pci-ioda.c 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15

#include <linux/kernel.h>
#include <linux/pci.h>
16
#include <linux/crash_dump.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
25
#include <linux/memblock.h>
26 27 28 29 30 31

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
32
#include <asm/msi_bitmap.h>
33 34 35 36
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
37
#include <asm/xics.h>
38
#include <asm/debug.h>
39 40 41 42 43 44 45 46 47

#include "powernv.h"
#include "pci.h"

#define define_pe_printk_level(func, kern_level)		\
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
{								\
	struct va_format vaf;					\
	va_list args;						\
G
Gavin Shan 已提交
48
	char pfix[32];						\
49 50 51 52 53 54 55
	int r;							\
								\
	va_start(args, fmt);					\
								\
	vaf.fmt = fmt;						\
	vaf.va = &args;						\
								\
G
Gavin Shan 已提交
56 57 58 59 60 61 62 63 64 65
	if (pe->pdev)						\
		strlcpy(pfix, dev_name(&pe->pdev->dev),		\
			sizeof(pfix));				\
	else							\
		sprintf(pfix, "%04x:%02x     ",			\
			pci_domain_nr(pe->pbus),		\
			pe->pbus->number);			\
	r = printk(kern_level "pci %s: [PE# %.3d] %pV",		\
		   pfix, pe->pe_number, &vaf);			\
								\
66 67 68 69 70 71 72 73 74
	va_end(args);						\
								\
	return r;						\
}								\

define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);

75 76 77 78 79 80 81 82 83 84
/*
 * stdcix is only supposed to be used in hypervisor real mode as per
 * the architecture spec
 */
static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
{
	__asm__ __volatile__("stdcix %0,0,%1"
		: : "r" (val), "r" (paddr) : "memory");
}

85
static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
86 87 88 89 90 91 92 93 94 95
{
	unsigned long pe;

	do {
		pe = find_next_zero_bit(phb->ioda.pe_alloc,
					phb->ioda.total_pe, 0);
		if (pe >= phb->ioda.total_pe)
			return IODA_INVALID_PE;
	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));

96
	phb->ioda.pe_array[pe].phb = phb;
97 98 99 100
	phb->ioda.pe_array[pe].pe_number = pe;
	return pe;
}

101
static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
102 103 104 105 106 107 108 109 110 111 112
{
	WARN_ON(phb->ioda.pe_array[pe].pdev);

	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
	clear_bit(pe, phb->ioda.pe_alloc);
}

/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
113
static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
114 115 116
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
117
	struct pci_dn *pdn = pci_get_pdn(dev);
118 119 120 121 122 123 124 125 126

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

127
static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
128 129 130 131 132 133 134 135 136 137 138 139
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
140 141 142 143 144
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
			pr_err("%s: Number of subordinate busses %d"
			       " unsupported\n",
			       pci_name(pe->pbus->self), count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
		parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

168 169 170 171 172 173
	/*
	 * Associate PE in PELT. We need add the PE into the
	 * corresponding PELT-V as well. Otherwise, the error
	 * originated from the PE might contribute to other
	 * PEs.
	 */
174 175 176 177 178 179
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
180 181 182 183 184

	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
				pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
	if (rc)
		pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
185 186 187 188 189
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Add to all parents PELT-V */
	while (parent) {
190
		struct pci_dn *pdn = pci_get_pdn(parent);
191 192
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
193
						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}
	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
	if (phb->type == PNV_PHB_IODA1) {
		pe->mve_number = pe->pe_number;
		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
				      pe->pe_number);
		if (rc) {
			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
			       rc, pe->mve_number);
			pe->mve_number = -1;
		} else {
			rc = opal_pci_set_mve_enable(phb->opal_id,
213
						     pe->mve_number, OPAL_ENABLE_MVE);
214 215 216 217 218 219 220 221 222 223 224 225
			if (rc) {
				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
				       rc, pe->mve_number);
				pe->mve_number = -1;
			}
		}
	} else if (phb->type == PNV_PHB_IODA2)
		pe->mve_number = 0;

	return 0;
}

226 227
static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
228 229 230
{
	struct pnv_ioda_pe *lpe;

