sonixb.c 37.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Some documentation on known sonixb registers:

Reg	Use
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

43 44 45 46 47 48 49 50 51 52 53
#define MODULE_NAME "sonixb"

#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
54
	atomic_t avg_lum;
55
	int prev_avg_lum;
56

57 58
	unsigned char gain;
	unsigned char exposure;
59
	unsigned char brightness;
60 61
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
62
	unsigned char frames_to_drop;
63
	unsigned char freq;		/* light freq filter setting */
64

65 66 67 68 69 70
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
71 72 73
#define SENSOR_HV7131R 0
#define SENSOR_OV6650 1
#define SENSOR_OV7630 2
74 75 76 77 78
#define SENSOR_PAS106 3
#define SENSOR_PAS202 4
#define SENSOR_TAS5110 5
#define SENSOR_TAS5130CXX 6
	__u8 reg11;
79 80
};

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
typedef const __u8 sensor_init_t[8];

struct sensor_data {
	const __u8 *bridge_init[2];
	int bridge_init_size[2];
	sensor_init_t *sensor_init;
	int sensor_init_size;
	sensor_init_t *sensor_bridge_init[2];
	int sensor_bridge_init_size[2];
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
96
#define F_GAIN 0x01		/* has gain */
97
#define F_SIF  0x02		/* sif or vga */
98 99 100

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
101
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
102 103 104 105 106

/* ctrl_dis helper macros */
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << AUTOGAIN_IDX))
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
107

108 109 110 111 112 113 114 115 116
#define COMP2 0x8f
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

117 118 119 120 121 122 123 124 125 126 127 128
#define SENS(bridge_1, bridge_3, sensor, sensor_1, \
	sensor_3, _flags, _ctrl_dis, _sensor_addr) \
{ \
	.bridge_init = { bridge_1, bridge_3 }, \
	.bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.sensor_bridge_init = { sensor_1, sensor_3,}, \
	.sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

129 130 131 132 133 134
/* We calculate the autogain at the end of the transfer of a frame, at this
   moment a frame with the old settings is being transmitted, and a frame is
   being captured with the old settings. So if we adjust the autogain we must
   ignore atleast the 2 next frames for the new settings to come into effect
   before doing any other adjustments */
#define AUTOGAIN_IGNORE_FRAMES 3
135
#define AUTOGAIN_DEADZONE 1000
136 137
#define DESIRED_AVG_LUM 7000

138 139 140
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
141 142 143 144 145 146
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
147 148
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
149 150

static struct ctrl sd_ctrls[] = {
151
#define BRIGHTNESS_IDX 0
152 153 154 155 156 157 158 159
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
160 161
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
162 163 164 165
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
166
#define GAIN_IDX 1
167 168
	{
	    {
169
		.id      = V4L2_CID_GAIN,
170
		.type    = V4L2_CTRL_TYPE_INTEGER,
171
		.name    = "Gain",
172
		.minimum = 0,
173
		.maximum = 255,
174
		.step    = 1,
175 176
#define GAIN_DEF 127
#define GAIN_KNEE 200
177
		.default_value = GAIN_DEF,
178
	    },
179 180 181
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
182
#define EXPOSURE_IDX 2
183 184 185 186 187
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
188 189
#define EXPOSURE_DEF  16 /*  32 ms / 30 fps */
#define EXPOSURE_KNEE 50 /* 100 ms / 10 fps */
190
			.minimum = 0,
191
			.maximum = 255,
192 193 194 195 196 197 198
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
199
#define AUTOGAIN_IDX 3
200 201 202 203 204 205 206 207
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
208 209
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
210 211 212 213
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
214
	},
215
#define FREQ_IDX 4
216 217 218 219 220 221 222 223 224 225 226 227 228 229
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
#define FREQ_DEF 1
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
230 231
};

232
static struct v4l2_pix_format vga_mode[] = {
233 234
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
235
		.sizeimage = 160 * 120 * 5 / 4,
236 237
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
238 239
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
240
		.sizeimage = 160 * 120 * 5 / 4,
241 242 243 244
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
245
		.sizeimage = 320 * 240 * 5 / 4,
246 247 248 249
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
250
		.sizeimage = 640 * 480 * 5 / 4,
251 252
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
253
};
254
static struct v4l2_pix_format sif_mode[] = {
255 256 257 258 259 260 261 262 263 264
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
265 266
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
267
		.sizeimage = 176 * 144 * 5 / 4,
268 269
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
270 271
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
272
		.sizeimage = 176 * 144 * 5 / 4,
273 274
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
275 276 277 278 279
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
280 281
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
282
		.sizeimage = 352 * 288 * 5 / 4,
283 284
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
285 286 287 288 289
};

