aesni-intel_asm.S 67.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Implement AES algorithm in Intel AES-NI instructions.
 *
 * The white paper of AES-NI instructions can be downloaded from:
 *   http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
 *
 * Copyright (C) 2008, Intel Corp.
 *    Author: Huang Ying <ying.huang@intel.com>
 *            Vinodh Gopal <vinodh.gopal@intel.com>
 *            Kahraman Akdemir
 *
12 13 14 15 16 17 18 19 20 21 22
 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
 * interface for 64-bit kernels.
 *    Authors: Erdinc Ozturk (erdinc.ozturk@intel.com)
 *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 *             Adrian Hoban <adrian.hoban@intel.com>
 *             James Guilford (james.guilford@intel.com)
 *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 *             Tadeusz Struk (tadeusz.struk@intel.com)
 *             Wajdi Feghali (wajdi.k.feghali@intel.com)
 *    Copyright (c) 2010, Intel Corporation.
 *
23 24 25
 * Ported x86_64 version to x86:
 *    Author: Mathias Krause <minipli@googlemail.com>
 *
26 27 28 29 30 31 32
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/linkage.h>
33
#include <asm/inst.h>
34
#include <asm/frame.h>
35
#include <asm/nospec-branch.h>
36

37 38 39 40 41 42 43 44 45 46 47
/*
 * The following macros are used to move an (un)aligned 16 byte value to/from
 * an XMM register.  This can done for either FP or integer values, for FP use
 * movaps (move aligned packed single) or integer use movdqa (move double quad
 * aligned).  It doesn't make a performance difference which instruction is used
 * since Nehalem (original Core i7) was released.  However, the movaps is a byte
 * shorter, so that is the one we'll use for now. (same for unaligned).
 */
#define MOVADQ	movaps
#define MOVUDQ	movups

48
#ifdef __x86_64__
49

50 51
# constants in mergeable sections, linker can reorder and merge
.section	.rodata.cst16.gf128mul_x_ble_mask, "aM", @progbits, 16
52 53 54
.align 16
.Lgf128mul_x_ble_mask:
	.octa 0x00000000000000010000000000000087
55 56
.section	.rodata.cst16.POLY, "aM", @progbits, 16
.align 16
57
POLY:   .octa 0xC2000000000000000000000000000001
58 59
.section	.rodata.cst16.TWOONE, "aM", @progbits, 16
.align 16
60 61
TWOONE: .octa 0x00000001000000000000000000000001

62 63
.section	.rodata.cst16.SHUF_MASK, "aM", @progbits, 16
.align 16
64
SHUF_MASK:  .octa 0x000102030405060708090A0B0C0D0E0F
65 66
.section	.rodata.cst16.MASK1, "aM", @progbits, 16
.align 16
67
MASK1:      .octa 0x0000000000000000ffffffffffffffff
68 69
.section	.rodata.cst16.MASK2, "aM", @progbits, 16
.align 16
70
MASK2:      .octa 0xffffffffffffffff0000000000000000
71 72
.section	.rodata.cst16.ONE, "aM", @progbits, 16
.align 16
73
ONE:        .octa 0x00000000000000000000000000000001
74 75
.section	.rodata.cst16.F_MIN_MASK, "aM", @progbits, 16
.align 16
76
F_MIN_MASK: .octa 0xf1f2f3f4f5f6f7f8f9fafbfcfdfeff0
77 78
.section	.rodata.cst16.dec, "aM", @progbits, 16
.align 16
79
dec:        .octa 0x1
80 81
.section	.rodata.cst16.enc, "aM", @progbits, 16
.align 16
82 83
enc:        .octa 0x2

84 85 86 87 88 89 90 91 92
# order of these constants should not change.
# more specifically, ALL_F should follow SHIFT_MASK,
# and zero should follow ALL_F
.section	.rodata, "a", @progbits
.align 16
SHIFT_MASK: .octa 0x0f0e0d0c0b0a09080706050403020100
ALL_F:      .octa 0xffffffffffffffffffffffffffffffff
            .octa 0x00000000000000000000000000000000