231
	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
232
		if (lpe->dma_weight < pe->dma_weight) {
233
			list_add_tail(&pe->dma_link, &lpe->dma_link);
234 235 236
			return;
		}
	}
237
	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */

	/* If it's a bridge, no DMA */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	/* Reduce the weight of slow USB controllers */
	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		return 3;

	/* Increase the weight of RAID (includes Obsidian) */
	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		return 15;

	/* Default */
	return 10;
}

264
#if 0
265
static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
266 267 268
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
269
	struct pci_dn *pdn = pci_get_pdn(dev);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	struct pnv_ioda_pe *pe;
	int pe_num;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

	/* PE#0 has been pre-set */
	if (dev->bus->number == 0)
		pe_num = 0;
	else
		pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pe = &phb->ioda.pe_array[pe_num];
	pci_dev_get(dev);
	pdn->pcidev = dev;
	pdn->pe_number = pe_num;
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

	/* Assign a DMA weight to the device */
	pe->dma_weight = pnv_ioda_dma_weight(dev);
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);

	return pe;
}
333
#endif /* Useful for SRIOV case */
334 335 336 337 338 339

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
340
		struct pci_dn *pdn = pci_get_pdn(dev);
341 342 343 344 345 346 347 348 349

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
		pdn->pcidev = dev;
		pdn->pe_number = pe->pe_number;
		pe->dma_weight += pnv_ioda_dma_weight(dev);
350
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
351 352 353 354
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

355 356 357 358 359 360
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
361
static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
362
{
363
	struct pci_controller *hose = pci_bus_to_host(bus);
364 365 366 367 368 369
	struct pnv_phb *phb = hose->private_data;
	struct pnv_ioda_pe *pe;
	int pe_num;

	pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
370 371
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
372 373 374 375
		return;
	}

	pe = &phb->ioda.pe_array[pe_num];
376
	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
377 378 379 380
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
381
	pe->rid = bus->busn_res.start << 8;
382 383
	pe->dma_weight = 0;

384 385 386 387 388 389
	if (all)
		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
			bus->busn_res.start, bus->busn_res.end, pe_num);
	else
		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
			bus->busn_res.start, pe_num);
390 391 392 393 394 395 396 397 398 399 400 401

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pe->pbus = NULL;
		return;
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

402 403 404
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

405 406 407 408 409 410 411 412 413 414 415 416
	/* Account for one DMA PE if at least one DMA capable device exist
	 * below the bridge
	 */
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);
}

417
static void pnv_ioda_setup_PEs(struct pci_bus *bus)
418 419
{
	struct pci_dev *dev;
420 421

	pnv_ioda_setup_bus_PE(bus, 0);
422 423

	list_for_each_entry(dev, &bus->devices, bus_list) {
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
		if (dev->subordinate) {
			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
			else
				pnv_ioda_setup_PEs(dev->subordinate);
		}
	}
}

/*
 * Configure PEs so that the downstream PCI buses and devices
 * could have their associated PE#. Unfortunately, we didn't
 * figure out the way to identify the PLX bridge yet. So we
 * simply put the PCI bus and the subordinate behind the root
 * port to PE# here. The game rule here is expected to be changed
 * as soon as we can detected PLX bridge correctly.
 */
441
static void pnv_pci_ioda_setup_PEs(void)
442 443 444 445 446
{
	struct pci_controller *hose, *tmp;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pnv_ioda_setup_PEs(hose->bus);
447 448 449
	}
}

450
static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
451
{
452
	struct pci_dn *pdn = pci_get_pdn(pdev);
453
	struct pnv_ioda_pe *pe;
454

