spi-sh-msiof.c 21.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * SuperH MSIOF SPI Master Interface
 *
 * Copyright (c) 2009 Magnus Damm
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

12 13 14
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
15
#include <linux/delay.h>
16 17 18
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/init.h>
19
#include <linux/interrupt.h>
20 21
#include <linux/io.h>
#include <linux/kernel.h>
22
#include <linux/module.h>
23
#include <linux/of.h>
24
#include <linux/of_device.h>
25 26 27
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

28
#include <linux/spi/sh_msiof.h>
29 30 31 32
#include <linux/spi/spi.h>

#include <asm/unaligned.h>

33 34 35 36

struct sh_msiof_chipdata {
	u16 tx_fifo_size;
	u16 rx_fifo_size;
37
	u16 master_flags;
38 39
};

40 41 42 43
struct sh_msiof_spi_priv {
	void __iomem *mapbase;
	struct clk *clk;
	struct platform_device *pdev;
44
	const struct sh_msiof_chipdata *chipdata;
45 46 47 48 49 50
	struct sh_msiof_spi_info *info;
	struct completion done;
	int tx_fifo_size;
	int rx_fifo_size;
};

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
#define TMDR1	0x00	/* Transmit Mode Register 1 */
#define TMDR2	0x04	/* Transmit Mode Register 2 */
#define TMDR3	0x08	/* Transmit Mode Register 3 */
#define RMDR1	0x10	/* Receive Mode Register 1 */
#define RMDR2	0x14	/* Receive Mode Register 2 */
#define RMDR3	0x18	/* Receive Mode Register 3 */
#define TSCR	0x20	/* Transmit Clock Select Register */
#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
#define CTR	0x28	/* Control Register */
#define FCTR	0x30	/* FIFO Control Register */
#define STR	0x40	/* Status Register */
#define IER	0x44	/* Interrupt Enable Register */
#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
#define TFDR	0x50	/* Transmit FIFO Data Register */
#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
#define RFDR	0x60	/* Receive FIFO Data Register */

/* TMDR1 and RMDR1 */
#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
#define MDR1_FLD_MASK	 0x000000c0 /* Frame Sync Signal Interval (0-3) */
#define MDR1_FLD_SHIFT		  2
#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
/* TMDR1 */
#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */

/* TMDR2 and RMDR2 */
#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */

/* TSCR and RSCR */
#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
#define SCR_BRPS(i)	(((i) - 1) << 8)
#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
#define SCR_BRDV_DIV_2	    0x0000
#define SCR_BRDV_DIV_4	    0x0001
#define SCR_BRDV_DIV_8	    0x0002
#define SCR_BRDV_DIV_16	    0x0003
#define SCR_BRDV_DIV_32	    0x0004
#define SCR_BRDV_DIV_1	    0x0007

/* CTR */
#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
#define CTR_TXE		0x00000200 /* Transmit Enable */
#define CTR_RXE		0x00000100 /* Receive Enable */

/* STR and IER */
#define STR_TEOF	0x00800000 /* Frame Transmission End */
#define STR_REOF	0x00000080 /* Frame Reception End */


122
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
123 124 125 126 127 128 129 130 131 132 133
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		return ioread16(p->mapbase + reg_offs);
	default:
		return ioread32(p->mapbase + reg_offs);
	}
}

static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
134
			   u32 value)
135 136 137 138 139 140 141 142 143 144 145 146 147
{
	switch (reg_offs) {
	case TSCR:
	case RSCR:
		iowrite16(value, p->mapbase + reg_offs);
		break;
	default:
		iowrite32(value, p->mapbase + reg_offs);
		break;
	}
}

static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
148
				    u32 clr, u32 set)
149
{
150 151
	u32 mask = clr | set;
	u32 data;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	int k;

	data = sh_msiof_read(p, CTR);
	data &= ~clr;
	data |= set;
	sh_msiof_write(p, CTR, data);

	for (k = 100; k > 0; k--) {
		if ((sh_msiof_read(p, CTR) & mask) == set)
			break;

		udelay(10);
	}

	return k > 0 ? 0 : -ETIMEDOUT;
}

static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
	struct sh_msiof_spi_priv *p = data;