93 94
.text

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

#define	STACK_OFFSET    8*3
#define	HashKey		16*0	// store HashKey <<1 mod poly here
#define	HashKey_2	16*1	// store HashKey^2 <<1 mod poly here
#define	HashKey_3	16*2	// store HashKey^3 <<1 mod poly here
#define	HashKey_4	16*3	// store HashKey^4 <<1 mod poly here
#define	HashKey_k	16*4	// store XOR of High 64 bits and Low 64
				// bits of  HashKey <<1 mod poly here
				//(for Karatsuba purposes)
#define	HashKey_2_k	16*5	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^2 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_3_k	16*6	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^3 <<1 mod poly here
				// (for Karatsuba purposes)
#define	HashKey_4_k	16*7	// store XOR of High 64 bits and Low 64
				// bits of  HashKey^4 <<1 mod poly here
				// (for Karatsuba purposes)
#define	VARIABLE_OFFSET	16*8

#define arg1 rdi
#define arg2 rsi
#define arg3 rdx
#define arg4 rcx
#define arg5 r8
#define arg6 r9
#define arg7 STACK_OFFSET+8(%r14)
#define arg8 STACK_OFFSET+16(%r14)
#define arg9 STACK_OFFSET+24(%r14)
#define arg10 STACK_OFFSET+32(%r14)
125
#define keysize 2*15*16(%arg1)
126
#endif
127 128


129 130 131 132 133 134 135 136 137 138 139 140
#define STATE1	%xmm0
#define STATE2	%xmm4
#define STATE3	%xmm5
#define STATE4	%xmm6
#define STATE	STATE1
#define IN1	%xmm1
#define IN2	%xmm7
#define IN3	%xmm8
#define IN4	%xmm9
#define IN	IN1
#define KEY	%xmm2
#define IV	%xmm3
141

142 143 144
#define BSWAP_MASK %xmm10
#define CTR	%xmm11
#define INC	%xmm12
145

146 147
#define GF128MUL_MASK %xmm10

148 149
#ifdef __x86_64__
#define AREG	%rax
150 151
#define KEYP	%rdi
#define OUTP	%rsi
152
#define UKEYP	OUTP
153 154 155 156 157 158 159
#define INP	%rdx
#define LEN	%rcx
#define IVP	%r8
#define KLEN	%r9d
#define T1	%r10
#define TKEYP	T1
#define T2	%r11
160
#define TCTR_LOW T2
161 162 163 164 165 166 167 168 169 170 171 172
#else
#define AREG	%eax
#define KEYP	%edi
#define OUTP	AREG
#define UKEYP	OUTP
#define INP	%edx
#define LEN	%esi
#define IVP	%ebp
#define KLEN	%ebx
#define T1	%ecx
#define TKEYP	T1
#endif
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
.macro FUNC_SAVE
	push	%r12
	push	%r13
	push	%r14
	mov	%rsp, %r14
#
# states of %xmm registers %xmm6:%xmm15 not saved
# all %xmm registers are clobbered
#
	sub	$VARIABLE_OFFSET, %rsp
	and	$~63, %rsp
.endm


.macro FUNC_RESTORE
	mov	%r14, %rsp
	pop	%r14
	pop	%r13
	pop	%r12
.endm
194

D
Dave Watson 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

# GCM_INIT initializes a gcm_context struct to prepare for encoding/decoding.
# Clobbers rax, r10-r13 and xmm0-xmm6, %xmm13
.macro GCM_INIT
	mov	%arg6, %r12
	movdqu	(%r12), %xmm13
	movdqa  SHUF_MASK(%rip), %xmm2
	PSHUFB_XMM %xmm2, %xmm13

	# precompute HashKey<<1 mod poly from the HashKey (required for GHASH)

	movdqa	%xmm13, %xmm2
	psllq	$1, %xmm13
	psrlq	$63, %xmm2
	movdqa	%xmm2, %xmm1
	pslldq	$8, %xmm2
	psrldq	$8, %xmm1
	por	%xmm2, %xmm13

	# reduce HashKey<<1

	pshufd	$0x24, %xmm1, %xmm2
	pcmpeqd TWOONE(%rip), %xmm2
	pand	POLY(%rip), %xmm2
	pxor	%xmm2, %xmm13
	movdqa	%xmm13, HashKey(%rsp)
	mov	%arg4, %r13			# %xmm13 holds HashKey<<1 (mod poly)
	and	$-16, %r13
	mov	%r13, %r12
.endm