455 456 457 458 459 460 461
	/*
	 * The function can be called while the PE#
	 * hasn't been assigned. Do nothing for the
	 * case.
	 */
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return;
462

463
	pe = &phb->ioda.pe_array[pdn->pe_number];
464
	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
465
	set_iommu_table_base(&pdev->dev, &pe->tce32_table);
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
				     struct pci_dev *pdev, u64 dma_mask)
{
	struct pci_dn *pdn = pci_get_pdn(pdev);
	struct pnv_ioda_pe *pe;
	uint64_t top;
	bool bypass = false;

	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
		return -ENODEV;;

	pe = &phb->ioda.pe_array[pdn->pe_number];
	if (pe->tce_bypass_enabled) {
		top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
		bypass = (dma_mask >= top);
	}

	if (bypass) {
		dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
		set_dma_ops(&pdev->dev, &dma_direct_ops);
		set_dma_offset(&pdev->dev, pe->tce_bypass_base);
	} else {
		dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
		set_dma_ops(&pdev->dev, &dma_iommu_ops);
		set_iommu_table_base(&pdev->dev, &pe->tce32_table);
	}
	return 0;
}

497 498 499 500 501
static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
502
		set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
503 504 505 506 507
		if (dev->subordinate)
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
	}
}

508 509
static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
					 struct iommu_table *tbl,
510
					 __be64 *startp, __be64 *endp, bool rm)
511
{
512 513 514
	__be64 __iomem *invalidate = rm ?
		(__be64 __iomem *)pe->tce_inval_reg_phys :
		(__be64 __iomem *)tbl->it_index;
515
	unsigned long start, end, inc;
516
	const unsigned shift = tbl->it_page_shift;
517 518 519 520 521 522

	start = __pa(startp);
	end = __pa(endp);

	/* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
	if (tbl->it_busno) {
523 524 525
		start <<= shift;
		end <<= shift;
		inc = 128ull << shift;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		start |= tbl->it_busno;
		end |= tbl->it_busno;
	} else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
		/* p7ioc-style invalidation, 2 TCEs per write */
		start |= (1ull << 63);
		end |= (1ull << 63);
		inc = 16;
        } else {
		/* Default (older HW) */
                inc = 128;
	}

        end |= inc - 1;	/* round up end to be different than start */

        mb(); /* Ensure above stores are visible */
        while (start <= end) {
542
		if (rm)
543
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
544
		else
545
			__raw_writeq(cpu_to_be64(start), invalidate);
546 547 548 549 550 551 552 553 554 555 556
                start += inc;
        }

	/*
	 * The iommu layer will do another mb() for us on build()
	 * and we don't care on free()
	 */
}

static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
					 struct iommu_table *tbl,
557
					 __be64 *startp, __be64 *endp, bool rm)
558 559
{
	unsigned long start, end, inc;
560 561 562
	__be64 __iomem *invalidate = rm ?
		(__be64 __iomem *)pe->tce_inval_reg_phys :
		(__be64 __iomem *)tbl->it_index;
563
	const unsigned shift = tbl->it_page_shift;
564 565

	/* We'll invalidate DMA address in PE scope */
566
	start = 0x2ull << 60;
567 568 569 570 571
	start |= (pe->pe_number & 0xFF);
	end = start;

	/* Figure out the start, end and step */
	inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
572
	start |= (inc << shift);
573
	inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
574 575
	end |= (inc << shift);
	inc = (0x1ull << shift);
576 577 578
	mb();

	while (start <= end) {
579
		if (rm)
580
			__raw_rm_writeq(cpu_to_be64(start), invalidate);
581
		else
582
			__raw_writeq(cpu_to_be64(start), invalidate);
583 584 585 586 587
		start += inc;
	}
}

void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
588
				 __be64 *startp, __be64 *endp, bool rm)
589 590 591 592 593 594
{
	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
					      tce32_table);
	struct pnv_phb *phb = pe->phb;

	if (phb->type == PNV_PHB_IODA1)
595
		pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
596
	else
597
		pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
598 599
}