	/* just disable the interrupt and wake up */
	sh_msiof_write(p, IER, 0);
	complete(&p->done);

	return IRQ_HANDLED;
}

static struct {
	unsigned short div;
	unsigned short scr;
} const sh_msiof_spi_clk_table[] = {
184 185 186 187 188 189 190 191 192 193 194
	{ 1,	SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
	{ 2,	SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
	{ 4,	SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
	{ 8,	SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
	{ 16,	SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
	{ 32,	SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
	{ 64,	SCR_BRPS(32) | SCR_BRDV_DIV_2 },
	{ 128,	SCR_BRPS(32) | SCR_BRDV_DIV_4 },
	{ 256,	SCR_BRPS(32) | SCR_BRDV_DIV_8 },
	{ 512,	SCR_BRPS(32) | SCR_BRDV_DIV_16 },
	{ 1024,	SCR_BRPS(32) | SCR_BRDV_DIV_32 },
195 196 197
};

static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
198
				      unsigned long parent_rate, u32 spi_hz)
199 200 201 202 203
{
	unsigned long div = 1024;
	size_t k;

	if (!WARN_ON(!spi_hz || !parent_rate))
204
		div = DIV_ROUND_UP(parent_rate, spi_hz);
205 206 207 208 209 210 211 212 213 214 215

	/* TODO: make more fine grained */

	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
		if (sh_msiof_spi_clk_table[k].div >= div)
			break;
	}

	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);

	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
216 217
	if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
		sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
218 219 220
}

static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
221
				      u32 cpol, u32 cpha,
222
				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
223
{
224
	u32 tmp;
225 226 227
	int edge;

	/*
228 229 230 231 232
	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
	 *    0    0         10     10    1    1
	 *    0    1         10     10    0    0
	 *    1    0         11     11    0    0
	 *    1    1         11     11    1    1
233 234
	 */
	sh_msiof_write(p, FCTR, 0);
235

236 237 238 239
	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
	sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
240 241 242 243
	if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
		/* These bits are reserved if RX needs TX */
		tmp &= ~0x0000ffff;
	}
244
	sh_msiof_write(p, RMDR1, tmp);
245

246 247 248
	tmp = 0;
	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
249

250
	edge = cpol ^ !cpha;
251

252 253 254
	tmp |= edge << CTR_TEDG_SHIFT;
	tmp |= edge << CTR_REDG_SHIFT;
	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
255 256 257 258 259
	sh_msiof_write(p, CTR, tmp);
}

static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, void *rx_buf,
260
				       u32 bits, u32 words)
261
{
262
	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
263

264
	if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
265 266
		sh_msiof_write(p, TMDR2, dr2);
	else
267
		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

	if (rx_buf)
		sh_msiof_write(p, RMDR2, dr2);

	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
}

static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
}

static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
				      const void *tx_buf, int words, int fs)
{
283
	const u8 *buf_8 = tx_buf;
284 285 286 287 288 289 290 291 292
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_8[k] << fs);
}

static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
293
	const u16 *buf_16 = tx_buf;
294 295 296 297 298 299 300 301 302
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_16[k] << fs);
}

static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
303
	const u16 *buf_16 = tx_buf;
304 305 306 307 308 309 310 311 312
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
}

static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
				       const void *tx_buf, int words, int fs)
{
313
	const u32 *buf_32 = tx_buf;
314 315 316 317 318 319 320 321 322
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, buf_32[k] << fs);
}

static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
323
	const u32 *buf_32 = tx_buf;
324 325 326 327 328 329
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
					const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
}

static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
					 const void *tx_buf, int words, int fs)
{
	const u32 *buf_32 = tx_buf;
	int k;

	for (k = 0; k < words; k++)
		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}