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
# GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context
# struct has been initialized by GCM_INIT.
# Requires the input data be at least 1 byte long because of READ_PARTIAL_BLOCK
# Clobbers rax, r10-r13, and xmm0-xmm15
.macro GCM_ENC_DEC operation
	# Encrypt/Decrypt first few blocks

	and	$(3<<4), %r12
	jz	_initial_num_blocks_is_0_\@
	cmp	$(2<<4), %r12
	jb	_initial_num_blocks_is_1_\@
	je	_initial_num_blocks_is_2_\@
_initial_num_blocks_is_3_\@:
	INITIAL_BLOCKS_ENC_DEC	%xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 5, 678, \operation
	sub	$48, %r13
	jmp	_initial_blocks_\@
_initial_num_blocks_is_2_\@:
	INITIAL_BLOCKS_ENC_DEC	%xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 6, 78, \operation
	sub	$32, %r13
	jmp	_initial_blocks_\@
_initial_num_blocks_is_1_\@:
	INITIAL_BLOCKS_ENC_DEC	%xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 7, 8, \operation
	sub	$16, %r13
	jmp	_initial_blocks_\@
_initial_num_blocks_is_0_\@:
	INITIAL_BLOCKS_ENC_DEC	%xmm9, %xmm10, %xmm13, %xmm11, %xmm12, %xmm0, \
%xmm1, %xmm2, %xmm3, %xmm4, %xmm8, %xmm5, %xmm6, 8, 0, \operation
_initial_blocks_\@:

	# Main loop - Encrypt/Decrypt remaining blocks

	cmp	$0, %r13
	je	_zero_cipher_left_\@
	sub	$64, %r13
	je	_four_cipher_left_\@
_crypt_by_4_\@:
	GHASH_4_ENCRYPT_4_PARALLEL_\operation	%xmm9, %xmm10, %xmm11, %xmm12, \
	%xmm13, %xmm14, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, \
	%xmm7, %xmm8, enc
	add	$64, %r11
	sub	$64, %r13
	jne	_crypt_by_4_\@
_four_cipher_left_\@:
	GHASH_LAST_4	%xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, \
%xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm8
_zero_cipher_left_\@:
	mov	%arg4, %r13
	and	$15, %r13			# %r13 = arg4 (mod 16)
	je	_multiple_of_16_bytes_\@

	# Handle the last <16 Byte block separately
	paddd ONE(%rip), %xmm0                # INCR CNT to get Yn
        movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm0

	ENCRYPT_SINGLE_BLOCK	%xmm0, %xmm1        # Encrypt(K, Yn)

	lea (%arg3,%r11,1), %r10
	mov %r13, %r12
	READ_PARTIAL_BLOCK %r10 %r12 %xmm2 %xmm1

	lea ALL_F+16(%rip), %r12
	sub %r13, %r12
.ifc \operation, dec
	movdqa  %xmm1, %xmm2
.endif
	pxor	%xmm1, %xmm0            # XOR Encrypt(K, Yn)
	movdqu	(%r12), %xmm1
	# get the appropriate mask to mask out top 16-r13 bytes of xmm0
	pand	%xmm1, %xmm0            # mask out top 16-r13 bytes of xmm0
.ifc \operation, dec
	pand    %xmm1, %xmm2
	movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10 ,%xmm2

	pxor %xmm2, %xmm8
.else
	movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10,%xmm0

	pxor	%xmm0, %xmm8
.endif

	GHASH_MUL %xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
.ifc \operation, enc
	# GHASH computation for the last <16 byte block
	movdqa SHUF_MASK(%rip), %xmm10
	# shuffle xmm0 back to output as ciphertext
	PSHUFB_XMM %xmm10, %xmm0
.endif

	# Output %r13 bytes
	MOVQ_R64_XMM %xmm0, %rax
	cmp $8, %r13
	jle _less_than_8_bytes_left_\@
	mov %rax, (%arg2 , %r11, 1)
	add $8, %r11
	psrldq $8, %xmm0
	MOVQ_R64_XMM %xmm0, %rax
	sub $8, %r13
_less_than_8_bytes_left_\@:
	mov %al,  (%arg2, %r11, 1)
	add $1, %r11
	shr $8, %rax
	sub $1, %r13
	jne _less_than_8_bytes_left_\@
_multiple_of_16_bytes_\@:
.endm