600 601 602
static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
				      struct pnv_ioda_pe *pe, unsigned int base,
				      unsigned int segs)
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
{

	struct page *tce_mem = NULL;
	const __be64 *swinvp;
	struct iommu_table *tbl;
	unsigned int i;
	int64_t rc;
	void *addr;

	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */

	/* We shouldn't already have a 32-bit DMA associated */
	if (WARN_ON(pe->tce32_seg >= 0))
		return;

	/* Grab a 32-bit TCE table */
	pe->tce32_seg = base;
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
		(base << 28), ((base + segs) << 28) - 1);

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
	 */
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
				   get_order(TCE32_TABLE_SIZE * segs));
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
	memset(addr, 0, TCE32_TABLE_SIZE * segs);

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
					      __pa(addr) + TCE32_TABLE_SIZE * i,
					      TCE32_TABLE_SIZE, 0x1000);
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

	/* Setup linux iommu table */
	tbl = &pe->tce32_table;
	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
				  base << 28);

	/* OPAL variant of P7IOC SW invalidated TCEs */
	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
	if (swinvp) {
		/* We need a couple more fields -- an address and a data
		 * to or.  Since the bus is only printed out on table free
		 * errors, and on the first pass the data will be a relative
		 * bus number, print that out instead.
		 */
669 670 671
		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
				8);
672 673 674
		tbl->it_type |= (TCE_PCI_SWINV_CREATE |
				 TCE_PCI_SWINV_FREE   |
				 TCE_PCI_SWINV_PAIR);
675 676
	}
	iommu_init_table(tbl, phb->hose->node);
677
	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
678

679
	if (pe->pdev)
680
		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
681 682 683
	else
		pnv_ioda_setup_bus_dma(pe, pe->pbus);

684 685 686 687 688 689 690 691 692
	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (pe->tce32_seg >= 0)
		pe->tce32_seg = -1;
	if (tce_mem)
		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
{
	struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
					      tce32_table);
	uint16_t window_id = (pe->pe_number << 1 ) + 1;
	int64_t rc;

	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
	if (enable) {
		phys_addr_t top = memblock_end_of_DRAM();

		top = roundup_pow_of_two(top);
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     top);
	} else {
		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
						     pe->pe_number,
						     window_id,
						     pe->tce_bypass_base,
						     0);

		/*
		 * We might want to reset the DMA ops of all devices on
		 * this PE. However in theory, that shouldn't be necessary
		 * as this is used for VFIO/KVM pass-through and the device
		 * hasn't yet been returned to its kernel driver
		 */
	}
	if (rc)
		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
	else
		pe->tce_bypass_enabled = enable;
}

static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
					  struct pnv_ioda_pe *pe)
{
	/* TVE #1 is selected by PCI address bit 59 */
	pe->tce_bypass_base = 1ull << 59;

	/* Install set_bypass callback for VFIO */
	pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;

	/* Enable bypass by default */
	pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
				       struct pnv_ioda_pe *pe)
{
	struct page *tce_mem = NULL;
	void *addr;
	const __be64 *swinvp;
	struct iommu_table *tbl;
	unsigned int tce_table_size, end;
	int64_t rc;

	/* We shouldn't already have a 32-bit DMA associated */
	if (WARN_ON(pe->tce32_seg >= 0))
		return;

	/* The PE will reserve all possible 32-bits space */
	pe->tce32_seg = 0;
	end = (1 << ilog2(phb->ioda.m32_pci_base));
	tce_table_size = (end / 0x1000) * 8;
	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
		end);

	/* Allocate TCE table */
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
				   get_order(tce_table_size));
	if (!tce_mem) {
		pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
	memset(addr, 0, tce_table_size);

