		btrfs_end_transaction(trans);
	}
4740

4741
again:
4742 4743 4744 4745
	key.objectid = device->devid;
	key.offset = (u64)-1;
	key.type = BTRFS_DEV_EXTENT_KEY;

4746
	do {
4747
		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4748
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4749
		if (ret < 0) {
4750
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751
			goto done;
4752
		}
4753 4754

		ret = btrfs_previous_item(root, path, 0, key.type);
4755
		if (ret)
4756
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4757 4758 4759 4760
		if (ret < 0)
			goto done;
		if (ret) {
			ret = 0;
4761
			btrfs_release_path(path);
4762
			break;
4763 4764 4765 4766 4767 4768
		}

		l = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(l, &key, path->slots[0]);

4769
		if (key.objectid != device->devid) {
4770
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4771
			btrfs_release_path(path);
4772
			break;
4773
		}
4774 4775 4776 4777

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

4778
		if (key.offset + length <= new_size) {
4779
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4780
			btrfs_release_path(path);
4781
			break;
4782
		}
4783 4784

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4785
		btrfs_release_path(path);
4786

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
		/*
		 * We may be relocating the only data chunk we have,
		 * which could potentially end up with losing data's
		 * raid profile, so lets allocate an empty one in
		 * advance.
		 */
		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
		if (ret < 0) {
			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
			goto done;
		}

4799 4800
		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4801
		if (ret == -ENOSPC) {
4802
			failed++;
4803 4804 4805 4806 4807 4808 4809 4810
		} else if (ret) {
			if (ret == -ETXTBSY) {
				btrfs_warn(fs_info,
		   "could not shrink block group %llu due to active swapfile",
					   chunk_offset);
			}
			goto done;
		}
4811
	} while (key.offset-- > 0);
4812 4813 4814 4815 4816 4817 4818 4819

	if (failed && !retried) {
		failed = 0;
		retried = true;
		goto again;
	} else if (failed && retried) {
		ret = -ENOSPC;
		goto done;
4820 4821
	}

4822
	/* Shrinking succeeded, else we would be at "done". */
4823
	trans = btrfs_start_transaction(root, 0);
4824 4825 4826 4827 4828
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto done;
	}

4829
	mutex_lock(&fs_info->chunk_mutex);
4830
	btrfs_device_set_disk_total_bytes(device, new_size);
4831 4832 4833
	if (list_empty(&device->post_commit_list))
		list_add_tail(&device->post_commit_list,
			      &trans->transaction->dev_update_list);
4834 4835

	WARN_ON(diff > old_total);
4836 4837
	btrfs_set_super_total_bytes(super_copy,
			round_down(old_total - diff, fs_info->sectorsize));
4838
	mutex_unlock(&fs_info->chunk_mutex);
M
Miao Xie 已提交
4839 4840 4841

	/* Now btrfs_update_device() will change the on-disk size. */
	ret = btrfs_update_device(trans, device);
4842 4843 4844 4845 4846 4847
	if (ret < 0) {
		btrfs_abort_transaction(trans, ret);
		btrfs_end_transaction(trans);
	} else {
		ret = btrfs_commit_transaction(trans);
	}
4848 4849
done:
	btrfs_free_path(path);
4850
	if (ret) {
4851
		mutex_lock(&fs_info->chunk_mutex);
4852
		btrfs_device_set_total_bytes(device, old_size);
4853
		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4854
			device->fs_devices->total_rw_bytes += diff;
4855
		atomic64_add(diff, &fs_info->free_chunk_space);
4856
		mutex_unlock(&fs_info->chunk_mutex);
4857
	}
4858 4859 4860
	return ret;
}

4861
static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4862 4863 4864
			   struct btrfs_key *key,
			   struct btrfs_chunk *chunk, int item_size)
{
4865
	struct btrfs_super_block *super_copy = fs_info->super_copy;
4866 4867 4868 4869
	struct btrfs_disk_key disk_key;
	u32 array_size;
	u8 *ptr;

4870
	mutex_lock(&fs_info->chunk_mutex);
4871
	array_size = btrfs_super_sys_array_size(super_copy);
4872
	if (array_size + item_size + sizeof(disk_key)
4873
			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4874
		mutex_unlock(&fs_info->chunk_mutex);
4875
		return -EFBIG;
4876
	}
4877 4878 4879 4880 4881 4882 4883 4884

	ptr = super_copy->sys_chunk_array + array_size;
	btrfs_cpu_key_to_disk(&disk_key, key);
	memcpy(ptr, &disk_key, sizeof(disk_key));
	ptr += sizeof(disk_key);
	memcpy(ptr, chunk, item_size);
	item_size += sizeof(disk_key);
	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4885
	mutex_unlock(&fs_info->chunk_mutex);
4886

4887 4888 4889
	return 0;
}

4890 4891 4892 4893
/*
 * sort the devices in descending order by max_avail, total_avail
 */
static int btrfs_cmp_device_info(const void *a, const void *b)
4894
{
4895 4896
	const struct btrfs_device_info *di_a = a;
	const struct btrfs_device_info *di_b = b;
4897

4898
	if (di_a->max_avail > di_b->max_avail)
4899
		return -1;
4900
	if (di_a->max_avail < di_b->max_avail)
4901
		return 1;
4902 4903 4904 4905 4906
	if (di_a->total_avail > di_b->total_avail)
		return -1;
	if (di_a->total_avail < di_b->total_avail)
		return 1;
	return 0;
4907
}
4908

D
David Woodhouse 已提交
4909 4910
static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
{
4911
	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
D
David Woodhouse 已提交
4912 4913
		return;

4914
	btrfs_set_fs_incompat(info, RAID56);
D
David Woodhouse 已提交
4915 4916
}

4917
static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4918
			       u64 start, u64 type)
4919
{
4920
	struct btrfs_fs_info *info = trans->fs_info;
4921
	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4922
	struct btrfs_device *device;
4923 4924 4925 4926 4927 4928
	struct map_lookup *map = NULL;
	struct extent_map_tree *em_tree;
	struct extent_map *em;
	struct btrfs_device_info *devices_info = NULL;
	u64 total_avail;
	int num_stripes;	/* total number of stripes to allocate */
D
David Woodhouse 已提交
4929 4930
	int data_stripes;	/* number of stripes that count for
				   block group size */
4931 4932 4933 4934 4935 4936
	int sub_stripes;	/* sub_stripes info for map */
	int dev_stripes;	/* stripes per dev */
	int devs_max;		/* max devs to use */
	int devs_min;		/* min devs needed */
	int devs_increment;	/* ndevs has to be a multiple of this */
	int ncopies;		/* how many copies to data has */
4937 4938
	int nparity;		/* number of stripes worth of bytes to
				   store parity information */
4939 4940 4941 4942
	int ret;
	u64 max_stripe_size;
	u64 max_chunk_size;
	u64 stripe_size;
4943
	u64 chunk_size;
4944 4945 4946
	int ndevs;
	int i;
	int j;
4947
	int index;
4948

4949
	BUG_ON(!alloc_profile_is_valid(type, 0));
4950

4951 4952 4953
	if (list_empty(&fs_devices->alloc_list)) {
		if (btrfs_test_opt(info, ENOSPC_DEBUG))
			btrfs_debug(info, "%s: no writable device", __func__);
4954
		return -ENOSPC;
4955
	}
4956

4957
	index = btrfs_bg_flags_to_raid_index(type);
4958

4959 4960 4961
	sub_stripes = btrfs_raid_array[index].sub_stripes;
	dev_stripes = btrfs_raid_array[index].dev_stripes;
	devs_max = btrfs_raid_array[index].devs_max;
4962 4963
	if (!devs_max)
		devs_max = BTRFS_MAX_DEVS(info);
4964 4965 4966
	devs_min = btrfs_raid_array[index].devs_min;
	devs_increment = btrfs_raid_array[index].devs_increment;
	ncopies = btrfs_raid_array[index].ncopies;
4967
	nparity = btrfs_raid_array[index].nparity;
4968

4969
	if (type & BTRFS_BLOCK_GROUP_DATA) {
4970
		max_stripe_size = SZ_1G;
4971
		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4972
	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4973
		/* for larger filesystems, use larger metadata chunks */
4974 4975
		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
			max_stripe_size = SZ_1G;
4976
		else
4977
			max_stripe_size = SZ_256M;
4978
		max_chunk_size = max_stripe_size;
4979
	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4980
		max_stripe_size = SZ_32M;
4981 4982
		max_chunk_size = 2 * max_stripe_size;
	} else {
4983
		btrfs_err(info, "invalid chunk type 0x%llx requested",
4984
		       type);
4985
		BUG();
4986 4987
	}

4988
	/* We don't want a chunk larger than 10% of writable space */
Y
Yan Zheng 已提交
4989 4990
	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
			     max_chunk_size);
4991

4992
	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4993 4994 4995
			       GFP_NOFS);
	if (!devices_info)
		return -ENOMEM;
4996

4997
	/*
4998 4999
	 * in the first pass through the devices list, we gather information
	 * about the available holes on each device.
5000
	 */
5001
	ndevs = 0;
5002
	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5003 5004
		u64 max_avail;
		u64 dev_offset;
5005

5006
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
J
Julia Lawall 已提交
5007
			WARN(1, KERN_ERR
5008
			       "BTRFS: read-only device in alloc_list\n");
5009 5010
			continue;
		}
5011

5012 5013
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
					&device->dev_state) ||
5014
		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5015
			continue;
5016

5017 5018 5019 5020
		if (device->total_bytes > device->bytes_used)
			total_avail = device->total_bytes - device->bytes_used;
		else
			total_avail = 0;
5021 5022 5023 5024

		/* If there is no space on this device, skip it. */
		if (total_avail == 0)
			continue;
5025

5026
		ret = find_free_dev_extent(device,
5027 5028 5029 5030
					   max_stripe_size * dev_stripes,
					   &dev_offset, &max_avail);
		if (ret && ret != -ENOSPC)
			goto error;
5031

5032 5033
		if (ret == 0)
			max_avail = max_stripe_size * dev_stripes;
5034

5035 5036 5037 5038 5039 5040
		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
			if (btrfs_test_opt(info, ENOSPC_DEBUG))
				btrfs_debug(info,
			"%s: devid %llu has no free space, have=%llu want=%u",
					    __func__, device->devid, max_avail,
					    BTRFS_STRIPE_LEN * dev_stripes);
5041
			continue;
5042
		}
5043

5044 5045 5046 5047 5048
		if (ndevs == fs_devices->rw_devices) {
			WARN(1, "%s: found more than %llu devices\n",
			     __func__, fs_devices->rw_devices);
			break;
		}
5049 5050 5051 5052 5053 5054
		devices_info[ndevs].dev_offset = dev_offset;
		devices_info[ndevs].max_avail = max_avail;
		devices_info[ndevs].total_avail = total_avail;
		devices_info[ndevs].dev = device;
		++ndevs;
	}
5055

5056 5057 5058 5059 5060
	/*
	 * now sort the devices by hole size / available space
	 */
	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
	     btrfs_cmp_device_info, NULL);
5061

5062
	/* round down to number of usable stripes */
5063
	ndevs = round_down(ndevs, devs_increment);
5064

5065
	if (ndevs < devs_min) {
5066
		ret = -ENOSPC;
5067 5068 5069
		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
			btrfs_debug(info,
	"%s: not enough devices with free space: have=%d minimum required=%d",
5070
				    __func__, ndevs, devs_min);
5071
		}
5072
		goto error;
5073
	}
5074

5075 5076
	ndevs = min(ndevs, devs_max);

5077
	/*
5078 5079 5080 5081 5082
	 * The primary goal is to maximize the number of stripes, so use as
	 * many devices as possible, even if the stripes are not maximum sized.
	 *
	 * The DUP profile stores more than one stripe per device, the
	 * max_avail is the total size so we have to adjust.
5083
	 */
5084
	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5085
	num_stripes = ndevs * dev_stripes;
5086

D
David Woodhouse 已提交
5087 5088 5089 5090
	/*
	 * this will have to be fixed for RAID1 and RAID10 over
	 * more drives
	 */
5091
	data_stripes = (num_stripes - nparity) / ncopies;
5092 5093 5094 5095