350 351 352
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
				     void *rx_buf, int words, int fs)
{
353
	u8 *buf_8 = rx_buf;
354 355 356 357 358 359 360 361 362
	int k;

	for (k = 0; k < words; k++)
		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
363
	u16 *buf_16 = rx_buf;
364 365 366 367 368 369 370 371 372
	int k;

	for (k = 0; k < words; k++)
		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
373
	u16 *buf_16 = rx_buf;
374 375 376 377 378 379 380 381 382
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
}

static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
				      void *rx_buf, int words, int fs)
{
383
	u32 *buf_32 = rx_buf;
384 385 386 387 388 389 390 391 392
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
}

static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
393
	u32 *buf_32 = rx_buf;
394 395 396 397 398 399
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
}

static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
				       void *rx_buf, int words, int fs)
{
	u32 *buf_32 = rx_buf;
	int k;

	for (k = 0; k < words; k++)
		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
}

420 421 422
static int sh_msiof_spi_setup(struct spi_device *spi)
{
	struct device_node	*np = spi->master->dev.of_node;
423
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
424 425 426 427 428 429 430 431 432

	if (!np) {
		/*
		 * Use spi->controller_data for CS (same strategy as spi_gpio),
		 * if any. otherwise let HW control CS
		 */
		spi->cs_gpio = (uintptr_t)spi->controller_data;
	}

433 434 435 436 437 438 439
	/* Configure pins before deasserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));

440 441 442 443
	if (spi->cs_gpio >= 0)
		gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));

	return 0;
444 445
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
static int sh_msiof_prepare_message(struct spi_master *master,
				    struct spi_message *msg)
{
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
	const struct spi_device *spi = msg->spi;

	pm_runtime_get_sync(&p->pdev->dev);
	clk_enable(p->clk);

	/* Configure pins before asserting CS */
	sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
				  !!(spi->mode & SPI_CPHA),
				  !!(spi->mode & SPI_3WIRE),
				  !!(spi->mode & SPI_LSB_FIRST),
				  !!(spi->mode & SPI_CS_HIGH));
	return 0;
}

static int sh_msiof_unprepare_message(struct spi_master *master,
				      struct spi_message *msg)
{
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);

	clk_disable(p->clk);
	pm_runtime_put(&p->pdev->dev);
	return 0;
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
						  const void *, int, int),
				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
						  void *, int, int),
				  const void *tx_buf, void *rx_buf,
				  int words, int bits)
{
	int fifo_shift;
	int ret;

	/* limit maximum word transfer to rx/tx fifo size */
	if (tx_buf)
		words = min_t(int, words, p->tx_fifo_size);
	if (rx_buf)
		words = min_t(int, words, p->rx_fifo_size);

	/* the fifo contents need shifting */
	fifo_shift = 32 - bits;

	/* setup msiof transfer mode registers */
	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);

	/* write tx fifo */
	if (tx_buf)
		tx_fifo(p, tx_buf, words, fifo_shift);

	/* setup clock and rx/tx signals */
	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
	if (rx_buf)
		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);

	/* start by setting frame bit */
508
	reinit_completion(&p->done);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to start hardware\n");
		goto err;
	}

	/* wait for tx fifo to be emptied / rx fifo to be filled */
	wait_for_completion(&p->done);

	/* read rx fifo */
	if (rx_buf)
		rx_fifo(p, rx_buf, words, fifo_shift);

	/* clear status bits */
	sh_msiof_reset_str(p);

525
	/* shut down frame, rx/tx and clock signals */
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
	if (rx_buf)
		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
	if (ret) {
		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
		goto err;
	}

	return words;

 err:
	sh_msiof_write(p, IER, 0);
	return ret;
}

543 544 545
static int sh_msiof_transfer_one(struct spi_master *master,
				 struct spi_device *spi,
				 struct spi_transfer *t)
546
{
547
	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
548 549 550 551 552 553 554
	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
	int bits;
	int bytes_per_word;
	int bytes_done;
	int words;
	int n;
555
	bool swab;
556