	/*
	 * Map TCE table through TVT. The TVE index is the PE number
	 * shifted by 1 bit for 32-bits DMA space.
	 */
	rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
					pe->pe_number << 1, 1, __pa(addr),
					tce_table_size, 0x1000);
	if (rc) {
		pe_err(pe, "Failed to configure 32-bit TCE table,"
		       " err %ld\n", rc);
		goto fail;
	}

	/* Setup linux iommu table */
	tbl = &pe->tce32_table;
	pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);

	/* OPAL variant of PHB3 invalidated TCEs */
	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
	if (swinvp) {
		/* We need a couple more fields -- an address and a data
		 * to or.  Since the bus is only printed out on table free
		 * errors, and on the first pass the data will be a relative
		 * bus number, print that out instead.
		 */
799 800 801
		pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
		tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
				8);
802
		tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
803 804
	}
	iommu_init_table(tbl, phb->hose->node);
805
	iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
806

807
	if (pe->pdev)
808
		set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
809 810 811
	else
		pnv_ioda_setup_bus_dma(pe, pe->pbus);

812 813
	/* Also create a bypass window */
	pnv_pci_ioda2_setup_bypass_pe(phb, pe);
814 815 816 817 818 819 820 821
	return;
fail:
	if (pe->tce32_seg >= 0)
		pe->tce32_seg = -1;
	if (tce_mem)
		__free_pages(tce_mem, get_order(tce_table_size));
}

822
static void pnv_ioda_setup_dma(struct pnv_phb *phb)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
{
	struct pci_controller *hose = phb->hose;
	unsigned int residual, remaining, segs, tw, base;
	struct pnv_ioda_pe *pe;

	/* If we have more PE# than segments available, hand out one
	 * per PE until we run out and let the rest fail. If not,
	 * then we assign at least one segment per PE, plus more based
	 * on the amount of devices under that PE
	 */
	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
		residual = 0;
	else
		residual = phb->ioda.tce32_count -
			phb->ioda.dma_pe_count;

	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
		hose->global_number, phb->ioda.tce32_count);
	pr_info("PCI: %d PE# for a total weight of %d\n",
		phb->ioda.dma_pe_count, phb->ioda.dma_weight);

	/* Walk our PE list and configure their DMA segments, hand them
	 * out one base segment plus any residual segments based on
	 * weight
	 */
	remaining = phb->ioda.tce32_count;
	tw = phb->ioda.dma_weight;
	base = 0;
851
	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
852 853 854 855 856 857 858 859 860 861 862 863
		if (!pe->dma_weight)
			continue;
		if (!remaining) {
			pe_warn(pe, "No DMA32 resources available\n");
			continue;
		}
		segs = 1;
		if (residual) {
			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
			if (segs > remaining)
				segs = remaining;
		}
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

		/*
		 * For IODA2 compliant PHB3, we needn't care about the weight.
		 * The all available 32-bits DMA space will be assigned to
		 * the specific PE.
		 */
		if (phb->type == PNV_PHB_IODA1) {
			pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
				pe->dma_weight, segs);
			pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
		} else {
			pe_info(pe, "Assign DMA32 space\n");
			segs = 0;
			pnv_pci_ioda2_setup_dma_pe(phb, pe);
		}

880 881 882 883 884 885
		remaining -= segs;
		base += segs;
	}
}

#ifdef CONFIG_PCI_MSI
886 887 888 889 890 891 892 893 894 895 896 897 898 899
static void pnv_ioda2_msi_eoi(struct irq_data *d)
{
	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
	struct irq_chip *chip = irq_data_get_irq_chip(d);
	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
					   ioda.irq_chip);
	int64_t rc;

	rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
	WARN_ON_ONCE(rc);

	icp_native_eoi(d);
}

900
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
901 902
				  unsigned int hwirq, unsigned int virq,
				  unsigned int is_64, struct msi_msg *msg)
903 904
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
905
	struct pci_dn *pdn = pci_get_pdn(dev);
906 907
	struct irq_data *idata;
	struct irq_chip *ichip;
908
	unsigned int xive_num = hwirq - phb->msi_base;
909
	__be32 data;
910 911 912 913 914 915 916 917 918 919
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