static const __u8 initHv7131[] = {
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
290
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
291 292 293 294 295 296 297 298 299 300 301 302 303
	0x28, 0x1e, 0x60, 0x8a, 0x20,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 hv7131_sensor_init[][8] = {
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
304
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
305
	0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
306 307 308 309 310 311
};
static const __u8 ov6650_sensor_init[][8] =
{
	/* Bright, contrast, etc are set througth SCBB interface.
	 * AVCAP on win2 do not send any data on this 	controls. */
	/* Anyway, some registers appears to alter bright and constrat */
312 313

	/* Reset sensor */
314
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
315
	/* Set clock register 0x11 low nibble is clock divider */
316
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
317
	/* Next some unknown stuff */
318 319 320 321 322 323 324 325
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
	{0xa0, 0x60, 0x30, 0x3d, 0x0A, 0xd8, 0xa4, 0x10},
326 327 328 329 330 331 332 333 334
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
335
	/* Some more unknown stuff */
336 337 338
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
339

340 341 342
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
343
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
344
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
345
	0x68, COMP2, MCK_INIT1,				/* r17 .. r19 */
346 347 348 349 350
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c		/* r1a .. r1f */
};
static const __u8 initOv7630_3[] = {
	0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,	/* r09 .. r10 */
351
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
352
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
353 354 355 356
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00,	/* r1a .. r20 */
	0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
	0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff  /* r29 .. r30 */
357
};
358
static const __u8 ov7630_sensor_init[][8] = {
359 360 361
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
362
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
363 364 365 366 367 368 369
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
370 371
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
372 373 374 375 376 377 378 379
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

380 381 382 383
static const __u8 ov7630_sensor_init_3[][8] = {
	{0xa0, 0x21, 0x13, 0x80, 0x00,	0x00, 0x00, 0x10},
};

384 385 386
static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
387
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
388
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
389
	0x18, 0x10, 0x02, 0x02, 0x09, 0x07
390 391
};
/* compression 0x86 mckinit1 0x2b */
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
432
};
433

434 435 436
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
437
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
438
	0x28, 0x1e, 0x28, 0x89, 0x20,
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 pas202_sensor_init[][8] = {
	{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10},
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
	{0xd0, 0x40, 0x0C, 0x00, 0x0C, 0x00, 0x32, 0x10},
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x10},
	{0xb0, 0x40, 0x0e, 0x00, 0x3d, 0x00, 0x63, 0x10},

	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x08, 0x3d, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x02, 0x04, 0x3d, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x3d, 0x00, 0x63, 0x16},
	{0xb0, 0x40, 0x0e, 0x00, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
	{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15},
	{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16},
};

static const __u8 initTas5110[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
468
	0x00, 0x01, 0x00, 0x45, 0x09, 0x0a,
469 470 471 472 473 474 475 476 477 478 479 480
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
481
	0x00, 0x01, 0x00, 0x68, 0x0c, 0x0a,
482 483 484 485 486 487 488 489 490 491 492
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
static const __u8 tas5130_sensor_init[][8] = {
/* 	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

493 494
struct sensor_data sensor_data[] = {
SENS(initHv7131, NULL, hv7131_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ, 0),
495
SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
496 497 498 499
SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
	F_GAIN, 0, 0x21),
SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_SIF, NO_EXPO|NO_FREQ,
	0),
500
SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, 0,
501
	NO_EXPO|NO_FREQ, 0),
502
SENS(initTas5110, NULL, tas5110_sensor_init, NULL, NULL, F_GAIN|F_SIF,
503 504 505 506 507
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
	0),
};

508 509 510
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
511
{
512 513
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
514 515 516 517
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
518
			gspca_dev->usb_buf, 1,
519 520 521
			500);
}

522 523 524 525
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
526
{
527
#ifdef GSPCA_DEBUG
528
	if (len > USB_BUF_SZ) {
529 530 531 532
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
533 534 535 536 537 538 539 540 541 542 543 544
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
545 546 547 548
{
	int retry = 60;

	/* is i2c ready */
549
	reg_w(gspca_dev, 0x08, buffer, 8);
550 551
	while (retry--) {
		msleep(10);
552
		reg_r(gspca_dev, 0x08);
553 554 555
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
556
			return 0;
557
		}
558 559 560 561
	}
	return -1;
}