557
	bits = t->bits_per_word;
558

559 560 561 562 563 564 565
	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
		bits = 32;
		swab = true;
	} else {
		swab = false;
	}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	/* setup bytes per word and fifo read/write functions */
	if (bits <= 8) {
		bytes_per_word = 1;
		tx_fifo = sh_msiof_spi_write_fifo_8;
		rx_fifo = sh_msiof_spi_read_fifo_8;
	} else if (bits <= 16) {
		bytes_per_word = 2;
		if ((unsigned long)t->tx_buf & 0x01)
			tx_fifo = sh_msiof_spi_write_fifo_16u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_16;

		if ((unsigned long)t->rx_buf & 0x01)
			rx_fifo = sh_msiof_spi_read_fifo_16u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_16;
582 583 584 585 586 587 588 589 590 591 592
	} else if (swab) {
		bytes_per_word = 4;
		if ((unsigned long)t->tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_s32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_s32;

		if ((unsigned long)t->rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_s32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_s32;
593 594 595 596 597 598 599 600 601 602 603 604 605 606
	} else {
		bytes_per_word = 4;
		if ((unsigned long)t->tx_buf & 0x03)
			tx_fifo = sh_msiof_spi_write_fifo_32u;
		else
			tx_fifo = sh_msiof_spi_write_fifo_32;

		if ((unsigned long)t->rx_buf & 0x03)
			rx_fifo = sh_msiof_spi_read_fifo_32u;
		else
			rx_fifo = sh_msiof_spi_read_fifo_32;
	}

	/* setup clocks (clock already enabled in chipselect()) */
607
	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
608 609 610 611 612 613

	/* transfer in fifo sized chunks */
	words = t->len / bytes_per_word;
	bytes_done = 0;

	while (bytes_done < t->len) {
614 615
		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
616
		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
617 618
					   tx_buf,
					   rx_buf,
619 620 621 622 623 624 625 626 627 628 629
					   words, bits);
		if (n < 0)
			break;

		bytes_done += n * bytes_per_word;
		words -= n;
	}

	return 0;
}

630 631 632
static const struct sh_msiof_chipdata sh_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 64,
633 634 635 636 637 638 639
	.master_flags = 0,
};

static const struct sh_msiof_chipdata r8a779x_data = {
	.tx_fifo_size = 64,
	.rx_fifo_size = 256,
	.master_flags = SPI_MASTER_MUST_TX,
640 641 642 643 644
};

static const struct of_device_id sh_msiof_match[] = {
	{ .compatible = "renesas,sh-msiof",        .data = &sh_data },
	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
645 646
	{ .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
	{ .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
647 648 649 650
	{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);

651 652 653 654 655
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	struct sh_msiof_spi_info *info;
	struct device_node *np = dev->of_node;
656
	u32 num_cs = 1;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
	if (!info) {
		dev_err(dev, "failed to allocate setup data\n");
		return NULL;
	}

	/* Parse the MSIOF properties */
	of_property_read_u32(np, "num-cs", &num_cs);
	of_property_read_u32(np, "renesas,tx-fifo-size",
					&info->tx_fifo_override);
	of_property_read_u32(np, "renesas,rx-fifo-size",
					&info->rx_fifo_override);

	info->num_chipselect = num_cs;

	return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
	return NULL;
}
#endif

682 683 684 685
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
	struct resource	*r;
	struct spi_master *master;
686
	const struct of_device_id *of_id;
687 688 689 690 691 692 693
	struct sh_msiof_spi_priv *p;
	int i;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
	if (master == NULL) {
		dev_err(&pdev->dev, "failed to allocate spi master\n");
694
		return -ENOMEM;
695 696 697 698 699
	}

	p = spi_master_get_devdata(master);

	platform_set_drvdata(pdev, p);
700 701 702 703

	of_id = of_match_device(sh_msiof_match, &pdev->dev);
	if (of_id) {
		p->chipdata = of_id->data;
704
		p->info = sh_msiof_spi_parse_dt(&pdev->dev);
705 706
	} else {
		p->chipdata = (const void *)pdev->id_entry->driver_data;
J
Jingoo Han 已提交
707
		p->info = dev_get_platdata(&pdev->dev);
708
	}
709 710 711 712 713 714 715

	if (!p->info) {
		dev_err(&pdev->dev, "failed to obtain device info\n");
		ret = -ENXIO;
		goto err1;
	}

