spi-sh-msiof.c 33.5 KB
Newer Older
1 2 3 4
/*
 * SuperH MSIOF SPI Master Interface
 *
 * Copyright (c) 2009 Magnus Damm
5
 * Copyright (C) 2014 Glider bvba
6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

13 14 15
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
16
#include <linux/delay.h>
17 18
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
19 20
#include <linux/err.h>
#include <linux/gpio.h>
21
#include <linux/interrupt.h>
22 23
#include <linux/io.h>
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/of.h>
26
#include <linux/of_device.h>
27 28
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
29
#include <linux/sh_dma.h>
30

31
#include <linux/spi/sh_msiof.h>
32 33 34 35
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

36 37 38 39

struct sh_msiof_chipdata {
	u16 tx_fifo_size;
	u16 rx_fifo_size;
40
	u16 master_flags;
41 42
};

43
struct sh_msiof_spi_priv {
44
	struct spi_master *master;
45 46 47
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
48
	const struct sh_msiof_chipdata *chipdata;
49 50 51 52
	struct sh_msiof_spi_info *info;
	struct completion done;
	int tx_fifo_size;
	int rx_fifo_size;
53 54 55 56
	void *tx_dma_page;
	void *rx_dma_page;
	dma_addr_t tx_dma_addr;
	dma_addr_t rx_dma_addr;
57 58
};

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#define TMDR1	0x00	/* Transmit Mode Register 1 */
#define TMDR2	0x04	/* Transmit Mode Register 2 */
#define TMDR3	0x08	/* Transmit Mode Register 3 */
#define RMDR1	0x10	/* Receive Mode Register 1 */
#define RMDR2	0x14	/* Receive Mode Register 2 */
#define RMDR3	0x18	/* Receive Mode Register 3 */
#define TSCR	0x20	/* Transmit Clock Select Register */
#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
#define CTR	0x28	/* Control Register */
#define FCTR	0x30	/* FIFO Control Register */
#define STR	0x40	/* Status Register */
#define IER	0x44	/* Interrupt Enable Register */
#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
#define TFDR	0x50	/* Transmit FIFO Data Register */
#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
#define RFDR	0x60	/* Receive FIFO Data Register */

/* TMDR1 and RMDR1 */
#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
#define MDR1_FLD_MASK	 0x000000c0 /* Frame Sync Signal Interval (0-3) */
#define MDR1_FLD_SHIFT		  2
#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
/* TMDR1 */
#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */

/* TMDR2 and RMDR2 */
#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */

96 97
#define MAX_WDLEN	256U

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/* TSCR and RSCR */
#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
#define SCR_BRPS(i)	(((i) - 1) << 8)
#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
#define SCR_BRDV_DIV_2	    0x0000
#define SCR_BRDV_DIV_4	    0x0001
#define SCR_BRDV_DIV_8	    0x0002
#define SCR_BRDV_DIV_16	    0x0003
#define SCR_BRDV_DIV_32	    0x0004
#define SCR_BRDV_DIV_1	    0x0007

/* CTR */
#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
#define CTR_TXE		0x00000200 /* Transmit Enable */
#define CTR_RXE		0x00000100 /* Receive Enable */

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* FCTR */
#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
#define FCTR_TFUA_SHIFT		20
#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
#define FCTR_RFUA_SHIFT		 4
#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)

/* STR */
#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
156
#define STR_TEOF	0x00800000 /* Frame Transmission End */
157 158 159 160 161
#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
162
#define STR_REOF	0x00000080 /* Frame Reception End */
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */

/* IER */
#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
182

183

184
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
185 186 187 188 189 190 191 192 193 194 195
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
196
			   u32 value)
197 198 199 200 201 202 203 204 205 206 207 208 209
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
210
				    u32 clr, u32 set)
211
{
212 213
	u32 mask = clr | set;
	u32 data;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	int k;

	data = sh_msiof_read(p, CTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, CTR, data);

	for (k = 100; k > 0; k--) {
		if ((sh_msiof_read(p, CTR) & mask) == set)
			break;