562
static void i2c_w_vector(struct gspca_dev *gspca_dev,
563 564 565
			const __u8 buffer[][8], int len)
{
	for (;;) {
566
		reg_w(gspca_dev, 0x08, *buffer, 8);
567 568 569 570 571 572 573 574 575 576 577 578 579
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
580
	case  SENSOR_OV6650:
581 582
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
583
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
584 585

		/* change reg 0x06 */
586
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
587
		i2cOV[3] = sd->brightness;
588
		if (i2c_w(gspca_dev, i2cOV) < 0)
589 590 591 592 593 594 595 596 597
			goto err;
		break;
	    }
	case SENSOR_PAS106: {
		__u8 i2c1[] =
			{0xa1, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x14};

		i2c1[3] = sd->brightness >> 3;
		i2c1[2] = 0x0e;
598
		if (i2c_w(gspca_dev, i2c1) < 0)
599 600 601
			goto err;
		i2c1[3] = 0x01;
		i2c1[2] = 0x13;
602
		if (i2c_w(gspca_dev, i2c1) < 0)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		/* __u8 i2cpexpo1[] =
			{0xb0, 0x40, 0x04, 0x07, 0x2a, 0x00, 0x63, 0x16}; */
		__u8 i2cpexpo[] =
			{0xb0, 0x40, 0x0e, 0x01, 0xab, 0x00, 0x63, 0x16};
		__u8 i2cp202[] =
			{0xa0, 0x40, 0x10, 0x0e, 0x31, 0x00, 0x63, 0x15};
		static __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x31, 0x00, 0x63, 0x16};

		/* change reg 0x10 */
		i2cpexpo[4] = 0xff - sd->brightness;
618
/*		if(i2c_w(gspca_dev,i2cpexpo1) < 0)
619
			goto err; */
620
/*		if(i2c_w(gspca_dev,i2cpdoit) < 0)
621
			goto err; */
622
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
623
			goto err;
624
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
625 626
			goto err;
		i2cp202[3] = sd->brightness >> 3;
627
		if (i2c_w(gspca_dev, i2cp202) < 0)
628
			goto err;
629
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
630 631 632
			goto err;
		break;
	    }
633
	case SENSOR_TAS5130CXX: {
634 635 636 637 638 639
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
640
		if (i2c_w(gspca_dev, i2c) < 0)
641 642 643 644 645 646 647 648
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
649 650 651 652

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
653
	unsigned char gain = sd->gain;
654 655 656 657 658 659 660

	switch (sd->sensor) {

	case SENSOR_TAS5110: {
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

661
		i2c[4] = 255 - gain;
662
		if (i2c_w(gspca_dev, i2c) < 0)
663
			goto err;
664 665
		break;
	    }
666

667 668 669
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
670
	case SENSOR_OV7630: {
671
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
672

673
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
674
		i2c[3] = gain >> 2;
675 676 677 678
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
679 680 681 682 683 684 685
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
686 687 688 689 690
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
	__u8 rgb_value;

691
	gain = sd->gain >> 4;
692

693 694
	/* red and blue gain */
	rgb_value = gain << 4 | gain;
695
	reg_w(gspca_dev, 0x10, &rgb_value, 1);
696 697
	/* green gain */
	rgb_value = gain;
698
	reg_w(gspca_dev, 0x11, &rgb_value, 1);
699

700
	if (sensor_data[sd->sensor].flags & F_GAIN)
701 702 703 704 705 706 707 708 709 710 711 712 713 714
		setsensorgain(gspca_dev);
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
	case SENSOR_TAS5110: {
		__u8 reg;

		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
715 716 717 718
		reg = 120 * sd->exposure / 1000;
		if (reg < 2)
			reg = 2;
		else if (reg > 15)
719 720
			reg = 15;
		reg = (reg << 4) | 0x0b;
721
		reg_w(gspca_dev, 0x19, &reg, 1);
722 723
		break;
	    }
724
	case SENSOR_OV6650:
725
	case SENSOR_OV7630: {
726 727
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
728 729 730 731 732 733 734 735 736 737 738 739
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
740 741 742
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

743 744 745 746 747
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
748
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
749 750 751 752 753
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
754

755 756 757 758 759 760
		reg11 = (60 * sd->exposure + 999) / 1000;
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

761 762 763 764 765
		/* In 640x480, if the reg11 has less than 3, the image is
		   unstable (not enough bandwidth). */
		if (gspca_dev->width == 640 && reg11 < 3)
			reg11 = 3;