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
# GCM_COMPLETE Finishes update of tag of last partial block
# Output: Authorization Tag (AUTH_TAG)
# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15
.macro GCM_COMPLETE
	mov	arg8, %r12		  # %r13 = aadLen (number of bytes)
	shl	$3, %r12		  # convert into number of bits
	movd	%r12d, %xmm15		  # len(A) in %xmm15
	shl	$3, %arg4		  # len(C) in bits (*128)
	MOVQ_R64_XMM	%arg4, %xmm1
	pslldq	$8, %xmm15		  # %xmm15 = len(A)||0x0000000000000000
	pxor	%xmm1, %xmm15		  # %xmm15 = len(A)||len(C)
	pxor	%xmm15, %xmm8
	GHASH_MUL	%xmm8, %xmm13, %xmm9, %xmm10, %xmm11, %xmm5, %xmm6
	# final GHASH computation
	movdqa SHUF_MASK(%rip), %xmm10
	PSHUFB_XMM %xmm10, %xmm8

	mov	%arg5, %rax		  # %rax = *Y0
	movdqu	(%rax), %xmm0		  # %xmm0 = Y0
	ENCRYPT_SINGLE_BLOCK	%xmm0,  %xmm1	  # E(K, Y0)
	pxor	%xmm8, %xmm0
_return_T_\@:
	mov	arg9, %r10                     # %r10 = authTag
	mov	arg10, %r11                    # %r11 = auth_tag_len
	cmp	$16, %r11
	je	_T_16_\@
	cmp	$8, %r11
	jl	_T_4_\@
_T_8_\@:
	MOVQ_R64_XMM	%xmm0, %rax
	mov	%rax, (%r10)
	add	$8, %r10
	sub	$8, %r11
	psrldq	$8, %xmm0
	cmp	$0, %r11
	je	_return_T_done_\@
_T_4_\@:
	movd	%xmm0, %eax
	mov	%eax, (%r10)
	add	$4, %r10
	sub	$4, %r11
	psrldq	$4, %xmm0
	cmp	$0, %r11
	je	_return_T_done_\@
_T_123_\@:
	movd	%xmm0, %eax
	cmp	$2, %r11
	jl	_T_1_\@
	mov	%ax, (%r10)
	cmp	$2, %r11
	je	_return_T_done_\@
	add	$2, %r10
	sar	$16, %eax
_T_1_\@:
	mov	%al, (%r10)
	jmp	_return_T_done_\@
_T_16_\@:
	movdqu	%xmm0, (%r10)
_return_T_done_\@:
.endm

399
#ifdef __x86_64__
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/* GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
*
*
* Input: A and B (128-bits each, bit-reflected)
* Output: C = A*B*x mod poly, (i.e. >>1 )
* To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
* GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
*
*/
.macro GHASH_MUL GH HK TMP1 TMP2 TMP3 TMP4 TMP5
	movdqa	  \GH, \TMP1
	pshufd	  $78, \GH, \TMP2
	pshufd	  $78, \HK, \TMP3
	pxor	  \GH, \TMP2            # TMP2 = a1+a0
	pxor	  \HK, \TMP3            # TMP3 = b1+b0
	PCLMULQDQ 0x11, \HK, \TMP1     # TMP1 = a1*b1
	PCLMULQDQ 0x00, \HK, \GH       # GH = a0*b0
	PCLMULQDQ 0x00, \TMP3, \TMP2   # TMP2 = (a0+a1)*(b1+b0)
	pxor	  \GH, \TMP2
	pxor	  \TMP1, \TMP2          # TMP2 = (a0*b0)+(a1*b0)
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3             # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2             # right shift TMP2 2 DWs
	pxor	  \TMP3, \GH
	pxor	  \TMP2, \TMP1          # TMP2:GH holds the result of GH*HK

        # first phase of the reduction

	movdqa    \GH, \TMP2
	movdqa    \GH, \TMP3
	movdqa    \GH, \TMP4            # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	pslld     $31, \TMP2            # packed right shift <<31
	pslld     $30, \TMP3            # packed right shift <<30
	pslld     $25, \TMP4            # packed right shift <<25
	pxor      \TMP3, \TMP2          # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5             # right shift TMP5 1 DW
	pslldq    $12, \TMP2            # left shift TMP2 3 DWs
	pxor      \TMP2, \GH

        # second phase of the reduction

	movdqa    \GH,\TMP2             # copy GH into TMP2,TMP3 and TMP4
					# in in order to perform
					# independent shifts
	movdqa    \GH,\TMP3
	movdqa    \GH,\TMP4
	psrld     $1,\TMP2              # packed left shift >>1
	psrld     $2,\TMP3              # packed left shift >>2
	psrld     $7,\TMP4              # packed left shift >>7
	pxor      \TMP3,\TMP2		# xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \GH
	pxor      \TMP1, \GH            # result is in TMP1
.endm