	/*
	 * Use the number of data stripes to figure out how big this chunk
	 * is really going to be in terms of logical address space,
5096 5097
	 * and compare that answer with the max chunk size. If it's higher,
	 * we try to reduce stripe_size.
5098 5099
	 */
	if (stripe_size * data_stripes > max_chunk_size) {
5100
		/*
5101 5102 5103
		 * Reduce stripe_size, round it up to a 16MB boundary again and
		 * then use it, unless it ends up being even bigger than the
		 * previous value we had already.
5104
		 */
5105 5106
		stripe_size = min(round_up(div_u64(max_chunk_size,
						   data_stripes), SZ_16M),
5107
				  stripe_size);
5108 5109
	}

5110
	/* align to BTRFS_STRIPE_LEN */
5111
	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5112 5113 5114 5115 5116 5117 5118

	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
	if (!map) {
		ret = -ENOMEM;
		goto error;
	}
	map->num_stripes = num_stripes;
5119

5120 5121 5122 5123 5124 5125
	for (i = 0; i < ndevs; ++i) {
		for (j = 0; j < dev_stripes; ++j) {
			int s = i * dev_stripes + j;
			map->stripes[s].dev = devices_info[i].dev;
			map->stripes[s].physical = devices_info[i].dev_offset +
						   j * stripe_size;
5126 5127
		}
	}
5128 5129 5130
	map->stripe_len = BTRFS_STRIPE_LEN;
	map->io_align = BTRFS_STRIPE_LEN;
	map->io_width = BTRFS_STRIPE_LEN;
Y
Yan Zheng 已提交
5131 5132
	map->type = type;
	map->sub_stripes = sub_stripes;
5133

5134
	chunk_size = stripe_size * data_stripes;
5135

5136
	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5137

5138
	em = alloc_extent_map();
Y
Yan Zheng 已提交
5139
	if (!em) {
5140
		kfree(map);
5141 5142
		ret = -ENOMEM;
		goto error;
5143
	}
5144
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5145
	em->map_lookup = map;
Y
Yan Zheng 已提交
5146
	em->start = start;
5147
	em->len = chunk_size;
Y
Yan Zheng 已提交
5148 5149
	em->block_start = 0;
	em->block_len = em->len;
5150
	em->orig_block_len = stripe_size;
5151

5152
	em_tree = &info->mapping_tree;
5153
	write_lock(&em_tree->lock);
J
Josef Bacik 已提交
5154
	ret = add_extent_mapping(em_tree, em, 0);
5155
	if (ret) {
5156
		write_unlock(&em_tree->lock);
5157
		free_extent_map(em);
5158
		goto error;
5159
	}
5160 5161
	write_unlock(&em_tree->lock);

5162
	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5163 5164
	if (ret)
		goto error_del_extent;
Y
Yan Zheng 已提交
5165

5166 5167 5168 5169 5170 5171 5172 5173
	for (i = 0; i < map->num_stripes; i++) {
		struct btrfs_device *dev = map->stripes[i].dev;

		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
		if (list_empty(&dev->post_commit_list))
			list_add_tail(&dev->post_commit_list,
				      &trans->transaction->dev_update_list);
	}
5174

5175
	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5176

5177
	free_extent_map(em);
5178
	check_raid56_incompat_flag(info, type);
D
David Woodhouse 已提交
5179

5180
	kfree(devices_info);
Y
Yan Zheng 已提交
5181
	return 0;
5182

5183
error_del_extent:
5184 5185 5186 5187 5188 5189 5190 5191
	write_lock(&em_tree->lock);
	remove_extent_mapping(em_tree, em);
	write_unlock(&em_tree->lock);

	/* One for our allocation */
	free_extent_map(em);
	/* One for the tree reference */
	free_extent_map(em);
5192 5193 5194
error:
	kfree(devices_info);
	return ret;
Y
Yan Zheng 已提交
5195 5196
}

5197
int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5198
			     u64 chunk_offset, u64 chunk_size)
Y
Yan Zheng 已提交
5199
{
5200
	struct btrfs_fs_info *fs_info = trans->fs_info;
5201 5202
	struct btrfs_root *extent_root = fs_info->extent_root;
	struct btrfs_root *chunk_root = fs_info->chunk_root;
Y
Yan Zheng 已提交
5203 5204 5205 5206
	struct btrfs_key key;
	struct btrfs_device *device;
	struct btrfs_chunk *chunk;
	struct btrfs_stripe *stripe;
5207 5208 5209 5210 5211 5212
	struct extent_map *em;
	struct map_lookup *map;
	size_t item_size;
	u64 dev_offset;
	u64 stripe_size;
	int i = 0;
5213
	int ret = 0;
Y
Yan Zheng 已提交
5214

5215
	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5216 5217
	if (IS_ERR(em))
		return PTR_ERR(em);
5218

5219
	map = em->map_lookup;
5220 5221 5222
	item_size = btrfs_chunk_item_size(map->num_stripes);
	stripe_size = em->orig_block_len;

Y
Yan Zheng 已提交
5223
	chunk = kzalloc(item_size, GFP_NOFS);
5224 5225 5226 5227 5228
	if (!chunk) {
		ret = -ENOMEM;
		goto out;
	}

5229 5230 5231 5232 5233 5234 5235
	/*
	 * Take the device list mutex to prevent races with the final phase of
	 * a device replace operation that replaces the device object associated
	 * with the map's stripes, because the device object's id can change
	 * at any time during that final phase of the device replace operation
	 * (dev-replace.c:btrfs_dev_replace_finishing()).
	 */
5236
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5237 5238 5239
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
Y
Yan Zheng 已提交
5240

5241
		ret = btrfs_update_device(trans, device);
5242
		if (ret)
5243
			break;
5244 5245
		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
					     dev_offset, stripe_size);
5246
		if (ret)
5247 5248 5249
			break;
	}
	if (ret) {
5250
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5251
		goto out;
Y
Yan Zheng 已提交
5252 5253 5254
	}

	stripe = &chunk->stripe;
5255 5256 5257
	for (i = 0; i < map->num_stripes; i++) {
		device = map->stripes[i].dev;
		dev_offset = map->stripes[i].physical;
5258

5259 5260 5261
		btrfs_set_stack_stripe_devid(stripe, device->devid);
		btrfs_set_stack_stripe_offset(stripe, dev_offset);
		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
Y
Yan Zheng 已提交
5262
		stripe++;
5263
	}
5264
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5265

Y
Yan Zheng 已提交
5266
	btrfs_set_stack_chunk_length(chunk, chunk_size);
5267
	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
Y
Yan Zheng 已提交
5268 5269 5270 5271 5272
	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
	btrfs_set_stack_chunk_type(chunk, map->type);
	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5273
	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
Y
Yan Zheng 已提交
5274
	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5275

Y
Yan Zheng 已提交
5276 5277 5278
	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
	key.type = BTRFS_CHUNK_ITEM_KEY;
	key.offset = chunk_offset;
5279

Y
Yan Zheng 已提交
5280
	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5281 5282 5283 5284 5285
	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
		/*
		 * TODO: Cleanup of inserted chunk root in case of
		 * failure.
		 */
5286
		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5287
	}
5288

5289
out:
5290
	kfree(chunk);
5291
	free_extent_map(em);
5292
	return ret;
Y
Yan Zheng 已提交
5293
}
5294

Y
Yan Zheng 已提交
5295
/*
5296 5297 5298 5299
 * Chunk allocation falls into two parts. The first part does work
 * that makes the new allocated chunk usable, but does not do any operation
 * that modifies the chunk tree. The second part does the work that
 * requires modifying the chunk tree. This division is important for the
Y
Yan Zheng 已提交
5300 5301
 * bootstrap process of adding storage to a seed btrfs.
 */
5302
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
Y
Yan Zheng 已提交
5303 5304 5305
{
	u64 chunk_offset;

5306 5307
	lockdep_assert_held(&trans->fs_info->chunk_mutex);
	chunk_offset = find_next_chunk(trans->fs_info);
5308
	return __btrfs_alloc_chunk(trans, chunk_offset, type);
Y
Yan Zheng 已提交
5309 5310
}

5311
static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
Y
Yan Zheng 已提交
5312
{
5313
	struct btrfs_fs_info *fs_info = trans->fs_info;
Y
Yan Zheng 已提交
5314 5315 5316 5317 5318
	u64 chunk_offset;
	u64 sys_chunk_offset;
	u64 alloc_profile;
	int ret;

5319
	chunk_offset = find_next_chunk(fs_info);
5320
	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321
	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5322 5323
	if (ret)
		return ret;
Y
Yan Zheng 已提交
5324

5325
	sys_chunk_offset = find_next_chunk(fs_info);
5326
	alloc_profile = btrfs_system_alloc_profile(fs_info);
5327
	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5328
	return ret;
Y
Yan Zheng 已提交
5329 5330
}

5331 5332
static inline int btrfs_chunk_max_errors(struct map_lookup *map)
{
5333
	const int index = btrfs_bg_flags_to_raid_index(map->type);
Y
Yan Zheng 已提交
5334

5335
	return btrfs_raid_array[index].tolerated_failures;
Y
Yan Zheng 已提交
5336 5337
}

5338
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
Y
Yan Zheng 已提交
5339 5340 5341 5342
{
	struct extent_map *em;
	struct map_lookup *map;
	int readonly = 0;
5343
	int miss_ndevs = 0;
Y
Yan Zheng 已提交
5344 5345
	int i;

5346
	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5347
	if (IS_ERR(em))
Y
Yan Zheng 已提交
5348 5349
		return 1;

5350
	map = em->map_lookup;
Y
Yan Zheng 已提交
5351
	for (i = 0; i < map->num_stripes; i++) {
5352 5353
		if (test_bit(BTRFS_DEV_STATE_MISSING,
					&map->stripes[i].dev->dev_state)) {
5354 5355 5356
			miss_ndevs++;
			continue;
		}
5357 5358
		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
					&map->stripes[i].dev->dev_state)) {
Y
Yan Zheng 已提交
5359
			readonly = 1;
5360
			goto end;
Y
Yan Zheng 已提交
5361 5362
		}
	}
5363 5364 5365 5366 5367 5368 5369 5370 5371

	/*
	 * If the number of missing devices is larger than max errors,
	 * we can not write the data into that chunk successfully, so
	 * set it readonly.
	 */
	if (miss_ndevs > btrfs_chunk_max_errors(map))
		readonly = 1;
end:
5372
	free_extent_map(em);
Y
Yan Zheng 已提交
5373
	return readonly;
5374 5375
}

5376
void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5377 5378 5379
{
	struct extent_map *em;

C
Chris Mason 已提交
5380
	while (1) {
5381 5382
		write_lock(&tree->lock);
		em = lookup_extent_mapping(tree, 0, (u64)-1);
5383
		if (em)
5384 5385
			remove_extent_mapping(tree, em);
		write_unlock(&tree->lock);
5386 5387 5388 5389 5390 5391 5392 5393 5394
		if (!em)
			break;
		/* once for us */
		free_extent_map(em);
		/* once for the tree */
		free_extent_map(em);
	}
}

5395
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5396 5397 5398 5399 5400
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret;

5401
	em = btrfs_get_chunk_map(fs_info, logical, len);
5402 5403 5404 5405 5406 5407 5408
	if (IS_ERR(em))
		/*
		 * We could return errors for these cases, but that could get
		 * ugly and we'd probably do the same thing which is just not do
		 * anything else and exit, so return 1 so the callers don't try
		 * to use other copies.
		 */
5409 5410
		return 1;

5411
	map = em->map_lookup;
5412
	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5413
		ret = map->num_stripes;
C
Chris Mason 已提交
5414 5415
	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		ret = map->sub_stripes;
D
David Woodhouse 已提交
5416 5417 5418
	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
		ret = 2;
	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
L
Liu Bo 已提交
5419 5420 5421
		/*
		 * There could be two corrupted data stripes, we need
		 * to loop retry in order to rebuild the correct data.
5422
		 *
L
Liu Bo 已提交
5423 5424 5425 5426
		 * Fail a stripe at a time on every retry except the
		 * stripe under reconstruction.
		 */
		ret = map->num_stripes;
5427 5428 5429
	else
		ret = 1;
	free_extent_map(em);
5430

5431
	down_read(&fs_info->dev_replace.rwsem);
5432 5433
	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
	    fs_info->dev_replace.tgtdev)
5434
		ret++;
5435
	up_read(&fs_info->dev_replace.rwsem);
5436

5437 5438 5439
	return ret;
}

5440
unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
D
David Woodhouse 已提交
5441 5442 5443 5444
				    u64 logical)
{
	struct extent_map *em;
	struct map_lookup *map;
5445
	unsigned long len = fs_info->sectorsize;
D
David Woodhouse 已提交
5446