766 767 768 769
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
		reg10 = sd->exposure * 2 * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 60 * reg10_max) / (1000 * reg11);

770 771 772 773 774 775
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
776 777 778 779
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
780
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
781 782
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
783 784 785 786 787 788 789 790

		/* If register 11 didn't change, don't change it */
		if (sd->reg11 == reg11 )
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
791
			PDEBUG(D_ERR, "i2c error exposure");
792 793
		break;
	    }
794 795 796
	}
}

797 798 799 800 801
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
802
	case SENSOR_OV6650:
803
	case SENSOR_OV7630: {
804
		/* Framerate adjust register for artificial light 50 hz flicker
805 806 807
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
808
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
809 810 811 812 813 814 815
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
816 817
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
818 819
			break;
		}
820
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
821 822 823 824 825 826 827
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

828 829 830 831 832 833 834 835 836 837 838 839
static void do_autogain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

	if (avg_lum == -1)
		return;

	if (sd->autogain_ignore_frames > 0)
		sd->autogain_ignore_frames--;
	else if (gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
			sd->brightness * DESIRED_AVG_LUM / 127,
840 841 842
			AUTOGAIN_DEADZONE, GAIN_KNEE, EXPOSURE_KNEE)) {
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d\n",
			(int)sd->gain, (int)sd->exposure);
843
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
844
	}
845 846 847 848 849 850 851 852
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
853 854 855 856

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
857

858
	/* copy the webcam info from the device id */
859 860 861
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
862 863 864

	cam = &gspca_dev->cam;
	cam->epaddr = 0x01;
865
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
866
		cam->cam_mode = vga_mode;
867
		cam->nmodes = ARRAY_SIZE(vga_mode);
868 869
	} else {
		cam->cam_mode = sif_mode;
870
		cam->nmodes = ARRAY_SIZE(sif_mode);
871
	}
872 873 874
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
	sd->exposure = EXPOSURE_DEF;
875 876 877 878
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
879
	sd->freq = FREQ_DEF;
880

881 882 883
	return 0;
}

884 885
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
886
{
887 888 889 890
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

891 892 893 894 895 896 897
	return 0;
}

/* -- start the camera -- */
static void sd_start(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
898
	struct cam *cam = &gspca_dev->cam;
899
	int mode, l;
900
	const __u8 *sn9c10x;
901
	__u8 reg12_19[8];
902

903
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
904 905
	sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
	l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
906 907
	memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
	reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
908
	/* Special cases where reg 17 and or 19 value depends on mode */
909 910
	switch (sd->sensor) {
	case SENSOR_PAS202:
911
		reg12_19[5] = mode ? 0x24 : 0x20;
912
		break;
913 914 915 916
	case SENSOR_TAS5130CXX:
		/* probably not mode specific at all most likely the upper
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
917
		reg12_19[7] = mode ? 0x23 : 0x43;
918 919
		break;
	}
920
	/* Disable compression when the raw bayer format has been selected */
921 922 923 924 925 926 927 928 929 930
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
		reg12_19[6] &= ~0x80;

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
		reg12_19[0] += 16; /* 0x12: hstart adjust */
		reg12_19[1] += 24; /* 0x13: vstart adjust */
		reg12_19[3] = 320 / 16; /* 0x15: hsize */
		reg12_19[4] = 240 / 16; /* 0x16: vsize */
	}
931

932
	/* reg 0x01 bit 2 video transfert on */
933
	reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
934
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
935
	reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
936
	/* Set the registers from the template */
937
	reg_w(gspca_dev, 0x01, sn9c10x, l);
938 939 940 941 942 943 944 945 946 947

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);
	if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
		i2c_w_vector(gspca_dev,
			sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
			sensor_data[sd->sensor].sensor_bridge_init_size[
				sd->bridge]);

948
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
949
	reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
950
	/* compression register */
951
	reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
952
	/* H_start */
953
	reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
954
	/* V_START */
955
	reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
956 957
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
958
	reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
959
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
960
	reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
961
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
962
	reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
963
	/* Enable video transfert */
964
	reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
965
	/* Compression */
966
	reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
967 968
	msleep(20);

969 970
	sd->reg11 = -1;

971
	setgain(gspca_dev);
972
	setbrightness(gspca_dev);
973
	setexposure(gspca_dev);
974
	setfreq(gspca_dev);
975