920 921 922 923
	/* Force 32-bit MSI on some broken devices */
	if (pdn && pdn->force_32bit_msi)
		is_64 = 0;

924 925 926 927 928 929 930 931 932
	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
933 934
		__be64 addr64;

935 936 937 938 939 940 941
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
942 943
		msg->address_hi = be64_to_cpu(addr64) >> 32;
		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
944
	} else {
945 946
		__be32 addr32;

947 948 949 950 951 952 953 954
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
955
		msg->address_lo = be32_to_cpu(addr32);
956
	}
957
	msg->data = be32_to_cpu(data);
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	/*
	 * Change the IRQ chip for the MSI interrupts on PHB3.
	 * The corresponding IRQ chip should be populated for
	 * the first time.
	 */
	if (phb->type == PNV_PHB_IODA2) {
		if (!phb->ioda.irq_chip_init) {
			idata = irq_get_irq_data(virq);
			ichip = irq_data_get_irq_chip(idata);
			phb->ioda.irq_chip_init = 1;
			phb->ioda.irq_chip = *ichip;
			phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
		}

		irq_set_chip(virq, &phb->ioda.irq_chip);
	}

976 977 978 979 980 981 982 983 984 985
	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
		 " address=%x_%08x data=%x PE# %d\n",
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
986
	unsigned int count;
987 988 989 990 991 992 993 994 995 996
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
997 998
	count = be32_to_cpup(prop + 1);
	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
999 1000 1001 1002
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
1003

1004 1005 1006
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1007
		count, phb->msi_base);
1008 1009 1010 1011 1012
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

1013 1014 1015 1016 1017
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
 * parent PE could be overrided by its child PEs if necessary.
 */
1018 1019
static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
				  struct pnv_ioda_pe *pe)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
{
	struct pnv_phb *phb = hose->private_data;
	struct pci_bus_region region;
	struct resource *res;
	int i, index;
	int rc;

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

	pci_bus_for_each_resource(pe->pbus, res, i) {
		if (!res || !res->flags ||
		    res->start > res->end)
			continue;

		if (res->flags & IORESOURCE_IO) {
			region.start = res->start - phb->ioda.io_pci_base;
			region.end   = res->end - phb->ioda.io_pci_base;
			index = region.start / phb->ioda.io_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.io_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping IO "
					       "segment #%d to PE#%d\n",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.io_segsize;
				index++;
			}
		} else if (res->flags & IORESOURCE_MEM) {
1060 1061 1062
			/* WARNING: Assumes M32 is mem region 0 in PHB. We need to
			 * harden that algorithm when we start supporting M64
			 */
1063
			region.start = res->start -
1064
				       hose->mem_offset[0] -
1065 1066
				       phb->ioda.m32_pci_base;
			region.end   = res->end -
1067
				       hose->mem_offset[0] -
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
				       phb->ioda.m32_pci_base;
			index = region.start / phb->ioda.m32_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.m32_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping M32 "
					       "segment#%d to PE#%d",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.m32_segsize;
				index++;
			}
		}
	}
}

1090
static void pnv_pci_ioda_setup_seg(void)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
{
	struct pci_controller *tmp, *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;
		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			pnv_ioda_setup_pe_seg(hose, pe);
		}
	}
}

1104
static void pnv_pci_ioda_setup_DMA(void)
1105 1106
{
	struct pci_controller *hose, *tmp;
1107
	struct pnv_phb *phb;
1108 1109 1110

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pnv_ioda_setup_dma(hose->private_data);
1111 1112 1113 1114

		/* Mark the PHB initialization done */
		phb = hose->private_data;
		phb->initialized = 1;
1115 1116 1117
	}
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void pnv_pci_ioda_create_dbgfs(void)
{
#ifdef CONFIG_DEBUG_FS
	struct pci_controller *hose, *tmp;
	struct pnv_phb *phb;
	char name[16];