5447
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5448

5449 5450 5451 5452 5453 5454
	if (!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			len = map->stripe_len * nr_data_stripes(map);
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5455 5456 5457
	return len;
}

5458
int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
D
David Woodhouse 已提交
5459 5460 5461 5462 5463
{
	struct extent_map *em;
	struct map_lookup *map;
	int ret = 0;

5464
	em = btrfs_get_chunk_map(fs_info, logical, len);
D
David Woodhouse 已提交
5465

5466 5467 5468 5469 5470 5471
	if(!WARN_ON(IS_ERR(em))) {
		map = em->map_lookup;
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			ret = 1;
		free_extent_map(em);
	}
D
David Woodhouse 已提交
5472 5473 5474
	return ret;
}

5475
static int find_live_mirror(struct btrfs_fs_info *fs_info,
5476
			    struct map_lookup *map, int first,
5477
			    int dev_replace_is_ongoing)
5478 5479
{
	int i;
5480
	int num_stripes;
5481
	int preferred_mirror;
5482 5483 5484
	int tolerance;
	struct btrfs_device *srcdev;

5485
	ASSERT((map->type &
5486
		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5487 5488 5489 5490 5491 5492

	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
		num_stripes = map->sub_stripes;
	else
		num_stripes = map->num_stripes;

5493 5494
	preferred_mirror = first + current->pid % num_stripes;

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
	if (dev_replace_is_ongoing &&
	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
		srcdev = fs_info->dev_replace.srcdev;
	else
		srcdev = NULL;

	/*
	 * try to avoid the drive that is the source drive for a
	 * dev-replace procedure, only choose it if no other non-missing
	 * mirror is available
	 */
	for (tolerance = 0; tolerance < 2; tolerance++) {
5508 5509 5510
		if (map->stripes[preferred_mirror].dev->bdev &&
		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
			return preferred_mirror;
5511
		for (i = first; i < first + num_stripes; i++) {
5512 5513 5514 5515
			if (map->stripes[i].dev->bdev &&
			    (tolerance || map->stripes[i].dev != srcdev))
				return i;
		}
5516
	}
5517

5518 5519 5520
	/* we couldn't find one that doesn't fail.  Just return something
	 * and the io error handling code will clean up eventually
	 */
5521
	return preferred_mirror;
5522 5523
}

D
David Woodhouse 已提交
5524 5525 5526 5527 5528 5529
static inline int parity_smaller(u64 a, u64 b)
{
	return a > b;
}

/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5530
static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
D
David Woodhouse 已提交
5531 5532 5533 5534 5535 5536 5537 5538
{
	struct btrfs_bio_stripe s;
	int i;
	u64 l;
	int again = 1;

	while (again) {
		again = 0;
5539
		for (i = 0; i < num_stripes - 1; i++) {
5540 5541
			if (parity_smaller(bbio->raid_map[i],
					   bbio->raid_map[i+1])) {
D
David Woodhouse 已提交
5542
				s = bbio->stripes[i];
5543
				l = bbio->raid_map[i];
D
David Woodhouse 已提交
5544
				bbio->stripes[i] = bbio->stripes[i+1];
5545
				bbio->raid_map[i] = bbio->raid_map[i+1];
D
David Woodhouse 已提交
5546
				bbio->stripes[i+1] = s;
5547
				bbio->raid_map[i+1] = l;
5548

D
David Woodhouse 已提交
5549 5550 5551 5552 5553 5554
				again = 1;
			}
		}
	}
}

5555 5556 5557
static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
{
	struct btrfs_bio *bbio = kzalloc(
5558
		 /* the size of the btrfs_bio */
5559
		sizeof(struct btrfs_bio) +
5560
		/* plus the variable array for the stripes */
5561
		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5562
		/* plus the variable array for the tgt dev */
5563
		sizeof(int) * (real_stripes) +
5564 5565 5566 5567 5568
		/*
		 * plus the raid_map, which includes both the tgt dev
		 * and the stripes
		 */
		sizeof(u64) * (total_stripes),
5569
		GFP_NOFS|__GFP_NOFAIL);
5570 5571

	atomic_set(&bbio->error, 0);
5572
	refcount_set(&bbio->refs, 1);
5573 5574 5575 5576 5577 5578

	return bbio;
}

void btrfs_get_bbio(struct btrfs_bio *bbio)
{
5579 5580
	WARN_ON(!refcount_read(&bbio->refs));
	refcount_inc(&bbio->refs);
5581 5582 5583 5584 5585 5586
}

void btrfs_put_bbio(struct btrfs_bio *bbio)
{
	if (!bbio)
		return;
5587
	if (refcount_dec_and_test(&bbio->refs))
5588 5589 5590
		kfree(bbio);
}

5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
/*
 * Please note that, discard won't be sent to target device of device
 * replace.
 */
static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 struct btrfs_bio **bbio_ret)
{
	struct extent_map *em;
	struct map_lookup *map;
	struct btrfs_bio *bbio;
	u64 offset;
	u64 stripe_nr;
	u64 stripe_nr_end;
	u64 stripe_end_offset;
	u64 stripe_cnt;
	u64 stripe_len;
	u64 stripe_offset;
	u64 num_stripes;
	u32 stripe_index;
	u32 factor = 0;
	u32 sub_stripes = 0;
	u64 stripes_per_dev = 0;
	u32 remaining_stripes = 0;
	u32 last_stripe = 0;
	int ret = 0;
	int i;

	/* discard always return a bbio */
	ASSERT(bbio_ret);

5623
	em = btrfs_get_chunk_map(fs_info, logical, length);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* we don't discard raid56 yet */
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ret = -EOPNOTSUPP;
		goto out;
	}

	offset = logical - em->start;
	length = min_t(u64, em->len - offset, length);

	stripe_len = map->stripe_len;
	/*
	 * stripe_nr counts the total number of stripes we have to stride
	 * to get to this block
	 */
	stripe_nr = div64_u64(offset, stripe_len);

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_nr * stripe_len;

	stripe_nr_end = round_up(offset + length, map->stripe_len);
5648
	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
	stripe_cnt = stripe_nr_end - stripe_nr;
	stripe_end_offset = stripe_nr_end * map->stripe_len -
			    (offset + length);
	/*
	 * after this, stripe_nr is the number of stripes on this
	 * device we have to walk to find the data, and stripe_index is
	 * the number of our device in the stripe array
	 */
	num_stripes = 1;
	stripe_index = 0;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			 BTRFS_BLOCK_GROUP_RAID10)) {
		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
			sub_stripes = 1;
		else
			sub_stripes = map->sub_stripes;

		factor = map->num_stripes / sub_stripes;
		num_stripes = min_t(u64, map->num_stripes,
				    sub_stripes * stripe_cnt);
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
		stripe_index *= sub_stripes;
		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
					      &remaining_stripes);
		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
		last_stripe *= sub_stripes;
5675
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
				BTRFS_BLOCK_GROUP_DUP)) {
		num_stripes = map->num_stripes;
	} else {
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
					&stripe_index);
	}

	bbio = alloc_btrfs_bio(num_stripes, 0);
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset + stripe_nr * map->stripe_len;
		bbio->stripes[i].dev = map->stripes[stripe_index].dev;

		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
				 BTRFS_BLOCK_GROUP_RAID10)) {
			bbio->stripes[i].length = stripes_per_dev *
				map->stripe_len;

			if (i / sub_stripes < remaining_stripes)
				bbio->stripes[i].length +=
					map->stripe_len;

			/*
			 * Special for the first stripe and
			 * the last stripe:
			 *
			 * |-------|...|-------|
			 *     |----------|
			 *    off     end_off
			 */
			if (i < sub_stripes)
				bbio->stripes[i].length -=
					stripe_offset;

			if (stripe_index >= last_stripe &&
			    stripe_index <= (last_stripe +
					     sub_stripes - 1))
				bbio->stripes[i].length -=
					stripe_end_offset;

			if (i == sub_stripes - 1)
				stripe_offset = 0;
		} else {
			bbio->stripes[i].length = length;
		}

		stripe_index++;
		if (stripe_index == map->num_stripes) {
			stripe_index = 0;
			stripe_nr++;
		}
	}

	*bbio_ret = bbio;
	bbio->map_type = map->type;
	bbio->num_stripes = num_stripes;
out:
	free_extent_map(em);
	return ret;
}

5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
/*
 * In dev-replace case, for repair case (that's the only case where the mirror
 * is selected explicitly when calling btrfs_map_block), blocks left of the
 * left cursor can also be read from the target drive.
 *
 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
 * array of stripes.
 * For READ, it also needs to be supported using the same mirror number.
 *
 * If the requested block is not left of the left cursor, EIO is returned. This
 * can happen because btrfs_num_copies() returns one more in the dev-replace
 * case.
 */
static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
					 u64 logical, u64 length,
					 u64 srcdev_devid, int *mirror_num,
					 u64 *physical)
{
	struct btrfs_bio *bbio = NULL;
	int num_stripes;
	int index_srcdev = 0;
	int found = 0;
	u64 physical_of_found = 0;
	int i;
	int ret = 0;

	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				logical, &length, &bbio, 0, 0);
	if (ret) {
		ASSERT(bbio == NULL);
		return ret;
	}

	num_stripes = bbio->num_stripes;
	if (*mirror_num > num_stripes) {
		/*
		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
		 * that means that the requested area is not left of the left
		 * cursor
		 */
		btrfs_put_bbio(bbio);
		return -EIO;
	}

	/*
	 * process the rest of the function using the mirror_num of the source
	 * drive. Therefore look it up first.  At the end, patch the device
	 * pointer to the one of the target drive.
	 */
	for (i = 0; i < num_stripes; i++) {
		if (bbio->stripes[i].dev->devid != srcdev_devid)
			continue;

		/*
		 * In case of DUP, in order to keep it simple, only add the
		 * mirror with the lowest physical address
		 */
		if (found &&
		    physical_of_found <= bbio->stripes[i].physical)
			continue;

		index_srcdev = i;
		found = 1;
		physical_of_found = bbio->stripes[i].physical;
	}

	btrfs_put_bbio(bbio);

	ASSERT(found);
	if (!found)
		return -EIO;

	*mirror_num = index_srcdev + 1;
	*physical = physical_of_found;
	return ret;
}

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
static void handle_ops_on_dev_replace(enum btrfs_map_op op,
				      struct btrfs_bio **bbio_ret,
				      struct btrfs_dev_replace *dev_replace,
				      int *num_stripes_ret, int *max_errors_ret)
{
	struct btrfs_bio *bbio = *bbio_ret;
	u64 srcdev_devid = dev_replace->srcdev->devid;
	int tgtdev_indexes = 0;
	int num_stripes = *num_stripes_ret;
	int max_errors = *max_errors_ret;
	int i;

	if (op == BTRFS_MAP_WRITE) {
		int index_where_to_add;

		/*
		 * duplicate the write operations while the dev replace
		 * procedure is running. Since the copying of the old disk to
		 * the new disk takes place at run time while the filesystem is
		 * mounted writable, the regular write operations to the old
		 * disk have to be duplicated to go to the new disk as well.
		 *
		 * Note that device->missing is handled by the caller, and that
		 * the write to the old disk is already set up in the stripes
		 * array.
		 */
		index_where_to_add = num_stripes;
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/* write to new disk, too */
				struct btrfs_bio_stripe *new =
					bbio->stripes + index_where_to_add;
				struct btrfs_bio_stripe *old =
					bbio->stripes + i;

				new->physical = old->physical;
				new->length = old->length;
				new->dev = dev_replace->tgtdev;
				bbio->tgtdev_map[i] = index_where_to_add;
				index_where_to_add++;
				max_errors++;
				tgtdev_indexes++;
			}
		}
		num_stripes = index_where_to_add;
	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
		int index_srcdev = 0;
		int found = 0;
		u64 physical_of_found = 0;