976
	sd->frames_to_drop = 0;
977 978
	sd->autogain_ignore_frames = 0;
	atomic_set(&sd->avg_lum, -1);
979 980 981 982
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
983
	sd_init(gspca_dev);
984 985 986 987 988 989 990
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			struct gspca_frame *frame,	/* target */
			unsigned char *data,		/* isoc packet */
			int len)			/* iso packet length */
{
991
	int i;
992
	struct sd *sd = (struct sd *) gspca_dev;
993
	struct cam *cam = &gspca_dev->cam;
994

995 996 997 998 999 1000 1001 1002 1003
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1004
	if (len > 6 && len < 24) {
1005 1006 1007 1008 1009 1010 1011
		for (i = 0; i < len - 6; i++) {
			if (data[0 + i] == 0xff
			    && data[1 + i] == 0xff
			    && data[2 + i] == 0x00
			    && data[3 + i] == 0xc4
			    && data[4 + i] == 0xc4
			    && data[5 + i] == 0x96) {	/* start of frame */
1012 1013
				int lum = -1;
				int pkt_type = LAST_PACKET;
1014 1015
				int fr_h_sz = (sd->bridge == BRIDGE_103) ?
					18 : 12;
1016

1017
				if (len - i < fr_h_sz) {
1018 1019
					PDEBUG(D_STREAM, "packet too short to"
						" get avg brightness");
1020
				} else if (sd->bridge == BRIDGE_103) {
1021 1022
					lum = data[i + 9] +
						(data[i + 10] << 8);
1023 1024
				} else {
					lum = data[i + 8] + (data[i + 9] << 8);
1025
				}
1026 1027 1028 1029 1030 1031 1032 1033
				/* When exposure changes midway a frame we
				   get a lum of 0 in this case drop 2 frames
				   as the frames directly after an exposure
				   change have an unstable image. Sometimes lum
				   *really* is 0 (cam used in low light with
				   low exposure setting), so do not drop frames
				   if the previous lum was 0 too. */
				if (lum == 0 && sd->prev_avg_lum != 0) {
1034 1035
					lum = -1;
					sd->frames_to_drop = 2;
1036 1037 1038
					sd->prev_avg_lum = 0;
				} else
					sd->prev_avg_lum = lum;
1039 1040 1041 1042 1043 1044 1045 1046 1047
				atomic_set(&sd->avg_lum, lum);

				if (sd->frames_to_drop) {
					sd->frames_to_drop--;
					pkt_type = DISCARD_PACKET;
				}

				frame = gspca_frame_add(gspca_dev, pkt_type,
							frame, data, 0);
1048 1049
				data += i + fr_h_sz;
				len -= i + fr_h_sz;
1050 1051 1052 1053 1054 1055
				gspca_frame_add(gspca_dev, FIRST_PACKET,
						frame, data, len);
				return;
			}
		}
	}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
		int used = frame->data_end - frame->data;
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

		if (used + len > size)
			len = size - used;
	}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	gspca_frame_add(gspca_dev, INTER_PACKET,
			frame, data, len);
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1100 1101 1102
{
	struct sd *sd = (struct sd *) gspca_dev;

1103 1104 1105 1106 1107 1108 1109 1110 1111
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1112
	if (gspca_dev->streaming)
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
	if (sd->autogain) {
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1144 1145 1146
	return 0;
}

1147
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1148 1149 1150
{
	struct sd *sd = (struct sd *) gspca_dev;

1151
	*val = sd->autogain;
1152 1153 1154
	return 0;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1194
/* sub-driver description */
1195
static const struct sd_desc sd_desc = {
1196 1197 1198 1199
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1200
	.init = sd_init,
1201 1202 1203
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1204
	.querymenu = sd_querymenu,
1205
	.dq_callback = do_autogain,
1206 1207 1208
};

/* -- module initialisation -- */
1209 1210 1211
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1212

1213
static __devinitdata struct usb_device_id device_table[] = {
1214 1215
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110, 101)}, /* TAS5110C1B */
1216
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1217
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110, 101)}, /* TAS5110D */
1218 1219
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1220
#endif
1221
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1222
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1223 1224 1225 1226 1227 1228
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1229
#endif
1230
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1231
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1232 1233 1234 1235
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1236
#endif
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1254 1255 1256 1257
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1258 1259 1260 1261 1262 1263 1264
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
	if (usb_register(&sd_driver) < 0)
		return -1;
1265
	PDEBUG(D_PROBE, "registered");
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	return 0;
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
	PDEBUG(D_PROBE, "deregistered");
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);