716 717
	init_completion(&p->done);

718
	p->clk = devm_clk_get(&pdev->dev, NULL);
719
	if (IS_ERR(p->clk)) {
720
		dev_err(&pdev->dev, "cannot get clock\n");
721 722 723 724 725
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	i = platform_get_irq(pdev, 0);
726 727
	if (i < 0) {
		dev_err(&pdev->dev, "cannot get platform IRQ\n");
728
		ret = -ENOENT;
729
		goto err1;
730
	}
731 732 733 734 735 736

	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(p->mapbase)) {
		ret = PTR_ERR(p->mapbase);
		goto err1;
737 738
	}

739 740
	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
			       dev_name(&pdev->dev), p);
741 742
	if (ret) {
		dev_err(&pdev->dev, "unable to request irq\n");
743
		goto err1;
744 745
	}

746 747 748 749
	ret = clk_prepare(p->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "unable to prepare clock\n");
		goto err1;
750 751 752 753 754 755
	}

	p->pdev = pdev;
	pm_runtime_enable(&pdev->dev);

	/* Platform data may override FIFO sizes */
756 757
	p->tx_fifo_size = p->chipdata->tx_fifo_size;
	p->rx_fifo_size = p->chipdata->rx_fifo_size;
758 759 760 761 762
	if (p->info->tx_fifo_override)
		p->tx_fifo_size = p->info->tx_fifo_override;
	if (p->info->rx_fifo_override)
		p->rx_fifo_size = p->info->rx_fifo_override;

763
	/* init master code */
764 765
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
766
	master->flags = p->chipdata->master_flags;
767
	master->bus_num = pdev->id;
768
	master->dev.of_node = pdev->dev.of_node;
769
	master->num_chipselect = p->info->num_chipselect;
770
	master->setup = sh_msiof_spi_setup;
771 772
	master->prepare_message = sh_msiof_prepare_message;
	master->unprepare_message = sh_msiof_unprepare_message;
773
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
774
	master->transfer_one = sh_msiof_transfer_one;
775

776 777 778 779 780
	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret < 0) {
		dev_err(&pdev->dev, "spi_register_master error.\n");
		goto err2;
	}
781

782
	return 0;
783

784
 err2:
785
	pm_runtime_disable(&pdev->dev);
786
	clk_unprepare(p->clk);
787 788 789 790 791 792 793 794 795
 err1:
	spi_master_put(master);
	return ret;
}

static int sh_msiof_spi_remove(struct platform_device *pdev)
{
	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);

796 797 798
	pm_runtime_disable(&pdev->dev);
	clk_unprepare(p->clk);
	return 0;
799 800
}

801 802
static struct platform_device_id spi_driver_ids[] = {
	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
803 804
	{ "spi_r8a7790_msiof",	(kernel_ulong_t)&r8a779x_data },
	{ "spi_r8a7791_msiof",	(kernel_ulong_t)&r8a779x_data },
805 806
	{},
};
807
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
808

809 810 811
static struct platform_driver sh_msiof_spi_drv = {
	.probe		= sh_msiof_spi_probe,
	.remove		= sh_msiof_spi_remove,
812
	.id_table	= spi_driver_ids,
813 814 815
	.driver		= {
		.name		= "spi_sh_msiof",
		.owner		= THIS_MODULE,
816
		.of_match_table = of_match_ptr(sh_msiof_match),
817 818
	},
};
819
module_platform_driver(sh_msiof_spi_drv);
820 821 822 823 824

MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");