		/*
		 * During the dev-replace procedure, the target drive can also
		 * be used to read data in case it is needed to repair a corrupt
		 * block elsewhere. This is possible if the requested area is
		 * left of the left cursor. In this area, the target drive is a
		 * full copy of the source drive.
		 */
		for (i = 0; i < num_stripes; i++) {
			if (bbio->stripes[i].dev->devid == srcdev_devid) {
				/*
				 * In case of DUP, in order to keep it simple,
				 * only add the mirror with the lowest physical
				 * address
				 */
				if (found &&
				    physical_of_found <=
				     bbio->stripes[i].physical)
					continue;
				index_srcdev = i;
				found = 1;
				physical_of_found = bbio->stripes[i].physical;
			}
		}
		if (found) {
			struct btrfs_bio_stripe *tgtdev_stripe =
				bbio->stripes + num_stripes;

			tgtdev_stripe->physical = physical_of_found;
			tgtdev_stripe->length =
				bbio->stripes[index_srcdev].length;
			tgtdev_stripe->dev = dev_replace->tgtdev;
			bbio->tgtdev_map[index_srcdev] = num_stripes;

			tgtdev_indexes++;
			num_stripes++;
		}
	}

	*num_stripes_ret = num_stripes;
	*max_errors_ret = max_errors;
	bbio->num_tgtdevs = tgtdev_indexes;
	*bbio_ret = bbio;
}

5914 5915 5916 5917 5918
static bool need_full_stripe(enum btrfs_map_op op)
{
	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
}

5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
/*
 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
 *		       tuple. This information is used to calculate how big a
 *		       particular bio can get before it straddles a stripe.
 *
 * @fs_info - the filesystem
 * @logical - address that we want to figure out the geometry of
 * @len	    - the length of IO we are going to perform, starting at @logical
 * @op      - type of operation - write or read
 * @io_geom - pointer used to return values
 *
 * Returns < 0 in case a chunk for the given logical address cannot be found,
 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
 */
int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5934
			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
	u64 stripe_offset;
	u64 stripe_nr;
	u64 stripe_len;
	u64 raid56_full_stripe_start = (u64)-1;
	int data_stripes;

	ASSERT(op != BTRFS_MAP_DISCARD);

	em = btrfs_get_chunk_map(fs_info, logical, len);
	if (IS_ERR(em))
		return PTR_ERR(em);

	map = em->map_lookup;
	/* Offset of this logical address in the chunk */
	offset = logical - em->start;
	/* Len of a stripe in a chunk */
	stripe_len = map->stripe_len;
	/* Stripe wher this block falls in */
	stripe_nr = div64_u64(offset, stripe_len);
	/* Offset of stripe in the chunk */
	stripe_offset = stripe_nr * stripe_len;
	if (offset < stripe_offset) {
		btrfs_crit(fs_info,
"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
			stripe_offset, offset, em->start, logical, stripe_len);
		free_extent_map(em);
		return -EINVAL;
	}

	/* stripe_offset is the offset of this block in its stripe */
	stripe_offset = offset - stripe_offset;
	data_stripes = nr_data_stripes(map);

	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
		u64 max_len = stripe_len - stripe_offset;

		/*
		 * In case of raid56, we need to know the stripe aligned start
		 */
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			unsigned long full_stripe_len = stripe_len * data_stripes;
			raid56_full_stripe_start = offset;

			/*
			 * Allow a write of a full stripe, but make sure we
			 * don't allow straddling of stripes
			 */
			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
					full_stripe_len);
			raid56_full_stripe_start *= full_stripe_len;

			/*
			 * For writes to RAID[56], allow a full stripeset across
			 * all disks. For other RAID types and for RAID[56]
			 * reads, just allow a single stripe (on a single disk).
			 */
			if (op == BTRFS_MAP_WRITE) {
				max_len = stripe_len * data_stripes -
					  (offset - raid56_full_stripe_start);
			}
		}
		len = min_t(u64, em->len - offset, max_len);
	} else {
		len = em->len - offset;
	}

	io_geom->len = len;
	io_geom->offset = offset;
	io_geom->stripe_len = stripe_len;
	io_geom->stripe_nr = stripe_nr;
	io_geom->stripe_offset = stripe_offset;
	io_geom->raid56_stripe_offset = raid56_full_stripe_start;

	return 0;
}

6015 6016
static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
			     enum btrfs_map_op op,
6017
			     u64 logical, u64 *length,
6018
			     struct btrfs_bio **bbio_ret,
6019
			     int mirror_num, int need_raid_map)
6020 6021 6022 6023
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 offset;
6024 6025
	u64 stripe_offset;
	u64 stripe_nr;
D
David Woodhouse 已提交
6026
	u64 stripe_len;
6027
	u32 stripe_index;
6028
	int data_stripes;
6029
	int i;
L
Li Zefan 已提交
6030
	int ret = 0;
6031
	int num_stripes;
6032
	int max_errors = 0;
6033
	int tgtdev_indexes = 0;
6034
	struct btrfs_bio *bbio = NULL;
6035 6036 6037
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
	int dev_replace_is_ongoing = 0;
	int num_alloc_stripes;
6038 6039
	int patch_the_first_stripe_for_dev_replace = 0;
	u64 physical_to_patch_in_first_stripe = 0;
D
David Woodhouse 已提交
6040
	u64 raid56_full_stripe_start = (u64)-1;
6041 6042 6043
	struct btrfs_io_geometry geom;

	ASSERT(bbio_ret);
6044

6045 6046 6047 6048
	if (op == BTRFS_MAP_DISCARD)
		return __btrfs_map_block_for_discard(fs_info, logical,
						     *length, bbio_ret);

6049 6050 6051
	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
	if (ret < 0)
		return ret;
6052

6053 6054
	em = btrfs_get_chunk_map(fs_info, logical, *length);
	ASSERT(em);
6055
	map = em->map_lookup;
6056

6057 6058 6059 6060 6061 6062
	*length = geom.len;
	offset = geom.offset;
	stripe_len = geom.stripe_len;
	stripe_nr = geom.stripe_nr;
	stripe_offset = geom.stripe_offset;
	raid56_full_stripe_start = geom.raid56_stripe_offset;
6063
	data_stripes = nr_data_stripes(map);
6064

6065
	down_read(&dev_replace->rwsem);
6066
	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6067 6068 6069 6070
	/*
	 * Hold the semaphore for read during the whole operation, write is
	 * requested at commit time but must wait.
	 */
6071
	if (!dev_replace_is_ongoing)
6072
		up_read(&dev_replace->rwsem);
6073

6074
	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6075
	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6076 6077 6078 6079 6080
		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
						    dev_replace->srcdev->devid,
						    &mirror_num,
					    &physical_to_patch_in_first_stripe);
		if (ret)
6081
			goto out;
6082 6083
		else
			patch_the_first_stripe_for_dev_replace = 1;
6084 6085 6086 6087
	} else if (mirror_num > map->num_stripes) {
		mirror_num = 0;
	}

6088
	num_stripes = 1;
6089
	stripe_index = 0;
6090
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6091 6092
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6093
		if (!need_full_stripe(op))
6094
			mirror_num = 1;
6095
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6096
		if (need_full_stripe(op))
6097
			num_stripes = map->num_stripes;
6098
		else if (mirror_num)
6099
			stripe_index = mirror_num - 1;
6100
		else {
6101 6102
			stripe_index = find_live_mirror(fs_info, map, 0,
					    dev_replace_is_ongoing);
6103
			mirror_num = stripe_index + 1;
6104
		}
6105

6106
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6107
		if (need_full_stripe(op)) {
6108
			num_stripes = map->num_stripes;
6109
		} else if (mirror_num) {
6110
			stripe_index = mirror_num - 1;
6111 6112 6113
		} else {
			mirror_num = 1;
		}
6114

C
Chris Mason 已提交
6115
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6116
		u32 factor = map->num_stripes / map->sub_stripes;
C
Chris Mason 已提交
6117

6118
		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
C
Chris Mason 已提交
6119 6120
		stripe_index *= map->sub_stripes;

6121
		if (need_full_stripe(op))
6122
			num_stripes = map->sub_stripes;
C
Chris Mason 已提交
6123 6124
		else if (mirror_num)
			stripe_index += mirror_num - 1;
6125
		else {
J
Jan Schmidt 已提交
6126
			int old_stripe_index = stripe_index;
6127 6128 6129
			stripe_index = find_live_mirror(fs_info, map,
					      stripe_index,
					      dev_replace_is_ongoing);
J
Jan Schmidt 已提交
6130
			mirror_num = stripe_index - old_stripe_index + 1;
6131
		}
D
David Woodhouse 已提交
6132

6133
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6134
		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
D
David Woodhouse 已提交
6135
			/* push stripe_nr back to the start of the full stripe */
6136
			stripe_nr = div64_u64(raid56_full_stripe_start,
6137
					stripe_len * data_stripes);
D
David Woodhouse 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151

			/* RAID[56] write or recovery. Return all stripes */
			num_stripes = map->num_stripes;
			max_errors = nr_parity_stripes(map);

			*length = map->stripe_len;
			stripe_index = 0;
			stripe_offset = 0;
		} else {
			/*
			 * Mirror #0 or #1 means the original data block.
			 * Mirror #2 is RAID5 parity block.
			 * Mirror #3 is RAID6 Q block.
			 */
6152
			stripe_nr = div_u64_rem(stripe_nr,
6153
					data_stripes, &stripe_index);
D
David Woodhouse 已提交
6154
			if (mirror_num > 1)
6155
				stripe_index = data_stripes + mirror_num - 2;
D
David Woodhouse 已提交
6156 6157

			/* We distribute the parity blocks across stripes */
6158 6159
			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
					&stripe_index);
6160
			if (!need_full_stripe(op) && mirror_num <= 1)
6161
				mirror_num = 1;
D
David Woodhouse 已提交
6162
		}
6163 6164
	} else {
		/*
6165 6166 6167
		 * after this, stripe_nr is the number of stripes on this
		 * device we have to walk to find the data, and stripe_index is
		 * the number of our device in the stripe array
6168
		 */
6169 6170
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
				&stripe_index);
6171
		mirror_num = stripe_index + 1;
6172
	}
6173
	if (stripe_index >= map->num_stripes) {
J
Jeff Mahoney 已提交
6174 6175
		btrfs_crit(fs_info,
			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6176 6177 6178 6179
			   stripe_index, map->num_stripes);
		ret = -EINVAL;
		goto out;
	}
6180

6181
	num_alloc_stripes = num_stripes;
6182
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6183
		if (op == BTRFS_MAP_WRITE)
6184
			num_alloc_stripes <<= 1;
6185
		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6186
			num_alloc_stripes++;
6187
		tgtdev_indexes = num_stripes;
6188
	}
6189

6190
	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
L
Li Zefan 已提交
6191 6192 6193 6194
	if (!bbio) {
		ret = -ENOMEM;
		goto out;
	}
6195
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6196
		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
L
Li Zefan 已提交
6197

6198
	/* build raid_map */
6199 6200
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
	    (need_full_stripe(op) || mirror_num > 1)) {
6201
		u64 tmp;
6202
		unsigned rot;
6203 6204 6205 6206 6207 6208 6209

		bbio->raid_map = (u64 *)((void *)bbio->stripes +
				 sizeof(struct btrfs_bio_stripe) *
				 num_alloc_stripes +
				 sizeof(int) * tgtdev_indexes);

		/* Work out the disk rotation on this stripe-set */
6210
		div_u64_rem(stripe_nr, num_stripes, &rot);
6211 6212

		/* Fill in the logical address of each stripe */
6213 6214
		tmp = stripe_nr * data_stripes;
		for (i = 0; i < data_stripes; i++)
6215 6216 6217 6218 6219 6220 6221 6222 6223
			bbio->raid_map[(i+rot) % num_stripes] =
				em->start + (tmp + i) * map->stripe_len;

		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
			bbio->raid_map[(i+rot+1) % num_stripes] =
				RAID6_Q_STRIPE;
	}

L
Liu Bo 已提交
6224

6225 6226 6227 6228 6229 6230 6231 6232
	for (i = 0; i < num_stripes; i++) {
		bbio->stripes[i].physical =
			map->stripes[stripe_index].physical +
			stripe_offset +
			stripe_nr * map->stripe_len;
		bbio->stripes[i].dev =
			map->stripes[stripe_index].dev;
		stripe_index++;
6233
	}
L
Li Zefan 已提交
6234

6235
	if (need_full_stripe(op))
6236
		max_errors = btrfs_chunk_max_errors(map);
L
Li Zefan 已提交
6237

6238 6239
	if (bbio->raid_map)
		sort_parity_stripes(bbio, num_stripes);
6240

6241
	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6242
	    need_full_stripe(op)) {
6243 6244
		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
					  &max_errors);
6245 6246
	}

L
Li Zefan 已提交
6247
	*bbio_ret = bbio;
Z
Zhao Lei 已提交
6248
	bbio->map_type = map->type;
L
Li Zefan 已提交
6249 6250 6251
	bbio->num_stripes = num_stripes;
	bbio->max_errors = max_errors;
	bbio->mirror_num = mirror_num;
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263