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
# Reads DLEN bytes starting at DPTR and stores in XMMDst
# where 0 < DLEN < 16
# Clobbers %rax, DLEN and XMM1
.macro READ_PARTIAL_BLOCK DPTR DLEN XMM1 XMMDst
        cmp $8, \DLEN
        jl _read_lt8_\@
        mov (\DPTR), %rax
        MOVQ_R64_XMM %rax, \XMMDst
        sub $8, \DLEN
        jz _done_read_partial_block_\@
	xor %eax, %eax
_read_next_byte_\@:
        shl $8, %rax
        mov 7(\DPTR, \DLEN, 1), %al
        dec \DLEN
        jnz _read_next_byte_\@
        MOVQ_R64_XMM %rax, \XMM1
	pslldq $8, \XMM1
        por \XMM1, \XMMDst
	jmp _done_read_partial_block_\@
_read_lt8_\@:
	xor %eax, %eax
_read_next_byte_lt8_\@:
        shl $8, %rax
        mov -1(\DPTR, \DLEN, 1), %al
        dec \DLEN
        jnz _read_next_byte_lt8_\@
        MOVQ_R64_XMM %rax, \XMMDst
_done_read_partial_block_\@:
.endm

491 492 493 494 495 496 497 498 499 500 501 502
/*
* if a = number of total plaintext bytes
* b = floor(a/16)
* num_initial_blocks = b mod 4
* encrypt the initial num_initial_blocks blocks and apply ghash on
* the ciphertext
* %r10, %r11, %r12, %rax, %xmm5, %xmm6, %xmm7, %xmm8, %xmm9 registers
* are clobbered
* arg1, %arg2, %arg3, %r14 are used as a pointer only, not modified
*/


503
.macro INITIAL_BLOCKS_ENC_DEC TMP1 TMP2 TMP3 TMP4 TMP5 XMM0 XMM1 \
504
XMM2 XMM3 XMM4 XMMDst TMP6 TMP7 i i_seq operation
505
        MOVADQ     SHUF_MASK(%rip), %xmm14
506
	mov	   arg7, %r10           # %r10 = AAD
507
	mov	   arg8, %r11           # %r11 = aadLen
508
	pxor	   %xmm\i, %xmm\i
509 510 511
	pxor	   \XMM2, \XMM2

	cmp	   $16, %r11
512 513
	jl	   _get_AAD_rest\@
_get_AAD_blocks\@:
514 515 516 517 518 519 520
	movdqu	   (%r10), %xmm\i
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data
	pxor	   %xmm\i, \XMM2
	GHASH_MUL  \XMM2, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
	add	   $16, %r10
	sub	   $16, %r11
	cmp	   $16, %r11
521
	jge	   _get_AAD_blocks\@
522 523

	movdqu	   \XMM2, %xmm\i
524 525

	/* read the last <16B of AAD */
526
_get_AAD_rest\@:
527
	cmp	   $0, %r11
528
	je	   _get_AAD_done\@
529

530
	READ_PARTIAL_BLOCK %r10, %r11, \TMP1, %xmm\i
531
	PSHUFB_XMM   %xmm14, %xmm\i # byte-reflect the AAD data
532 533
	pxor	   \XMM2, %xmm\i
	GHASH_MUL  %xmm\i, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
534

535
_get_AAD_done\@:
536
	xor	   %r11, %r11 # initialise the data pointer offset as zero
537
	# start AES for num_initial_blocks blocks
538 539 540 541 542 543 544

	mov	   %arg5, %rax                      # %rax = *Y0
	movdqu	   (%rax), \XMM0                    # XMM0 = Y0
	PSHUFB_XMM   %xmm14, \XMM0

.if (\i == 5) || (\i == 6) || (\i == 7)

545 546
	MOVADQ		ONE(%RIP),\TMP1
	MOVADQ		0(%arg1),\TMP2
547
.irpc index, \i_seq
548
	paddd		\TMP1, \XMM0                 # INCR Y0
549 550 551
.ifc \operation, dec
        movdqa     \XMM0, %xmm\index
.else
552
	MOVADQ		\XMM0, %xmm\index
553
.endif
554 555
	PSHUFB_XMM	%xmm14, %xmm\index      # perform a 16 byte swap
	pxor		\TMP2, %xmm\index
556
.endr
557 558 559 560 561
	lea	0x10(%arg1),%r10
	mov	keysize,%eax
	shr	$2,%eax				# 128->4, 192->6, 256->8
	add	$5,%eax			      # 128->9, 192->11, 256->13