		udelay(10);
	}

	return k > 0 ? 0 : -ETIMEDOUT;
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, IER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static struct {
	unsigned short div;
	unsigned short scr;
} const sh_msiof_spi_clk_table[] = {
246 247 248 249 250 251 252 253 254 255 256
	{ 1,	SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
	{ 2,	SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
	{ 4,	SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
	{ 8,	SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
	{ 16,	SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
	{ 32,	SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
	{ 64,	SCR_BRPS(32) | SCR_BRDV_DIV_2 },
	{ 128,	SCR_BRPS(32) | SCR_BRDV_DIV_4 },
	{ 256,	SCR_BRPS(32) | SCR_BRDV_DIV_8 },
	{ 512,	SCR_BRPS(32) | SCR_BRDV_DIV_16 },
	{ 1024,	SCR_BRPS(32) | SCR_BRDV_DIV_32 },
257 258 259
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
260
				      unsigned long parent_rate, u32 spi_hz)
261 262 263 264 265
{
	unsigned long div = 1024;
	size_t k;

	if (!WARN_ON(!spi_hz || !parent_rate))
266
		div = DIV_ROUND_UP(parent_rate, spi_hz);
267 268 269 270 271 272 273 274 275 276 277

	/* TODO: make more fine grained */

	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
		if (sh_msiof_spi_clk_table[k].div >= div)
			break;
	}

	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);

	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
278 279
	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
		sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
280 281 282
}

static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
283
				      u32 cpol, u32 cpha,
284
				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
285
{
286
	u32 tmp;
287 288 289
	int edge;

	/*
290 291 292 293 294
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
295
	 */
296 297 298 299
	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
300 301 302 303
	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
		/* These bits are reserved if RX needs TX */
		tmp &= ~0x0000ffff;
	}
304
	sh_msiof_write(p, RMDR1, tmp);
305

306 307 308
	tmp = 0;
	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
309

310
	edge = cpol ^ !cpha;
311

312 313 314
	tmp |= edge << CTR_TEDG_SHIFT;
	tmp |= edge << CTR_REDG_SHIFT;
	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
315 316 317 318 319
	sh_msiof_write(p, CTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
320
				       u32 bits, u32 words)
321
{
322
	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
323

324
	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
325 326
		sh_msiof_write(p, TMDR2, dr2);
	else
327
		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
328 329 330 331 332 333 334 335 336 337 338 339 340

	if (rx_buf)
		sh_msiof_write(p, RMDR2, dr2);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
341
	const u8 *buf_8 = tx_buf;
342 343 344 345 346 347 348 349 350
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
351
	const u16 *buf_16 = tx_buf;
352 353 354 355 356 357 358 359 360
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
361
	const u16 *buf_16 = tx_buf;
362 363 364 365 366 367 368 369 370
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
371
	const u32 *buf_32 = tx_buf;
372 373 374 375 376 377 378 379 380
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
381
	const u32 *buf_32 = tx_buf;
382 383 384 385 386 387
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

408 409 410
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
411
	u8 *buf_8 = rx_buf;
412 413 414 415 416 417 418 419 420
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
421
	u16 *buf_16 = rx_buf;
422 423 424 425 426 427 428 429 430
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
431
	u16 *buf_16 = rx_buf;
432 433 434 435 436 437 438 439 440
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
441
	u32 *buf_32 = rx_buf;
442 443 444 445 446 447 448 449 450
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
451
	u32 *buf_32 = rx_buf;
452 453 454 455 456 457
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}

478
static int sh_msiof_spi_setup(struct spi_device *spi)
479
{
480
	struct device_node	*np = spi->master->dev.of_node;
481
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
482

483 484 485 486 487 488 489
	if (!np) {
		/*
		 * Use spi->controller_data for CS (same strategy as spi_gpio),
		 * if any. otherwise let HW control CS
		 */
		spi->cs_gpio = (uintptr_t)spi->controller_data;
	}
490

491 492 493 494 495 496
	/* Configure pins before deasserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));
497

498 499
	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
500

501
	return 0;
502 503
}

504 505
static int sh_msiof_prepare_message(struct spi_master *master,
				    struct spi_message *msg)
506
{
507 508
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
	const struct spi_device *spi = msg->spi;
509

510 511 512 513 514 515 516
	/* Configure pins before asserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));
	return 0;
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	int ret;