	/*
	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
	 * mirror_num == num_stripes + 1 && dev_replace target drive is
	 * available as a mirror
	 */
	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
		WARN_ON(num_stripes > 1);
		bbio->stripes[0].dev = dev_replace->tgtdev;
		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
		bbio->mirror_num = map->num_stripes + 1;
	}
6264
out:
6265
	if (dev_replace_is_ongoing) {
6266 6267
		lockdep_assert_held(&dev_replace->rwsem);
		/* Unlock and let waiting writers proceed */
6268
		up_read(&dev_replace->rwsem);
6269
	}
6270
	free_extent_map(em);
L
Li Zefan 已提交
6271
	return ret;
6272 6273
}

6274
int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275
		      u64 logical, u64 *length,
6276
		      struct btrfs_bio **bbio_ret, int mirror_num)
6277
{
6278
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6279
				 mirror_num, 0);
6280 6281
}

6282
/* For Scrub/replace */
6283
int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6284
		     u64 logical, u64 *length,
6285
		     struct btrfs_bio **bbio_ret)
6286
{
6287
	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6288 6289
}

6290 6291
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
Y
Yan Zheng 已提交
6292 6293 6294 6295 6296 6297 6298
{
	struct extent_map *em;
	struct map_lookup *map;
	u64 *buf;
	u64 bytenr;
	u64 length;
	u64 stripe_nr;
D
David Woodhouse 已提交
6299
	u64 rmap_len;
Y
Yan Zheng 已提交
6300 6301
	int i, j, nr = 0;

6302
	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6303
	if (IS_ERR(em))
6304 6305
		return -EIO;

6306
	map = em->map_lookup;
Y
Yan Zheng 已提交
6307
	length = em->len;
D
David Woodhouse 已提交
6308 6309
	rmap_len = map->stripe_len;

Y
Yan Zheng 已提交
6310
	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6311
		length = div_u64(length, map->num_stripes / map->sub_stripes);
Y
Yan Zheng 已提交
6312
	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6313
		length = div_u64(length, map->num_stripes);
6314
	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6315
		length = div_u64(length, nr_data_stripes(map));
D
David Woodhouse 已提交
6316 6317
		rmap_len = map->stripe_len * nr_data_stripes(map);
	}
Y
Yan Zheng 已提交
6318

6319
	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6320
	BUG_ON(!buf); /* -ENOMEM */
Y
Yan Zheng 已提交
6321 6322 6323 6324 6325 6326 6327

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].physical > physical ||
		    map->stripes[i].physical + length <= physical)
			continue;

		stripe_nr = physical - map->stripes[i].physical;
6328
		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
Y
Yan Zheng 已提交
6329 6330 6331

		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
			stripe_nr = stripe_nr * map->num_stripes + i;
6332
			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
Y
Yan Zheng 已提交
6333 6334
		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
			stripe_nr = stripe_nr * map->num_stripes + i;
D
David Woodhouse 已提交
6335 6336 6337 6338 6339
		} /* else if RAID[56], multiply by nr_data_stripes().
		   * Alternatively, just use rmap_len below instead of
		   * map->stripe_len */

		bytenr = chunk_start + stripe_nr * rmap_len;
6340
		WARN_ON(nr >= map->num_stripes);
Y
Yan Zheng 已提交
6341 6342 6343 6344
		for (j = 0; j < nr; j++) {
			if (buf[j] == bytenr)
				break;
		}
6345 6346
		if (j == nr) {
			WARN_ON(nr >= map->num_stripes);
Y
Yan Zheng 已提交
6347
			buf[nr++] = bytenr;
6348
		}
Y
Yan Zheng 已提交
6349 6350 6351 6352
	}

	*logical = buf;
	*naddrs = nr;
D
David Woodhouse 已提交
6353
	*stripe_len = rmap_len;
Y
Yan Zheng 已提交
6354 6355 6356

	free_extent_map(em);
	return 0;
6357 6358
}

6359
static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6360
{
6361 6362
	bio->bi_private = bbio->private;
	bio->bi_end_io = bbio->end_io;
6363
	bio_endio(bio);
6364

6365
	btrfs_put_bbio(bbio);
6366 6367
}

6368
static void btrfs_end_bio(struct bio *bio)
6369
{
6370
	struct btrfs_bio *bbio = bio->bi_private;
6371
	int is_orig_bio = 0;
6372

6373
	if (bio->bi_status) {
6374
		atomic_inc(&bbio->error);
6375 6376
		if (bio->bi_status == BLK_STS_IOERR ||
		    bio->bi_status == BLK_STS_TARGET) {
6377
			unsigned int stripe_index =
6378
				btrfs_io_bio(bio)->stripe_index;
6379
			struct btrfs_device *dev;
6380 6381 6382

			BUG_ON(stripe_index >= bbio->num_stripes);
			dev = bbio->stripes[stripe_index].dev;
6383
			if (dev->bdev) {
M
Mike Christie 已提交
6384
				if (bio_op(bio) == REQ_OP_WRITE)
6385
					btrfs_dev_stat_inc_and_print(dev,
6386
						BTRFS_DEV_STAT_WRITE_ERRS);
6387
				else if (!(bio->bi_opf & REQ_RAHEAD))
6388
					btrfs_dev_stat_inc_and_print(dev,
6389
						BTRFS_DEV_STAT_READ_ERRS);
6390
				if (bio->bi_opf & REQ_PREFLUSH)
6391
					btrfs_dev_stat_inc_and_print(dev,
6392 6393
						BTRFS_DEV_STAT_FLUSH_ERRS);
			}
6394 6395
		}
	}
6396

6397
	if (bio == bbio->orig_bio)
6398 6399
		is_orig_bio = 1;

6400 6401
	btrfs_bio_counter_dec(bbio->fs_info);

6402
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6403 6404
		if (!is_orig_bio) {
			bio_put(bio);
6405
			bio = bbio->orig_bio;
6406
		}
6407

6408
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6409
		/* only send an error to the higher layers if it is
D
David Woodhouse 已提交
6410
		 * beyond the tolerance of the btrfs bio
6411
		 */
6412
		if (atomic_read(&bbio->error) > bbio->max_errors) {
6413
			bio->bi_status = BLK_STS_IOERR;
6414
		} else {
6415 6416 6417 6418
			/*
			 * this bio is actually up to date, we didn't
			 * go over the max number of errors
			 */
6419
			bio->bi_status = BLK_STS_OK;
6420
		}
6421

6422
		btrfs_end_bbio(bbio, bio);
6423
	} else if (!is_orig_bio) {
6424 6425 6426 6427
		bio_put(bio);
	}
}

6428 6429 6430 6431 6432 6433 6434
/*
 * see run_scheduled_bios for a description of why bios are collected for
 * async submit.
 *
 * This will add one bio to the pending list for a device and make sure
 * the work struct is scheduled.
 */
6435
static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6436
					struct bio *bio)
6437
{
6438
	struct btrfs_fs_info *fs_info = device->fs_info;
6439
	int should_queue = 1;
6440
	struct btrfs_pending_bios *pending_bios;
6441 6442

	/* don't bother with additional async steps for reads, right now */
M
Mike Christie 已提交
6443
	if (bio_op(bio) == REQ_OP_READ) {
6444
		btrfsic_submit_bio(bio);
6445
		return;
6446 6447
	}

6448
	WARN_ON(bio->bi_next);
6449 6450 6451
	bio->bi_next = NULL;

	spin_lock(&device->io_lock);
6452
	if (op_is_sync(bio->bi_opf))
6453 6454 6455
		pending_bios = &device->pending_sync_bios;
	else
		pending_bios = &device->pending_bios;
6456

6457 6458
	if (pending_bios->tail)
		pending_bios->tail->bi_next = bio;
6459

6460 6461 6462
	pending_bios->tail = bio;
	if (!pending_bios->head)
		pending_bios->head = bio;
6463 6464 6465 6466 6467 6468
	if (device->running_pending)
		should_queue = 0;

	spin_unlock(&device->io_lock);

	if (should_queue)
6469
		btrfs_queue_work(fs_info->submit_workers, &device->work);
6470 6471
}

6472 6473
static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
			      u64 physical, int dev_nr, int async)
6474 6475
{
	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6476
	struct btrfs_fs_info *fs_info = bbio->fs_info;
6477 6478

	bio->bi_private = bbio;
6479
	btrfs_io_bio(bio)->stripe_index = dev_nr;
6480
	bio->bi_end_io = btrfs_end_bio;
6481
	bio->bi_iter.bi_sector = physical >> 9;
6482 6483 6484 6485 6486
	btrfs_debug_in_rcu(fs_info,
	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
		bio->bi_iter.bi_size);
6487
	bio_set_dev(bio, dev->bdev);
6488

6489
	btrfs_bio_counter_inc_noblocked(fs_info);
6490

6491
	if (async)
6492
		btrfs_schedule_bio(dev, bio);
6493
	else
6494
		btrfsic_submit_bio(bio);
6495 6496 6497 6498 6499 6500
}

static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
{
	atomic_inc(&bbio->error);
	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6501
		/* Should be the original bio. */
6502 6503
		WARN_ON(bio != bbio->orig_bio);

6504
		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6505
		bio->bi_iter.bi_sector = logical >> 9;
6506 6507 6508 6509
		if (atomic_read(&bbio->error) > bbio->max_errors)
			bio->bi_status = BLK_STS_IOERR;
		else
			bio->bi_status = BLK_STS_OK;
6510
		btrfs_end_bbio(bbio, bio);
6511 6512 6513
	}
}

6514 6515
blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
			   int mirror_num, int async_submit)
6516 6517
{
	struct btrfs_device *dev;
6518
	struct bio *first_bio = bio;
6519
	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6520 6521 6522
	u64 length = 0;
	u64 map_length;
	int ret;
6523 6524
	int dev_nr;
	int total_devs;
6525
	struct btrfs_bio *bbio = NULL;
6526

6527
	length = bio->bi_iter.bi_size;
6528
	map_length = length;
6529

6530
	btrfs_bio_counter_inc_blocked(fs_info);
6531
	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
M
Mike Christie 已提交
6532
				&map_length, &bbio, mirror_num, 1);
6533
	if (ret) {
6534
		btrfs_bio_counter_dec(fs_info);
6535
		return errno_to_blk_status(ret);
6536
	}
6537

6538
	total_devs = bbio->num_stripes;
D
David Woodhouse 已提交
6539 6540 6541
	bbio->orig_bio = first_bio;
	bbio->private = first_bio->bi_private;
	bbio->end_io = first_bio->bi_end_io;
6542
	bbio->fs_info = fs_info;
D
David Woodhouse 已提交
6543 6544
	atomic_set(&bbio->stripes_pending, bbio->num_stripes);

6545
	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
M
Mike Christie 已提交
6546
	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
D
David Woodhouse 已提交
6547 6548
		/* In this case, map_length has been set to the length of
		   a single stripe; not the whole write */
M
Mike Christie 已提交
6549
		if (bio_op(bio) == REQ_OP_WRITE) {
6550 6551
			ret = raid56_parity_write(fs_info, bio, bbio,
						  map_length);
D
David Woodhouse 已提交
6552
		} else {
6553 6554
			ret = raid56_parity_recover(fs_info, bio, bbio,
						    map_length, mirror_num, 1);
D
David Woodhouse 已提交
6555
		}
6556

6557
		btrfs_bio_counter_dec(fs_info);
6558
		return errno_to_blk_status(ret);
D
David Woodhouse 已提交
6559 6560
	}

6561
	if (map_length < length) {
6562
		btrfs_crit(fs_info,
J
Jeff Mahoney 已提交
6563 6564
			   "mapping failed logical %llu bio len %llu len %llu",
			   logical, length, map_length);
6565 6566
		BUG();
	}
6567

6568
	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6569
		dev = bbio->stripes[dev_nr].dev;
6570 6571
		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
						   &dev->dev_state) ||
6572 6573
		    (bio_op(first_bio) == REQ_OP_WRITE &&
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6574 6575 6576 6577
			bbio_error(bbio, first_bio, logical);
			continue;
		}

6578
		if (dev_nr < total_devs - 1)
6579
			bio = btrfs_bio_clone(first_bio);
6580
		else
6581
			bio = first_bio;
6582

6583 6584
		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
				  dev_nr, async_submit);
6585
	}
6586
	btrfs_bio_counter_dec(fs_info);
6587
	return BLK_STS_OK;
6588 6589
}