562
aes_loop_initial_\@:
563 564 565
	MOVADQ	(%r10),\TMP1
.irpc	index, \i_seq
	AESENC	\TMP1, %xmm\index
566
.endr
567 568
	add	$16,%r10
	sub	$1,%eax
569
	jnz	aes_loop_initial_\@
570 571

	MOVADQ	(%r10), \TMP1
572
.irpc index, \i_seq
573
	AESENCLAST \TMP1, %xmm\index         # Last Round
574 575 576 577 578 579 580
.endr
.irpc index, \i_seq
	movdqu	   (%arg3 , %r11, 1), \TMP1
	pxor	   \TMP1, %xmm\index
	movdqu	   %xmm\index, (%arg2 , %r11, 1)
	# write back plaintext/ciphertext for num_initial_blocks
	add	   $16, %r11
581 582 583 584

.ifc \operation, dec
	movdqa     \TMP1, %xmm\index
.endif
585 586 587 588 589
	PSHUFB_XMM	   %xmm14, %xmm\index

		# prepare plaintext/ciphertext for GHASH computation
.endr
.endif
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        # apply GHASH on num_initial_blocks blocks

.if \i == 5
        pxor       %xmm5, %xmm6
	GHASH_MUL  %xmm6, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 6
        pxor       %xmm6, %xmm7
	GHASH_MUL  %xmm7, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.elseif \i == 7
        pxor       %xmm7, %xmm8
	GHASH_MUL  %xmm8, \TMP3, \TMP1, \TMP2, \TMP4, \TMP5, \XMM1
.endif
	cmp	   $64, %r13
610
	jl	_initial_blocks_done\@
611 612 613 614 615 616
	# no need for precomputed values
/*
*
* Precomputations for HashKey parallel with encryption of first 4 blocks.
* Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
*/
617 618 619
	MOVADQ	   ONE(%RIP),\TMP1
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM1
620 621
	PSHUFB_XMM  %xmm14, \XMM1        # perform a 16 byte swap

622 623
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM2
624 625
	PSHUFB_XMM  %xmm14, \XMM2        # perform a 16 byte swap

626 627
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM3
628 629
	PSHUFB_XMM %xmm14, \XMM3        # perform a 16 byte swap

630 631
	paddd	   \TMP1, \XMM0              # INCR Y0
	MOVADQ	   \XMM0, \XMM4
632 633
	PSHUFB_XMM %xmm14, \XMM4        # perform a 16 byte swap

634 635 636 637 638
	MOVADQ	   0(%arg1),\TMP1
	pxor	   \TMP1, \XMM1
	pxor	   \TMP1, \XMM2
	pxor	   \TMP1, \XMM3
	pxor	   \TMP1, \XMM4
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	movdqa	   \TMP3, \TMP5
	pshufd	   $78, \TMP3, \TMP1
	pxor	   \TMP3, \TMP1
	movdqa	   \TMP1, HashKey_k(%rsp)
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^2<<1 (mod poly)
	movdqa	   \TMP5, HashKey_2(%rsp)
# HashKey_2 = HashKey^2<<1 (mod poly)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_2_k(%rsp)
.irpc index, 1234 # do 4 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_3(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_3_k(%rsp)
.irpc index, 56789 # do next 5 rounds
	movaps 0x10*\index(%arg1), \TMP1
	AESENC	   \TMP1, \XMM1
	AESENC	   \TMP1, \XMM2
	AESENC	   \TMP1, \XMM3
	AESENC	   \TMP1, \XMM4
.endr
	GHASH_MUL  \TMP5, \TMP3, \TMP1, \TMP2, \TMP4, \TMP6, \TMP7
# TMP5 = HashKey^3<<1 (mod poly)
	movdqa	   \TMP5, HashKey_4(%rsp)
	pshufd	   $78, \TMP5, \TMP1
	pxor	   \TMP5, \TMP1
	movdqa	   \TMP1, HashKey_4_k(%rsp)
676 677 678 679
	lea	   0xa0(%arg1),%r10
	mov	   keysize,%eax
	shr	   $2,%eax			# 128->4, 192->6, 256->8
	sub	   $4,%eax			# 128->0, 192->2, 256->4
680
	jz	   aes_loop_pre_done\@
681