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;

		sprintf(name, "PCI%04x", hose->global_number);
		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
		if (!phb->dbgfs)
			pr_warning("%s: Error on creating debugfs on PHB#%x\n",
				__func__, hose->global_number);
	}
#endif /* CONFIG_DEBUG_FS */
}

1137
static void pnv_pci_ioda_fixup(void)
1138 1139
{
	pnv_pci_ioda_setup_PEs();
1140
	pnv_pci_ioda_setup_seg();
1141
	pnv_pci_ioda_setup_DMA();
1142

1143 1144
	pnv_pci_ioda_create_dbgfs();

1145
#ifdef CONFIG_EEH
1146
	eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1147 1148 1149
	eeh_addr_cache_build();
	eeh_init();
#endif
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

	/* We need support prefetchable memory window later */
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

1190 1191 1192
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
1193
static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1194
{
1195 1196 1197
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn;
1198

1199 1200 1201 1202 1203 1204 1205 1206
	/* The function is probably called while the PEs have
	 * not be created yet. For example, resource reassignment
	 * during PCI probe period. We just skip the check if
	 * PEs isn't ready.
	 */
	if (!phb->initialized)
		return 0;

1207
	pdn = pci_get_pdn(dev);
1208 1209
	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return -EINVAL;
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219
	return 0;
}

static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
			       u32 devfn)
{
	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}

1220 1221 1222 1223 1224 1225
static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
{
	opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
		       OPAL_ASSERT_RESET);
}

1226 1227
void __init pnv_pci_init_ioda_phb(struct device_node *np,
				  u64 hub_id, int ioda_type)
1228 1229 1230
{
	struct pci_controller *hose;
	struct pnv_phb *phb;
1231
	unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1232
	const __be64 *prop64;
1233
	const __be32 *prop32;
1234
	int len;
1235 1236 1237 1238
	u64 phb_id;
	void *aux;
	long rc;

1239
	pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

	phb = alloc_bootmem(sizeof(struct pnv_phb));
1250 1251 1252
	if (!phb) {
		pr_err("  Out of memory !\n");
		return;
1253
	}
1254 1255 1256 1257 1258 1259

	/* Allocate PCI controller */
	memset(phb, 0, sizeof(struct pnv_phb));
	phb->hose = hose = pcibios_alloc_controller(np);
	if (!phb->hose) {
		pr_err("  Can't allocate PCI controller for %s\n",
1260
		       np->full_name);
1261
		free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1262 1263 1264 1265
		return;
	}

	spin_lock_init(&phb->lock);
1266 1267
	prop32 = of_get_property(np, "bus-range", &len);
	if (prop32 && len == 8) {
1268 1269
		hose->first_busno = be32_to_cpu(prop32[0]);
		hose->last_busno = be32_to_cpu(prop32[1]);
1270 1271 1272 1273 1274
	} else {
		pr_warn("  Broken <bus-range> on %s\n", np->full_name);
		hose->first_busno = 0;
		hose->last_busno = 0xff;
	}
1275
	hose->private_data = phb;
1276
	phb->hub_id = hub_id;
1277
	phb->opal_id = phb_id;
G
Gavin Shan 已提交
1278
	phb->type = ioda_type;
1279

1280 1281 1282
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
1283
	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
G
Gavin Shan 已提交
1284
		phb->model = PNV_PHB_MODEL_PHB3;
1285 1286 1287
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

G
Gavin Shan 已提交
1288
	/* Parse 32-bit and IO ranges (if any) */
1289
	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1290

G
Gavin Shan 已提交
1291
	/* Get registers */
1292 1293 1294 1295 1296
	phb->regs = of_iomap(np, 0);
	if (phb->regs == NULL)
		pr_err("  Failed to map registers !\n");