	/* setup clock and rx/tx signals */
	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);

	/* start by setting frame bit */
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);

	return ret;
}

static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
{
	int ret;

	/* shut down frame, rx/tx and clock signals */
	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
	if (rx_buf && !ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
	if (!ret)
		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);

	return ret;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

573 574 575
	/* default FIFO watermarks for PIO */
	sh_msiof_write(p, FCTR, 0);

576 577
	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
578
	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
579 580 581 582 583

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

584
	reinit_completion(&p->done);
585 586

	ret = sh_msiof_spi_start(p, rx_buf);
587 588
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
589
		goto stop_ier;
590 591 592
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
593 594 595 596 597 598
	ret = wait_for_completion_timeout(&p->done, HZ);
	if (!ret) {
		dev_err(&p->pdev->dev, "PIO timeout\n");
		ret = -ETIMEDOUT;
		goto stop_reset;
	}
599 600 601 602 603 604 605 606

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

607
	ret = sh_msiof_spi_stop(p, rx_buf);
608 609
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
610
		return ret;
611 612 613 614
	}

	return words;

615 616 617 618
stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx_buf);
stop_ier:
619 620 621 622
	sh_msiof_write(p, IER, 0);
	return ret;
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static void sh_msiof_dma_complete(void *arg)
{
	struct sh_msiof_spi_priv *p = arg;

	sh_msiof_write(p, IER, 0);
	complete(&p->done);
}

static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
			     void *rx, unsigned int len)
{
	u32 ier_bits = 0;
	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
	dma_cookie_t cookie;
	int ret;

639
	/* First prepare and submit the DMA request(s), as this may fail */
640 641 642 643 644
	if (rx) {
		ier_bits |= IER_RDREQE | IER_RDMAE;
		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
					p->rx_dma_addr, len, DMA_FROM_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 646
		if (!desc_rx)
			return -EAGAIN;
647 648 649 650

		desc_rx->callback = sh_msiof_dma_complete;
		desc_rx->callback_param = p;
		cookie = dmaengine_submit(desc_rx);
651 652
		if (dma_submit_error(cookie))
			return cookie;
653 654 655
	}

	if (tx) {
656 657 658 659 660 661 662 663 664 665 666
		ier_bits |= IER_TDREQE | IER_TDMAE;
		dma_sync_single_for_device(p->master->dma_tx->device->dev,
					   p->tx_dma_addr, len, DMA_TO_DEVICE);
		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
					p->tx_dma_addr, len, DMA_TO_DEVICE,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc_tx) {
			ret = -EAGAIN;
			goto no_dma_tx;
		}

667 668 669 670 671 672 673 674 675 676
		if (rx) {
			/* No callback */
			desc_tx->callback = NULL;
		} else {
			desc_tx->callback = sh_msiof_dma_complete;
			desc_tx->callback_param = p;
		}
		cookie = dmaengine_submit(desc_tx);
		if (dma_submit_error(cookie)) {
			ret = cookie;
677
			goto no_dma_tx;
678 679 680
		}
	}

681 682 683 684 685 686 687 688 689 690 691 692
	/* 1 stage FIFO watermarks for DMA */
	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);

	/* setup msiof transfer mode registers (32-bit words) */
	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);

	sh_msiof_write(p, IER, ier_bits);

	reinit_completion(&p->done);

	/* Now start DMA */
	if (rx)
693 694
		dma_async_issue_pending(p->master->dma_rx);
	if (tx)
695 696
		dma_async_issue_pending(p->master->dma_tx);

697 698 699
	ret = sh_msiof_spi_start(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
700
		goto stop_dma;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
	ret = wait_for_completion_timeout(&p->done, HZ);
	if (!ret) {
		dev_err(&p->pdev->dev, "DMA timeout\n");
		ret = -ETIMEDOUT;
		goto stop_reset;
	}