6590 6591 6592 6593 6594 6595 6596 6597 6598
/*
 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
 * return NULL.
 *
 * If devid and uuid are both specified, the match must be exact, otherwise
 * only devid is used.
 *
 * If @seed is true, traverse through the seed devices.
 */
6599
struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6600 6601
				       u64 devid, u8 *uuid, u8 *fsid,
				       bool seed)
6602
{
Y
Yan Zheng 已提交
6603 6604
	struct btrfs_device *device;

6605
	while (fs_devices) {
Y
Yan Zheng 已提交
6606
		if (!fsid ||
6607
		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6608 6609 6610 6611 6612 6613 6614
			list_for_each_entry(device, &fs_devices->devices,
					    dev_list) {
				if (device->devid == devid &&
				    (!uuid || memcmp(device->uuid, uuid,
						     BTRFS_UUID_SIZE) == 0))
					return device;
			}
Y
Yan Zheng 已提交
6615
		}
6616 6617 6618 6619
		if (seed)
			fs_devices = fs_devices->seed;
		else
			return NULL;
Y
Yan Zheng 已提交
6620 6621
	}
	return NULL;
6622 6623
}

6624
static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6625 6626 6627 6628
					    u64 devid, u8 *dev_uuid)
{
	struct btrfs_device *device;

6629 6630
	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
	if (IS_ERR(device))
6631
		return device;
6632 6633

	list_add(&device->dev_list, &fs_devices->devices);
Y
Yan Zheng 已提交
6634
	device->fs_devices = fs_devices;
6635
	fs_devices->num_devices++;
6636

6637
	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6638
	fs_devices->missing_devices++;
6639

6640 6641 6642
	return device;
}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
/**
 * btrfs_alloc_device - allocate struct btrfs_device
 * @fs_info:	used only for generating a new devid, can be NULL if
 *		devid is provided (i.e. @devid != NULL).
 * @devid:	a pointer to devid for this device.  If NULL a new devid
 *		is generated.
 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
 *		is generated.
 *
 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6653
 * on error.  Returned struct is not linked onto any lists and must be
6654
 * destroyed with btrfs_free_device.
6655 6656 6657 6658 6659 6660 6661 6662
 */
struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
					const u64 *devid,
					const u8 *uuid)
{
	struct btrfs_device *dev;
	u64 tmp;

6663
	if (WARN_ON(!devid && !fs_info))
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
		return ERR_PTR(-EINVAL);

	dev = __alloc_device();
	if (IS_ERR(dev))
		return dev;

	if (devid)
		tmp = *devid;
	else {
		int ret;

		ret = find_next_devid(fs_info, &tmp);
		if (ret) {
6677
			btrfs_free_device(dev);
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
			return ERR_PTR(ret);
		}
	}
	dev->devid = tmp;

	if (uuid)
		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
	else
		generate_random_uuid(dev->uuid);

6688 6689
	btrfs_init_work(&dev->work, btrfs_submit_helper,
			pending_bios_fn, NULL, NULL);
6690 6691 6692 6693

	return dev;
}

6694
static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6695
					u64 devid, u8 *uuid, bool error)
6696
{
6697 6698 6699 6700 6701 6702
	if (error)
		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
	else
		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
			      devid, uuid);
6703 6704
}

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
{
	int index = btrfs_bg_flags_to_raid_index(type);
	int ncopies = btrfs_raid_array[index].ncopies;
	int data_stripes;

	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
	case BTRFS_BLOCK_GROUP_RAID5:
		data_stripes = num_stripes - 1;
		break;
	case BTRFS_BLOCK_GROUP_RAID6:
		data_stripes = num_stripes - 2;
		break;
	default:
		data_stripes = num_stripes / ncopies;
		break;
	}
	return div_u64(chunk_len, data_stripes);
}

6725
static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6726 6727
			  struct btrfs_chunk *chunk)
{
6728
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6729
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
	struct map_lookup *map;
	struct extent_map *em;
	u64 logical;
	u64 length;
	u64 devid;
	u8 uuid[BTRFS_UUID_SIZE];
	int num_stripes;
	int ret;
	int i;

	logical = key->offset;
	length = btrfs_chunk_length(leaf, chunk);
	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);

6744 6745 6746 6747 6748
	/*
	 * Only need to verify chunk item if we're reading from sys chunk array,
	 * as chunk item in tree block is already verified by tree-checker.
	 */
	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6749
		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6750 6751 6752
		if (ret)
			return ret;
	}
6753

6754 6755 6756
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, logical, 1);
	read_unlock(&map_tree->lock);
6757 6758 6759 6760 6761 6762 6763 6764 6765

	/* already mapped? */
	if (em && em->start <= logical && em->start + em->len > logical) {
		free_extent_map(em);
		return 0;
	} else if (em) {
		free_extent_map(em);
	}

6766
	em = alloc_extent_map();
6767 6768
	if (!em)
		return -ENOMEM;
6769
	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6770 6771 6772 6773 6774
	if (!map) {
		free_extent_map(em);
		return -ENOMEM;
	}

6775
	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6776
	em->map_lookup = map;
6777 6778
	em->start = logical;
	em->len = length;
6779
	em->orig_start = 0;
6780
	em->block_start = 0;
C
Chris Mason 已提交
6781
	em->block_len = em->len;
6782

6783 6784 6785 6786 6787
	map->num_stripes = num_stripes;
	map->io_width = btrfs_chunk_io_width(leaf, chunk);
	map->io_align = btrfs_chunk_io_align(leaf, chunk);
	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
	map->type = btrfs_chunk_type(leaf, chunk);
C
Chris Mason 已提交
6788
	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6789
	map->verified_stripes = 0;
6790 6791
	em->orig_block_len = calc_stripe_length(map->type, em->len,
						map->num_stripes);
6792 6793 6794 6795
	for (i = 0; i < num_stripes; i++) {
		map->stripes[i].physical =
			btrfs_stripe_offset_nr(leaf, chunk, i);
		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6796 6797 6798
		read_extent_buffer(leaf, uuid, (unsigned long)
				   btrfs_stripe_dev_uuid_nr(chunk, i),
				   BTRFS_UUID_SIZE);
6799
		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6800
							devid, uuid, NULL, true);
6801
		if (!map->stripes[i].dev &&
6802
		    !btrfs_test_opt(fs_info, DEGRADED)) {
6803
			free_extent_map(em);
6804
			btrfs_report_missing_device(fs_info, devid, uuid, true);
6805
			return -ENOENT;
6806
		}
6807 6808
		if (!map->stripes[i].dev) {
			map->stripes[i].dev =
6809 6810
				add_missing_dev(fs_info->fs_devices, devid,
						uuid);
6811
			if (IS_ERR(map->stripes[i].dev)) {
6812
				free_extent_map(em);
6813 6814 6815 6816
				btrfs_err(fs_info,
					"failed to init missing dev %llu: %ld",
					devid, PTR_ERR(map->stripes[i].dev));
				return PTR_ERR(map->stripes[i].dev);
6817
			}
6818
			btrfs_report_missing_device(fs_info, devid, uuid, false);
6819
		}
6820 6821 6822
		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
				&(map->stripes[i].dev->dev_state));

6823 6824
	}

6825 6826 6827
	write_lock(&map_tree->lock);
	ret = add_extent_mapping(map_tree, em, 0);
	write_unlock(&map_tree->lock);
6828 6829 6830 6831 6832
	if (ret < 0) {
		btrfs_err(fs_info,
			  "failed to add chunk map, start=%llu len=%llu: %d",
			  em->start, em->len, ret);
	}
6833 6834
	free_extent_map(em);

6835
	return ret;
6836 6837
}

6838
static void fill_device_from_item(struct extent_buffer *leaf,
6839 6840 6841 6842 6843 6844
				 struct btrfs_dev_item *dev_item,
				 struct btrfs_device *device)
{
	unsigned long ptr;

	device->devid = btrfs_device_id(leaf, dev_item);
6845 6846
	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
	device->total_bytes = device->disk_total_bytes;
6847
	device->commit_total_bytes = device->disk_total_bytes;
6848
	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6849
	device->commit_bytes_used = device->bytes_used;
6850 6851 6852 6853
	device->type = btrfs_device_type(leaf, dev_item);
	device->io_align = btrfs_device_io_align(leaf, dev_item);
	device->io_width = btrfs_device_io_width(leaf, dev_item);
	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6854
	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6855
	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6856

6857
	ptr = btrfs_device_uuid(dev_item);
6858
	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6859 6860
}

6861
static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6862
						  u8 *fsid)
Y
Yan Zheng 已提交
6863 6864 6865 6866
{
	struct btrfs_fs_devices *fs_devices;
	int ret;

6867
	lockdep_assert_held(&uuid_mutex);
D
David Sterba 已提交
6868
	ASSERT(fsid);
Y
Yan Zheng 已提交
6869

6870
	fs_devices = fs_info->fs_devices->seed;
Y
Yan Zheng 已提交
6871
	while (fs_devices) {
6872
		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6873 6874
			return fs_devices;

Y
Yan Zheng 已提交
6875 6876 6877
		fs_devices = fs_devices->seed;
	}

6878
	fs_devices = find_fsid(fsid, NULL);
Y
Yan Zheng 已提交
6879
	if (!fs_devices) {
6880
		if (!btrfs_test_opt(fs_info, DEGRADED))
6881 6882
			return ERR_PTR(-ENOENT);

6883
		fs_devices = alloc_fs_devices(fsid, NULL);
6884 6885 6886 6887 6888 6889
		if (IS_ERR(fs_devices))
			return fs_devices;

		fs_devices->seeding = 1;
		fs_devices->opened = 1;
		return fs_devices;
Y
Yan Zheng 已提交
6890
	}
Y
Yan Zheng 已提交
6891 6892

	fs_devices = clone_fs_devices(fs_devices);
6893 6894
	if (IS_ERR(fs_devices))
		return fs_devices;
Y
Yan Zheng 已提交
6895

6896
	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6897 6898
	if (ret) {
		free_fs_devices(fs_devices);
6899
		fs_devices = ERR_PTR(ret);
Y
Yan Zheng 已提交
6900
		goto out;
6901
	}
Y
Yan Zheng 已提交
6902 6903

	if (!fs_devices->seeding) {
6904
		close_fs_devices(fs_devices);
Y
Yan Zheng 已提交
6905
		free_fs_devices(fs_devices);
6906
		fs_devices = ERR_PTR(-EINVAL);
Y
Yan Zheng 已提交
6907 6908 6909
		goto out;
	}

6910 6911
	fs_devices->seed = fs_info->fs_devices->seed;
	fs_info->fs_devices->seed = fs_devices;
Y
Yan Zheng 已提交
6912
out:
6913
	return fs_devices;
Y
Yan Zheng 已提交
6914 6915
}

6916
static int read_one_dev(struct extent_buffer *leaf,
6917 6918
			struct btrfs_dev_item *dev_item)
{
6919
	struct btrfs_fs_info *fs_info = leaf->fs_info;
6920
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6921 6922 6923
	struct btrfs_device *device;
	u64 devid;
	int ret;
6924
	u8 fs_uuid[BTRFS_FSID_SIZE];
6925 6926
	u8 dev_uuid[BTRFS_UUID_SIZE];

6927
	devid = btrfs_device_id(leaf, dev_item);
6928
	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6929
			   BTRFS_UUID_SIZE);
6930
	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6931
			   BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
6932

6933
	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6934
		fs_devices = open_seed_devices(fs_info, fs_uuid);
6935 6936
		if (IS_ERR(fs_devices))
			return PTR_ERR(fs_devices);
Y
Yan Zheng 已提交
6937 6938
	}

6939
	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6940
				   fs_uuid, true);
6941
	if (!device) {
6942
		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 6944
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, true);
6945
			return -ENOENT;
6946
		}
Y
Yan Zheng 已提交
6947

6948
		device = add_missing_dev(fs_devices, devid, dev_uuid);
6949 6950 6951 6952 6953 6954
		if (IS_ERR(device)) {
			btrfs_err(fs_info,
				"failed to add missing dev %llu: %ld",
				devid, PTR_ERR(device));
			return PTR_ERR(device);
		}
6955
		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6956
	} else {
6957
		if (!device->bdev) {
6958 6959 6960
			if (!btrfs_test_opt(fs_info, DEGRADED)) {
				btrfs_report_missing_device(fs_info,
						devid, dev_uuid, true);
6961
				return -ENOENT;
6962 6963 6964
			}
			btrfs_report_missing_device(fs_info, devid,
							dev_uuid, false);
6965
		}
6966