682
aes_loop_pre_\@:
683 684 685 686 687 688
	MOVADQ	   (%r10),\TMP2
.irpc	index, 1234
	AESENC	   \TMP2, %xmm\index
.endr
	add	   $16,%r10
	sub	   $1,%eax
689
	jnz	   aes_loop_pre_\@
690

691
aes_loop_pre_done\@:
692
	MOVADQ	   (%r10), \TMP2
693 694 695 696 697 698
	AESENCLAST \TMP2, \XMM1
	AESENCLAST \TMP2, \XMM2
	AESENCLAST \TMP2, \XMM3
	AESENCLAST \TMP2, \XMM4
	movdqu	   16*0(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM1
699 700 701 702
.ifc \operation, dec
	movdqu     \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM1
.endif
703 704
	movdqu	   16*1(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM2
705 706 707 708
.ifc \operation, dec
	movdqu     \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM2
.endif
709 710
	movdqu	   16*2(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM3
711 712 713 714
.ifc \operation, dec
	movdqu     \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM3
.endif
715 716
	movdqu	   16*3(%arg3 , %r11 , 1), \TMP1
	pxor	   \TMP1, \XMM4
717 718 719 720
.ifc \operation, dec
	movdqu     \XMM4, 16*3(%arg2 , %r11 , 1)
	movdqa     \TMP1, \XMM4
.else
721 722 723 724
	movdqu     \XMM1, 16*0(%arg2 , %r11 , 1)
	movdqu     \XMM2, 16*1(%arg2 , %r11 , 1)
	movdqu     \XMM3, 16*2(%arg2 , %r11 , 1)
	movdqu     \XMM4, 16*3(%arg2 , %r11 , 1)
725
.endif
726

727
	add	   $64, %r11
728
	PSHUFB_XMM %xmm14, \XMM1 # perform a 16 byte swap
729 730
	pxor	   \XMMDst, \XMM1
# combine GHASHed value with the corresponding ciphertext
731 732 733 734
	PSHUFB_XMM %xmm14, \XMM2 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM3 # perform a 16 byte swap
	PSHUFB_XMM %xmm14, \XMM4 # perform a 16 byte swap

735
_initial_blocks_done\@:
736

737 738 739 740 741 742 743 744
.endm

/*
* encrypt 4 blocks at a time
* ghash the 4 previously encrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
.macro GHASH_4_ENCRYPT_4_PARALLEL_ENC TMP1 TMP2 TMP3 TMP4 TMP5 \
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

        movdqa    SHUF_MASK(%rip), %xmm15
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	lea	  0xa0(%arg1),%r10
	mov	  keysize,%eax
	shr	  $2,%eax			# 128->4, 192->6, 256->8
	sub	  $4,%eax			# 128->0, 192->2, 256->4
	jz	  aes_loop_par_enc_done

aes_loop_par_enc:
	MOVADQ	  (%r10),\TMP3
.irpc	index, 1234
	AESENC	  \TMP3, %xmm\index
.endr
	add	  $16,%r10
	sub	  $1,%eax
	jnz	  aes_loop_par_enc

aes_loop_par_enc_done:
	MOVADQ	  (%r10), \TMP3
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	AESENCLAST \TMP3, \XMM1           # Round 10
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
        movdqu    \XMM1, (%arg2,%r11,1)        # Write to the ciphertext buffer
        movdqu    \XMM2, 16(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM3, 32(%arg2,%r11,1)      # Write to the ciphertext buffer
        movdqu    \XMM4, 48(%arg2,%r11,1)      # Write to the ciphertext buffer
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/*
* decrypt 4 blocks at a time
* ghash the 4 previously decrypted ciphertext blocks
* arg1, %arg2, %arg3 are used as pointers only, not modified
* %r11 is the data offset value
*/
.macro GHASH_4_ENCRYPT_4_PARALLEL_DEC TMP1 TMP2 TMP3 TMP4 TMP5 \
954 955 956 957 958 959 960
TMP6 XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 operation

	movdqa	  \XMM1, \XMM5
	movdqa	  \XMM2, \XMM6
	movdqa	  \XMM3, \XMM7
	movdqa	  \XMM4, \XMM8