	/* clear status bits */
	sh_msiof_reset_str(p);

	ret = sh_msiof_spi_stop(p, rx);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		return ret;
	}

	if (rx)
721 722
		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
					p->rx_dma_addr, len,
723 724 725 726 727 728 729
					DMA_FROM_DEVICE);

	return 0;

stop_reset:
	sh_msiof_reset_str(p);
	sh_msiof_spi_stop(p, rx);
730
stop_dma:
731 732
	if (tx)
		dmaengine_terminate_all(p->master->dma_tx);
733
no_dma_tx:
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	if (rx)
		dmaengine_terminate_all(p->master->dma_rx);
	sh_msiof_write(p, IER, 0);
	return ret;
}

static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swab32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swab32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swab32(*src++);
	}
}

static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
{
	/* src or dst can be unaligned, but not both */
	if ((unsigned long)src & 3) {
		while (words--) {
			*dst++ = swahw32(get_unaligned(src));
			src++;
		}
	} else if ((unsigned long)dst & 3) {
		while (words--) {
			put_unaligned(swahw32(*src++), dst);
			dst++;
		}
	} else {
		while (words--)
			*dst++ = swahw32(*src++);
	}
}

static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
{
	memcpy(dst, src, words * 4);
}

783 784 785
static int sh_msiof_transfer_one(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *t)
786
{
787
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
788
	void (*copy32)(u32 *, const u32 *, unsigned int);
789 790
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
791 792 793 794 795 796
	const void *tx_buf = t->tx_buf;
	void *rx_buf = t->rx_buf;
	unsigned int len = t->len;
	unsigned int bits = t->bits_per_word;
	unsigned int bytes_per_word;
	unsigned int words;
797
	int n;
798
	bool swab;
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	int ret;

	/* setup clocks (clock already enabled in chipselect()) */
	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);

	while (master->dma_tx && len > 15) {
		/*
		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
		 *  words, with byte resp. word swapping.
		 */
		unsigned int l = min(len, MAX_WDLEN * 4);

		if (bits <= 8) {
			if (l & 3)
				break;
			copy32 = copy_bswap32;
		} else if (bits <= 16) {
			if (l & 1)
				break;
			copy32 = copy_wswap32;
		} else {
			copy32 = copy_plain32;
		}

		if (tx_buf)
			copy32(p->tx_dma_page, tx_buf, l / 4);
825

826
		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
827 828 829 830 831 832
		if (ret == -EAGAIN) {
			pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
				     dev_driver_string(&p->pdev->dev),
				     dev_name(&p->pdev->dev));
			break;
		}
833 834 835 836 837 838 839 840 841 842 843 844 845 846
		if (ret)
			return ret;

		if (rx_buf) {
			copy32(rx_buf, p->rx_dma_page, l / 4);
			rx_buf += l;
		}
		if (tx_buf)
			tx_buf += l;

		len -= l;
		if (!len)
			return 0;
	}
847

848
	if (bits <= 8 && len > 15 && !(len & 3)) {
849 850 851 852 853 854
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

855 856 857 858 859 860 861
	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
862
		if ((unsigned long)tx_buf & 0x01)
863 864 865 866
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

867
		if ((unsigned long)rx_buf & 0x01)
868 869 870
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
871 872
	} else if (swab) {
		bytes_per_word = 4;
873
		if ((unsigned long)tx_buf & 0x03)
874 875 876 877
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

878
		if ((unsigned long)rx_buf & 0x03)
879 880 881
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
882 883
	} else {
		bytes_per_word = 4;
884
		if ((unsigned long)tx_buf & 0x03)
885 886 887 888
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

889
		if ((unsigned long)rx_buf & 0x03)
890 891 892 893 894 895
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* transfer in fifo sized chunks */
896 897 898 899
	words = len / bytes_per_word;

	while (words > 0) {
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
900 901
					   words, bits);
		if (n < 0)
902
			return n;
903

904 905 906 907
		if (tx_buf)
			tx_buf += n * bytes_per_word;
		if (rx_buf)
			rx_buf += n * bytes_per_word;
908 909 910 911 912 913
		words -= n;
	}

	return 0;
}

914 915 916
static const struct sh_msiof_chipdata sh_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
917 918 919 920 921 922 923
	.master_flags = 0,
};

static const struct sh_msiof_chipdata r8a779x_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 256,
	.master_flags = SPI_MASTER_MUST_TX,
924 925 926 927 928
};

static const struct of_device_id sh_msiof_match[] = {
	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
929 930
	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
931 932 933
	{ .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
934 935 936 937
	{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);