6967 6968
		if (!device->bdev &&
		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6969 6970 6971 6972 6973 6974
			/*
			 * this happens when a device that was properly setup
			 * in the device info lists suddenly goes bad.
			 * device->bdev is NULL, and so we have to set
			 * device->missing to one here
			 */
6975
			device->fs_devices->missing_devices++;
6976
			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
Y
Yan Zheng 已提交
6977
		}
6978 6979 6980

		/* Move the device to its own fs_devices */
		if (device->fs_devices != fs_devices) {
6981 6982
			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
							&device->dev_state));
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992

			list_move(&device->dev_list, &fs_devices->devices);
			device->fs_devices->num_devices--;
			fs_devices->num_devices++;

			device->fs_devices->missing_devices--;
			fs_devices->missing_devices++;

			device->fs_devices = fs_devices;
		}
Y
Yan Zheng 已提交
6993 6994
	}

6995
	if (device->fs_devices != fs_info->fs_devices) {
6996
		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
Y
Yan Zheng 已提交
6997 6998 6999
		if (device->generation !=
		    btrfs_device_generation(leaf, dev_item))
			return -EINVAL;
7000
	}
7001 7002

	fill_device_from_item(leaf, dev_item, device);
7003
	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7004
	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7005
	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
Y
Yan Zheng 已提交
7006
		device->fs_devices->total_rw_bytes += device->total_bytes;
7007 7008
		atomic64_add(device->total_bytes - device->bytes_used,
				&fs_info->free_chunk_space);
7009
	}
7010 7011 7012 7013
	ret = 0;
	return ret;
}

7014
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7015
{
7016
	struct btrfs_root *root = fs_info->tree_root;
7017
	struct btrfs_super_block *super_copy = fs_info->super_copy;
7018
	struct extent_buffer *sb;
7019 7020
	struct btrfs_disk_key *disk_key;
	struct btrfs_chunk *chunk;
7021 7022
	u8 *array_ptr;
	unsigned long sb_array_offset;
7023
	int ret = 0;
7024 7025 7026
	u32 num_stripes;
	u32 array_size;
	u32 len = 0;
7027
	u32 cur_offset;
7028
	u64 type;
7029
	struct btrfs_key key;
7030

7031
	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7032 7033 7034 7035 7036
	/*
	 * This will create extent buffer of nodesize, superblock size is
	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
	 * overallocate but we can keep it as-is, only the first page is used.
	 */
7037
	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7038 7039
	if (IS_ERR(sb))
		return PTR_ERR(sb);
7040
	set_extent_buffer_uptodate(sb);
7041
	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7042
	/*
7043
	 * The sb extent buffer is artificial and just used to read the system array.
7044
	 * set_extent_buffer_uptodate() call does not properly mark all it's
7045 7046 7047 7048 7049 7050 7051 7052 7053
	 * pages up-to-date when the page is larger: extent does not cover the
	 * whole page and consequently check_page_uptodate does not find all
	 * the page's extents up-to-date (the hole beyond sb),
	 * write_extent_buffer then triggers a WARN_ON.
	 *
	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
	 * but sb spans only this function. Add an explicit SetPageUptodate call
	 * to silence the warning eg. on PowerPC 64.
	 */
7054
	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7055
		SetPageUptodate(sb->pages[0]);
7056

7057
	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7058 7059
	array_size = btrfs_super_sys_array_size(super_copy);

7060 7061 7062
	array_ptr = super_copy->sys_chunk_array;
	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
	cur_offset = 0;
7063

7064 7065
	while (cur_offset < array_size) {
		disk_key = (struct btrfs_disk_key *)array_ptr;
7066 7067 7068 7069
		len = sizeof(*disk_key);
		if (cur_offset + len > array_size)
			goto out_short_read;

7070 7071
		btrfs_disk_key_to_cpu(&key, disk_key);

7072 7073 7074
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
7075

7076
		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7077
			chunk = (struct btrfs_chunk *)sb_array_offset;
7078 7079 7080 7081 7082 7083 7084 7085 7086
			/*
			 * At least one btrfs_chunk with one stripe must be
			 * present, exact stripe count check comes afterwards
			 */
			len = btrfs_chunk_item_size(1);
			if (cur_offset + len > array_size)
				goto out_short_read;

			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7087
			if (!num_stripes) {
7088 7089
				btrfs_err(fs_info,
					"invalid number of stripes %u in sys_array at offset %u",
7090 7091 7092 7093 7094
					num_stripes, cur_offset);
				ret = -EIO;
				break;
			}

7095 7096
			type = btrfs_chunk_type(sb, chunk);
			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7097
				btrfs_err(fs_info,
7098 7099 7100 7101 7102 7103
			    "invalid chunk type %llu in sys_array at offset %u",
					type, cur_offset);
				ret = -EIO;
				break;
			}

7104 7105 7106 7107
			len = btrfs_chunk_item_size(num_stripes);
			if (cur_offset + len > array_size)
				goto out_short_read;

7108
			ret = read_one_chunk(&key, sb, chunk);
7109 7110
			if (ret)
				break;
7111
		} else {
7112 7113 7114
			btrfs_err(fs_info,
			    "unexpected item type %u in sys_array at offset %u",
				  (u32)key.type, cur_offset);
7115 7116
			ret = -EIO;
			break;
7117
		}
7118 7119 7120
		array_ptr += len;
		sb_array_offset += len;
		cur_offset += len;
7121
	}
7122
	clear_extent_buffer_uptodate(sb);
7123
	free_extent_buffer_stale(sb);
7124
	return ret;
7125 7126

out_short_read:
7127
	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7128
			len, cur_offset);
7129
	clear_extent_buffer_uptodate(sb);
7130
	free_extent_buffer_stale(sb);
7131
	return -EIO;
7132 7133
}

7134 7135 7136
/*
 * Check if all chunks in the fs are OK for read-write degraded mount
 *
7137 7138
 * If the @failing_dev is specified, it's accounted as missing.
 *
7139 7140 7141
 * Return true if all chunks meet the minimal RW mount requirements.
 * Return false if any chunk doesn't meet the minimal RW mount requirements.
 */
7142 7143
bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
					struct btrfs_device *failing_dev)
7144
{
7145
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7146 7147 7148 7149
	struct extent_map *em;
	u64 next_start = 0;
	bool ret = true;

7150 7151 7152
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
	read_unlock(&map_tree->lock);
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
	/* No chunk at all? Return false anyway */
	if (!em) {
		ret = false;
		goto out;
	}
	while (em) {
		struct map_lookup *map;
		int missing = 0;
		int max_tolerated;
		int i;

		map = em->map_lookup;
		max_tolerated =
			btrfs_get_num_tolerated_disk_barrier_failures(
					map->type);
		for (i = 0; i < map->num_stripes; i++) {
			struct btrfs_device *dev = map->stripes[i].dev;

7171 7172
			if (!dev || !dev->bdev ||
			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7173 7174
			    dev->last_flush_error)
				missing++;
7175 7176
			else if (failing_dev && failing_dev == dev)
				missing++;
7177 7178
		}
		if (missing > max_tolerated) {
7179 7180
			if (!failing_dev)
				btrfs_warn(fs_info,
7181
	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7182 7183 7184 7185 7186 7187 7188 7189
				   em->start, missing, max_tolerated);
			free_extent_map(em);
			ret = false;
			goto out;
		}
		next_start = extent_map_end(em);
		free_extent_map(em);

7190 7191
		read_lock(&map_tree->lock);
		em = lookup_extent_mapping(map_tree, next_start,
7192
					   (u64)(-1) - next_start);
7193
		read_unlock(&map_tree->lock);
7194 7195 7196 7197 7198
	}
out:
	return ret;
}

7199
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7200
{
7201
	struct btrfs_root *root = fs_info->chunk_root;
7202 7203 7204 7205 7206 7207
	struct btrfs_path *path;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	struct btrfs_key found_key;
	int ret;
	int slot;
7208
	u64 total_dev = 0;
7209 7210 7211 7212 7213

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

7214 7215 7216 7217
	/*
	 * uuid_mutex is needed only if we are mounting a sprout FS
	 * otherwise we don't need it.
	 */
7218
	mutex_lock(&uuid_mutex);
7219
	mutex_lock(&fs_info->chunk_mutex);
7220

7221 7222 7223 7224 7225
	/*
	 * Read all device items, and then all the chunk items. All
	 * device items are found before any chunk item (their object id
	 * is smaller than the lowest possible object id for a chunk
	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7226 7227 7228 7229 7230
	 */
	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
	key.offset = 0;
	key.type = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7231 7232
	if (ret < 0)
		goto error;
C
Chris Mason 已提交
7233
	while (1) {
7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, path);
			if (ret == 0)
				continue;
			if (ret < 0)
				goto error;
			break;
		}
		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7245 7246 7247
		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
			struct btrfs_dev_item *dev_item;
			dev_item = btrfs_item_ptr(leaf, slot,
7248
						  struct btrfs_dev_item);
7249
			ret = read_one_dev(leaf, dev_item);
7250 7251
			if (ret)
				goto error;
7252
			total_dev++;
7253 7254 7255
		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
			struct btrfs_chunk *chunk;
			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7256
			ret = read_one_chunk(&found_key, leaf, chunk);
Y
Yan Zheng 已提交
7257 7258
			if (ret)
				goto error;
7259 7260 7261
		}
		path->slots[0]++;
	}
7262 7263 7264 7265 7266

	/*
	 * After loading chunk tree, we've got all device information,
	 * do another round of validation checks.
	 */
7267 7268
	if (total_dev != fs_info->fs_devices->total_devices) {
		btrfs_err(fs_info,
7269
	   "super_num_devices %llu mismatch with num_devices %llu found here",
7270
			  btrfs_super_num_devices(fs_info->super_copy),
7271 7272 7273 7274
			  total_dev);
		ret = -EINVAL;
		goto error;
	}
7275 7276 7277
	if (btrfs_super_total_bytes(fs_info->super_copy) <
	    fs_info->fs_devices->total_rw_bytes) {
		btrfs_err(fs_info,
7278
	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7279 7280
			  btrfs_super_total_bytes(fs_info->super_copy),
			  fs_info->fs_devices->total_rw_bytes);
7281 7282 7283
		ret = -EINVAL;
		goto error;
	}
7284 7285
	ret = 0;
error:
7286
	mutex_unlock(&fs_info->chunk_mutex);
7287 7288
	mutex_unlock(&uuid_mutex);

Y
Yan Zheng 已提交
7289
	btrfs_free_path(path);
7290 7291
	return ret;
}
7292

7293 7294 7295 7296 7297
void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;

7298 7299 7300
	while (fs_devices) {
		mutex_lock(&fs_devices->device_list_mutex);
		list_for_each_entry(device, &fs_devices->devices, dev_list)
7301
			device->fs_info = fs_info;
7302 7303 7304 7305
		mutex_unlock(&fs_devices->device_list_mutex);

		fs_devices = fs_devices->seed;
	}
7306 7307
}

7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
{
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_dev_stat_reset(dev, i);
}

int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
{
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_root *dev_root = fs_info->dev_root;
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct extent_buffer *eb;
	int slot;
	int ret = 0;
	struct btrfs_device *device;
	struct btrfs_path *path = NULL;
	int i;

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
		int item_size;
		struct btrfs_dev_stats_item *ptr;

7340 7341
		key.objectid = BTRFS_DEV_STATS_OBJECTID;
		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
		key.offset = device->devid;
		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
		if (ret) {
			__btrfs_reset_dev_stats(device);
			device->dev_stats_valid = 1;
			btrfs_release_path(path);
			continue;
		}
		slot = path->slots[0];
		eb = path->nodes[0];
		btrfs_item_key_to_cpu(eb, &found_key, slot);
		item_size = btrfs_item_size_nr(eb, slot);

		ptr = btrfs_item_ptr(eb, slot,
				     struct btrfs_dev_stats_item);

		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (item_size >= (1 + i) * sizeof(__le64))
				btrfs_dev_stat_set(device, i,
					btrfs_dev_stats_value(eb, ptr, i));
			else
				btrfs_dev_stat_reset(device, i);
		}

		device->dev_stats_valid = 1;
		btrfs_dev_stat_print_on_load(device);
		btrfs_release_path(path);
	}
	mutex_unlock(&fs_devices->device_list_mutex);

out:
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

static int update_dev_stat_item(struct btrfs_trans_handle *trans,
				struct btrfs_device *device)
{
7380
	struct btrfs_fs_info *fs_info = trans->fs_info;
7381
	struct btrfs_root *dev_root = fs_info->dev_root;
7382 7383 7384 7385 7386 7387 7388
	struct btrfs_path *path;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_dev_stats_item *ptr;
	int ret;
	int i;