	/* Initialize more IODA stuff */
1297
	phb->ioda.total_pe = 1;
G
Gavin Shan 已提交
1298
	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1299
	if (prop32)
1300
		phb->ioda.total_pe = be32_to_cpup(prop32);
1301 1302 1303
	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
	if (prop32)
		phb->ioda.reserved_pe = be32_to_cpup(prop32);
1304
	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
G
Gavin Shan 已提交
1305
	/* FW Has already off top 64k of M32 space (MSI space) */
1306 1307 1308
	phb->ioda.m32_size += 0x10000;

	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1309
	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1310 1311 1312 1313
	phb->ioda.io_size = hose->pci_io_size;
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

1314
	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1315 1316
	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
	m32map_off = size;
1317
	size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1318 1319 1320 1321
	if (phb->type == PNV_PHB_IODA1) {
		iomap_off = size;
		size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
	}
1322 1323 1324 1325 1326 1327
	pemap_off = size;
	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
	aux = alloc_bootmem(size);
	memset(aux, 0, size);
	phb->ioda.pe_alloc = aux;
	phb->ioda.m32_segmap = aux + m32map_off;
1328 1329
	if (phb->type == PNV_PHB_IODA1)
		phb->ioda.io_segmap = aux + iomap_off;
1330
	phb->ioda.pe_array = aux + pemap_off;
1331
	set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1332

1333
	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	INIT_LIST_HEAD(&phb->ioda.pe_list);

	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;

	/* Clear unusable m64 */
	hose->mem_resources[1].flags = 0;
	hose->mem_resources[1].start = 0;
	hose->mem_resources[1].end = 0;
	hose->mem_resources[2].flags = 0;
	hose->mem_resources[2].start = 0;
	hose->mem_resources[2].end = 0;

G
Gavin Shan 已提交
1347
#if 0 /* We should really do that ... */
1348 1349 1350 1351 1352 1353 1354 1355
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

1356 1357
	pr_info("  %d (%d) PE's M32: 0x%x [segment=0x%x]"
		" IO: 0x%x [segment=0x%x]\n",
1358
		phb->ioda.total_pe,
1359
		phb->ioda.reserved_pe,
1360 1361 1362 1363
		phb->ioda.m32_size, phb->ioda.m32_segsize,
		phb->ioda.io_size, phb->ioda.io_segsize);

	phb->hose->ops = &pnv_pci_ops;
1364 1365 1366
#ifdef CONFIG_EEH
	phb->eeh_ops = &ioda_eeh_ops;
#endif
1367 1368 1369 1370 1371 1372

	/* Setup RID -> PE mapping function */
	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;

	/* Setup TCEs */
	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1373
	phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1374

1375 1376 1377
	/* Setup shutdown function for kexec */
	phb->shutdown = pnv_pci_ioda_shutdown;

1378 1379 1380
	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

1381 1382 1383 1384 1385 1386
	/*
	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
	 * to let the PCI core do resource assignment. It's supposed
	 * that the PCI core will do correct I/O and MMIO alignment
	 * for the P2P bridge bars so that each PCI bus (excluding
	 * the child P2P bridges) can form individual PE.
1387
	 */
1388
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1389
	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1390
	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1391
	ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1392
	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1393 1394

	/* Reset IODA tables to a clean state */
1395
	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1396
	if (rc)
1397
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	/* If we're running in kdump kerenl, the previous kerenl never
	 * shutdown PCI devices correctly. We already got IODA table
	 * cleaned out. So we have to issue PHB reset to stop all PCI
	 * transactions from previous kerenl.
	 */
	if (is_kdump_kernel()) {
		pr_info("  Issue PHB reset ...\n");
		ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
		ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
	}
G
Gavin Shan 已提交
1409 1410
}

1411
void __init pnv_pci_init_ioda2_phb(struct device_node *np)
G
Gavin Shan 已提交
1412
{
1413
	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1414 1415 1416 1417 1418
}

void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
1419
	const __be64 *prop64;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1436
			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1437 1438
	}
}