938 939 940 941 942
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	struct sh_msiof_spi_info *info;
	struct device_node *np = dev->of_node;
943
	u32 num_cs = 1;
944 945

	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
946
	if (!info)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		return NULL;

	/* Parse the MSIOF properties */
	of_property_read_u32(np, "num-cs", &num_cs);
	of_property_read_u32(np, "renesas,tx-fifo-size",
					&info->tx_fifo_override);
	of_property_read_u32(np, "renesas,rx-fifo-size",
					&info->rx_fifo_override);

	info->num_chipselect = num_cs;

	return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

967 968 969 970 971 972 973 974 975 976 977
static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
{
	dma_cap_mask_t mask;
	struct dma_chan *chan;
	struct dma_slave_config cfg;
	int ret;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

978 979 980
	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
				(void *)(unsigned long)id, dev,
				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
981
	if (!chan) {
982
		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
983 984 985 986 987 988
		return NULL;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.slave_id = id;
	cfg.direction = dir;
989
	if (dir == DMA_MEM_TO_DEV) {
990
		cfg.dst_addr = port_addr;
991 992
		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	} else {
993
		cfg.src_addr = port_addr;
994 995
		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	}
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
		dma_release_channel(chan);
		return NULL;
	}

	return chan;
}

static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
{
	struct platform_device *pdev = p->pdev;
	struct device *dev = &pdev->dev;
	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1012
	unsigned int dma_tx_id, dma_rx_id;
1013 1014
	const struct resource *res;
	struct spi_master *master;
1015
	struct device *tx_dev, *rx_dev;
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (dev->of_node) {
		/* In the OF case we will get the slave IDs from the DT */
		dma_tx_id = 0;
		dma_rx_id = 0;
	} else if (info && info->dma_tx_id && info->dma_rx_id) {
		dma_tx_id = info->dma_tx_id;
		dma_rx_id = info->dma_rx_id;
	} else {
		/* The driver assumes no error */
		return 0;
	}
1028 1029 1030 1031 1032 1033 1034 1035

	/* The DMA engine uses the second register set, if present */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	master = p->master;
	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1036
						   dma_tx_id,
1037 1038 1039 1040 1041
						   res->start + TFDR);
	if (!master->dma_tx)
		return -ENODEV;

	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1042
						   dma_rx_id,
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
						   res->start + RFDR);
	if (!master->dma_rx)
		goto free_tx_chan;

	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->tx_dma_page)
		goto free_rx_chan;

	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
	if (!p->rx_dma_page)
		goto free_tx_page;

1055 1056
	tx_dev = master->dma_tx->device->dev;
	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1057
					DMA_TO_DEVICE);
1058
	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1059 1060
		goto free_rx_page;

1061 1062
	rx_dev = master->dma_rx->device->dev;
	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1063
					DMA_FROM_DEVICE);
1064
	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1065 1066 1067 1068 1069 1070
		goto unmap_tx_page;

	dev_info(dev, "DMA available");
	return 0;

unmap_tx_page:
1071
	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
free_rx_page:
	free_page((unsigned long)p->rx_dma_page);
free_tx_page:
	free_page((unsigned long)p->tx_dma_page);
free_rx_chan:
	dma_release_channel(master->dma_rx);
free_tx_chan:
	dma_release_channel(master->dma_tx);
	master->dma_tx = NULL;
	return -ENODEV;
}

static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
{
	struct spi_master *master = p->master;
	struct device *dev;

	if (!master->dma_tx)
		return;

	dev = &p->pdev->dev;
1093 1094 1095 1096
	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
			 PAGE_SIZE, DMA_FROM_DEVICE);
	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
			 PAGE_SIZE, DMA_TO_DEVICE);
1097 1098 1099 1100 1101 1102
	free_page((unsigned long)p->rx_dma_page);
	free_page((unsigned long)p->tx_dma_page);
	dma_release_channel(master->dma_rx);
	dma_release_channel(master->dma_tx);
}