7389 7390
	key.objectid = BTRFS_DEV_STATS_OBJECTID;
	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7391 7392 7393
	key.offset = device->devid;

	path = btrfs_alloc_path();
7394 7395
	if (!path)
		return -ENOMEM;
7396 7397
	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
	if (ret < 0) {
7398
		btrfs_warn_in_rcu(fs_info,
7399
			"error %d while searching for dev_stats item for device %s",
7400
			      ret, rcu_str_deref(device->name));
7401 7402 7403 7404 7405 7406 7407 7408
		goto out;
	}

	if (ret == 0 &&
	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
		/* need to delete old one and insert a new one */
		ret = btrfs_del_item(trans, dev_root, path);
		if (ret != 0) {
7409
			btrfs_warn_in_rcu(fs_info,
7410
				"delete too small dev_stats item for device %s failed %d",
7411
				      rcu_str_deref(device->name), ret);
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
			goto out;
		}
		ret = 1;
	}

	if (ret == 1) {
		/* need to insert a new item */
		btrfs_release_path(path);
		ret = btrfs_insert_empty_item(trans, dev_root, path,
					      &key, sizeof(*ptr));
		if (ret < 0) {
7423
			btrfs_warn_in_rcu(fs_info,
7424 7425
				"insert dev_stats item for device %s failed %d",
				rcu_str_deref(device->name), ret);
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
			goto out;
		}
	}

	eb = path->nodes[0];
	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		btrfs_set_dev_stats_value(eb, ptr, i,
					  btrfs_dev_stat_read(device, i));
	btrfs_mark_buffer_dirty(eb);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * called from commit_transaction. Writes all changed device stats to disk.
 */
7445
int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7446
{
7447
	struct btrfs_fs_info *fs_info = trans->fs_info;
7448 7449
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	struct btrfs_device *device;
7450
	int stats_cnt;
7451 7452 7453 7454
	int ret = 0;

	mutex_lock(&fs_devices->device_list_mutex);
	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7455 7456
		stats_cnt = atomic_read(&device->dev_stats_ccnt);
		if (!device->dev_stats_valid || stats_cnt == 0)
7457 7458
			continue;

7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472

		/*
		 * There is a LOAD-LOAD control dependency between the value of
		 * dev_stats_ccnt and updating the on-disk values which requires
		 * reading the in-memory counters. Such control dependencies
		 * require explicit read memory barriers.
		 *
		 * This memory barriers pairs with smp_mb__before_atomic in
		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
		 * barrier implied by atomic_xchg in
		 * btrfs_dev_stats_read_and_reset
		 */
		smp_rmb();

7473
		ret = update_dev_stat_item(trans, device);
7474
		if (!ret)
7475
			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7476 7477 7478 7479 7480 7481
	}
	mutex_unlock(&fs_devices->device_list_mutex);

	return ret;
}

7482 7483 7484 7485 7486 7487
void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
{
	btrfs_dev_stat_inc(dev, index);
	btrfs_dev_stat_print_on_error(dev);
}

7488
static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7489
{
7490 7491
	if (!dev->dev_stats_valid)
		return;
7492
	btrfs_err_rl_in_rcu(dev->fs_info,
7493
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7494
			   rcu_str_deref(dev->name),
7495 7496 7497
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7498 7499
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7500
}
7501

7502 7503
static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
{
7504 7505 7506 7507 7508 7509 7510 7511
	int i;

	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
		if (btrfs_dev_stat_read(dev, i) != 0)
			break;
	if (i == BTRFS_DEV_STAT_VALUES_MAX)
		return; /* all values == 0, suppress message */

7512
	btrfs_info_in_rcu(dev->fs_info,
7513
		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7514
	       rcu_str_deref(dev->name),
7515 7516 7517 7518 7519 7520 7521
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
}

7522
int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7523
			struct btrfs_ioctl_get_dev_stats *stats)
7524 7525
{
	struct btrfs_device *dev;
7526
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7527 7528 7529
	int i;

	mutex_lock(&fs_devices->device_list_mutex);
7530 7531
	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
				true);
7532 7533 7534
	mutex_unlock(&fs_devices->device_list_mutex);

	if (!dev) {
7535
		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7536
		return -ENODEV;
7537
	} else if (!dev->dev_stats_valid) {
7538
		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7539
		return -ENODEV;
7540
	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
			if (stats->nr_items > i)
				stats->values[i] =
					btrfs_dev_stat_read_and_reset(dev, i);
			else
				btrfs_dev_stat_reset(dev, i);
		}
	} else {
		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
			if (stats->nr_items > i)
				stats->values[i] = btrfs_dev_stat_read(dev, i);
	}
	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
	return 0;
}
7557

7558
void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7559 7560 7561
{
	struct buffer_head *bh;
	struct btrfs_super_block *disk_super;
7562
	int copy_num;
7563

7564 7565
	if (!bdev)
		return;
7566

7567 7568
	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
		copy_num++) {
7569

7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
			continue;

		disk_super = (struct btrfs_super_block *)bh->b_data;

		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
		set_buffer_dirty(bh);
		sync_dirty_buffer(bh);
		brelse(bh);
	}

	/* Notify udev that device has changed */
	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);

	/* Update ctime/mtime for device path for libblkid */
	update_dev_time(device_path);
7586
}
7587 7588

/*
7589 7590 7591 7592 7593
 * Update the size and bytes used for each device where it changed.  This is
 * delayed since we would otherwise get errors while writing out the
 * superblocks.
 *
 * Must be invoked during transaction commit.
7594
 */
7595
void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7596 7597 7598
{
	struct btrfs_device *curr, *next;

7599
	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7600

7601
	if (list_empty(&trans->dev_update_list))
7602 7603
		return;

7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
	/*
	 * We don't need the device_list_mutex here.  This list is owned by the
	 * transaction and the transaction must complete before the device is
	 * released.
	 */
	mutex_lock(&trans->fs_info->chunk_mutex);
	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&curr->post_commit_list);
		curr->commit_total_bytes = curr->disk_total_bytes;
		curr->commit_bytes_used = curr->bytes_used;
7615
	}
7616
	mutex_unlock(&trans->fs_info->chunk_mutex);
7617
}
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635

void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = fs_info;
		fs_devices = fs_devices->seed;
	}
}

void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
{
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
	while (fs_devices) {
		fs_devices->fs_info = NULL;
		fs_devices = fs_devices->seed;
	}
}
7636 7637 7638 7639 7640 7641

/*
 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
 */
int btrfs_bg_type_to_factor(u64 flags)
{
7642 7643 7644
	const int index = btrfs_bg_flags_to_raid_index(flags);

	return btrfs_raid_array[index].ncopies;
7645
}
7646 7647 7648 7649 7650 7651 7652



static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
				 u64 chunk_offset, u64 devid,
				 u64 physical_offset, u64 physical_len)
{
7653
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7654 7655
	struct extent_map *em;
	struct map_lookup *map;
7656
	struct btrfs_device *dev;
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705
	u64 stripe_len;
	bool found = false;
	int ret = 0;
	int i;

	read_lock(&em_tree->lock);
	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
	read_unlock(&em_tree->lock);

	if (!em) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
			  physical_offset, devid);
		ret = -EUCLEAN;
		goto out;
	}

	map = em->map_lookup;
	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
	if (physical_len != stripe_len) {
		btrfs_err(fs_info,
"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
			  physical_offset, devid, em->start, physical_len,
			  stripe_len);
		ret = -EUCLEAN;
		goto out;
	}

	for (i = 0; i < map->num_stripes; i++) {
		if (map->stripes[i].dev->devid == devid &&
		    map->stripes[i].physical == physical_offset) {
			found = true;
			if (map->verified_stripes >= map->num_stripes) {
				btrfs_err(fs_info,
				"too many dev extents for chunk %llu found",
					  em->start);
				ret = -EUCLEAN;
				goto out;
			}
			map->verified_stripes++;
			break;
		}
	}
	if (!found) {
		btrfs_err(fs_info,
	"dev extent physical offset %llu devid %llu has no corresponding chunk",
			physical_offset, devid);
		ret = -EUCLEAN;
	}
7706 7707

	/* Make sure no dev extent is beyond device bondary */
7708
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7709 7710 7711 7712 7713
	if (!dev) {
		btrfs_err(fs_info, "failed to find devid %llu", devid);
		ret = -EUCLEAN;
		goto out;
	}
7714 7715 7716

	/* It's possible this device is a dummy for seed device */
	if (dev->disk_total_bytes == 0) {
7717 7718
		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
					NULL, false);
7719 7720 7721 7722 7723 7724 7725 7726
		if (!dev) {
			btrfs_err(fs_info, "failed to find seed devid %llu",
				  devid);
			ret = -EUCLEAN;
			goto out;
		}
	}

7727 7728 7729 7730 7731 7732 7733 7734
	if (physical_offset + physical_len > dev->disk_total_bytes) {
		btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
			  devid, physical_offset, physical_len,
			  dev->disk_total_bytes);
		ret = -EUCLEAN;
		goto out;
	}
7735 7736 7737 7738 7739 7740 7741
out:
	free_extent_map(em);
	return ret;
}

static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
{
7742
	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7743 7744 7745 7746 7747
	struct extent_map *em;
	struct rb_node *node;
	int ret = 0;

	read_lock(&em_tree->lock);
L
Liu Bo 已提交
7748
	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
		em = rb_entry(node, struct extent_map, rb_node);
		if (em->map_lookup->num_stripes !=
		    em->map_lookup->verified_stripes) {
			btrfs_err(fs_info,
			"chunk %llu has missing dev extent, have %d expect %d",
				  em->start, em->map_lookup->verified_stripes,
				  em->map_lookup->num_stripes);
			ret = -EUCLEAN;
			goto out;
		}
	}
out:
	read_unlock(&em_tree->lock);
	return ret;
}

/*
 * Ensure that all dev extents are mapped to correct chunk, otherwise
 * later chunk allocation/free would cause unexpected behavior.
 *
 * NOTE: This will iterate through the whole device tree, which should be of
 * the same size level as the chunk tree.  This slightly increases mount time.
 */
int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_path *path;
	struct btrfs_root *root = fs_info->dev_root;
	struct btrfs_key key;
7777 7778
	u64 prev_devid = 0;
	u64 prev_dev_ext_end = 0;
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
	int ret = 0;

	key.objectid = 1;
	key.type = BTRFS_DEV_EXTENT_KEY;
	key.offset = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = READA_FORWARD;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		/* No dev extents at all? Not good */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	while (1) {
		struct extent_buffer *leaf = path->nodes[0];
		struct btrfs_dev_extent *dext;
		int slot = path->slots[0];
		u64 chunk_offset;
		u64 physical_offset;
		u64 physical_len;
		u64 devid;

		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.type != BTRFS_DEV_EXTENT_KEY)
			break;
		devid = key.objectid;
		physical_offset = key.offset;

		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
		physical_len = btrfs_dev_extent_length(leaf, dext);

7823 7824 7825 7826 7827 7828 7829 7830 7831
		/* Check if this dev extent overlaps with the previous one */
		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
			btrfs_err(fs_info,
"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
				  devid, physical_offset, prev_dev_ext_end);
			ret = -EUCLEAN;
			goto out;
		}

7832 7833 7834 7835
		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
					    physical_offset, physical_len);
		if (ret < 0)
			goto out;
7836 7837 7838
		prev_devid = devid;
		prev_dev_ext_end = physical_offset + physical_len;

7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853
		ret = btrfs_next_item(root, path);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
	}

	/* Ensure all chunks have corresponding dev extents */
	ret = verify_chunk_dev_extent_mapping(fs_info);
out:
	btrfs_free_path(path);
	return ret;
}
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877

/*
 * Check whether the given block group or device is pinned by any inode being
 * used as a swapfile.
 */
bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
{
	struct btrfs_swapfile_pin *sp;
	struct rb_node *node;

	spin_lock(&fs_info->swapfile_pins_lock);
	node = fs_info->swapfile_pins.rb_node;
	while (node) {
		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
		if (ptr < sp->ptr)
			node = node->rb_left;
		else if (ptr > sp->ptr)
			node = node->rb_right;
		else
			break;
	}
	spin_unlock(&fs_info->swapfile_pins_lock);
	return node != NULL;
}