1103 1104 1105 1106
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct resource	*r;
	struct spi_master *master;
1107
	const struct of_device_id *of_id;
1108 1109 1110 1111 1112 1113 1114
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
	if (master == NULL) {
		dev_err(&pdev->dev, "failed to allocate spi master\n");
1115
		return -ENOMEM;
1116 1117 1118 1119 1120
	}

	p = spi_master_get_devdata(master);

	platform_set_drvdata(pdev, p);
1121
	p->master = master;
1122 1123 1124 1125

	of_id = of_match_device(sh_msiof_match, &pdev->dev);
	if (of_id) {
		p->chipdata = of_id->data;
1126
		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1127 1128
	} else {
		p->chipdata = (const void *)pdev->id_entry->driver_data;
J
Jingoo Han 已提交
1129
		p->info = dev_get_platdata(&pdev->dev);
1130
	}
1131 1132 1133 1134 1135 1136 1137

	if (!p->info) {
		dev_err(&pdev->dev, "failed to obtain device info\n");
		ret = -ENXIO;
		goto err1;
	}

1138 1139
	init_completion(&p->done);

1140
	p->clk = devm_clk_get(&pdev->dev, NULL);
1141
	if (IS_ERR(p->clk)) {
1142
		dev_err(&pdev->dev, "cannot get clock\n");
1143 1144 1145 1146 1147
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	i = platform_get_irq(pdev, 0);
1148 1149
	if (i < 0) {
		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1150
		ret = -ENOENT;
1151
		goto err1;
1152
	}
1153 1154 1155 1156 1157 1158

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p->mapbase)) {
		ret = PTR_ERR(p->mapbase);
		goto err1;
1159 1160
	}

1161 1162
	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
			       dev_name(&pdev->dev), p);
1163 1164
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
1165
		goto err1;
1166 1167 1168 1169 1170 1171
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* Platform data may override FIFO sizes */
1172 1173
	p->tx_fifo_size = p->chipdata->tx_fifo_size;
	p->rx_fifo_size = p->chipdata->rx_fifo_size;
1174 1175 1176 1177 1178
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

1179
	/* init master code */
1180 1181
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1182
	master->flags = p->chipdata->master_flags;
1183
	master->bus_num = pdev->id;
1184
	master->dev.of_node = pdev->dev.of_node;
1185
	master->num_chipselect = p->info->num_chipselect;
1186
	master->setup = sh_msiof_spi_setup;
1187
	master->prepare_message = sh_msiof_prepare_message;
1188
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1189
	master->auto_runtime_pm = true;
1190
	master->transfer_one = sh_msiof_transfer_one;
1191

1192 1193 1194 1195
	ret = sh_msiof_request_dma(p);
	if (ret < 0)
		dev_warn(&pdev->dev, "DMA not available, using PIO\n");

1196 1197 1198 1199 1200
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
		goto err2;
	}
1201

1202
	return 0;
1203

1204
 err2:
1205
	sh_msiof_release_dma(p);
1206 1207 1208 1209 1210 1211 1212 1213
	pm_runtime_disable(&pdev->dev);
 err1:
	spi_master_put(master);
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
1214 1215 1216
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);

	sh_msiof_release_dma(p);
1217 1218
	pm_runtime_disable(&pdev->dev);
	return 0;
1219 1220
}

1221 1222
static struct platform_device_id spi_driver_ids[] = {
	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1223 1224
	{ "spi_r8a7790_msiof",	(kernel_ulong_t)&r8a779x_data },
	{ "spi_r8a7791_msiof",	(kernel_ulong_t)&r8a779x_data },
1225 1226 1227
	{ "spi_r8a7792_msiof",	(kernel_ulong_t)&r8a779x_data },
	{ "spi_r8a7793_msiof",	(kernel_ulong_t)&r8a779x_data },
	{ "spi_r8a7794_msiof",	(kernel_ulong_t)&r8a779x_data },
1228 1229
	{},
};
1230
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1231

1232 1233 1234
static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
1235
	.id_table	= spi_driver_ids,
1236 1237 1238
	.driver		= {
		.name		= "spi_sh_msiof",
		.owner		= THIS_MODULE,
1239
		.of_match_table = of_match_ptr(sh_msiof_match),
1240 1241
	},
};
1242
module_platform_driver(sh_msiof_spi_drv);
1243 1244 1245 1246 1247

MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");