961
        movdqa    SHUF_MASK(%rip), %xmm15
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
        # multiply TMP5 * HashKey using karatsuba

	movdqa	  \XMM5, \TMP4
	pshufd	  $78, \XMM5, \TMP6
	pxor	  \XMM5, \TMP6
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP4           # TMP4 = a1*b1
	movdqa    \XMM0, \XMM1
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM2
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM3
	paddd     ONE(%rip), \XMM0		# INCR CNT
	movdqa    \XMM0, \XMM4
977
	PSHUFB_XMM %xmm15, \XMM1	# perform a 16 byte swap
978
	PCLMULQDQ 0x00, \TMP5, \XMM5           # XMM5 = a0*b0
979 980 981 982
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	pxor	  (%arg1), \XMM1
	pxor	  (%arg1), \XMM2
	pxor	  (%arg1), \XMM3
	pxor	  (%arg1), \XMM4
	movdqa	  HashKey_4_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP6           # TMP6 = (a1+a0)*(b1+b0)
	movaps 0x10(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 1
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movaps 0x20(%arg1), \TMP1
	AESENC	  \TMP1, \XMM1              # Round 2
	AESENC	  \TMP1, \XMM2
	AESENC	  \TMP1, \XMM3
	AESENC	  \TMP1, \XMM4
	movdqa	  \XMM6, \TMP1
	pshufd	  $78, \XMM6, \TMP2
	pxor	  \XMM6, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1 * b1
	movaps 0x30(%arg1), \TMP3
	AESENC    \TMP3, \XMM1              # Round 3
	AESENC    \TMP3, \XMM2
	AESENC    \TMP3, \XMM3
	AESENC    \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM6           # XMM6 = a0*b0
	movaps 0x40(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 4
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_3_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x50(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 5
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM6, \XMM5
	pxor	  \TMP2, \TMP6
	movdqa	  \XMM7, \TMP1
	pshufd	  $78, \XMM7, \TMP2
	pxor	  \XMM7, \TMP2
	movdqa	  HashKey_2(%rsp ), \TMP5

        # Multiply TMP5 * HashKey using karatsuba

	PCLMULQDQ 0x11, \TMP5, \TMP1           # TMP1 = a1*b1
	movaps 0x60(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1              # Round 6
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM7           # XMM7 = a0*b0
	movaps 0x70(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 7
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	movdqa	  HashKey_2_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2           # TMP2 = (a1+a0)*(b1+b0)
	movaps 0x80(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1             # Round 8
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	pxor	  \TMP1, \TMP4
# accumulate the results in TMP4:XMM5, TMP6 holds the middle part
	pxor	  \XMM7, \XMM5
	pxor	  \TMP2, \TMP6

        # Multiply XMM8 * HashKey
        # XMM8 and TMP5 hold the values for the two operands

	movdqa	  \XMM8, \TMP1
	pshufd	  $78, \XMM8, \TMP2
	pxor	  \XMM8, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1          # TMP1 = a1*b1
	movaps 0x90(%arg1), \TMP3
	AESENC	  \TMP3, \XMM1            # Round 9
	AESENC	  \TMP3, \XMM2
	AESENC	  \TMP3, \XMM3
	AESENC	  \TMP3, \XMM4
	PCLMULQDQ 0x00, \TMP5, \XMM8          # XMM8 = a0*b0
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	lea	  0xa0(%arg1),%r10
	mov	  keysize,%eax
	shr	  $2,%eax		        # 128->4, 192->6, 256->8
	sub	  $4,%eax			# 128->0, 192->2, 256->4
	jz	  aes_loop_par_dec_done

aes_loop_par_dec:
	MOVADQ	  (%r10),\TMP3
.irpc	index, 1234
	AESENC	  \TMP3, %xmm\index
.endr
	add	  $16,%r10
	sub	  $1,%eax
	jnz	  aes_loop_par_dec

aes_loop_par_dec_done:
	MOVADQ	  (%r10), \TMP3
	AESENCLAST \TMP3, \XMM1           # last round
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	AESENCLAST \TMP3, \XMM2
	AESENCLAST \TMP3, \XMM3
	AESENCLAST \TMP3, \XMM4
	movdqa    HashKey_k(%rsp), \TMP5
	PCLMULQDQ 0x00, \TMP5, \TMP2          # TMP2 = (a1+a0)*(b1+b0)
	movdqu	  (%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM1                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM1, (%arg2,%r11,1)        # Write to plaintext buffer
	movdqa    \TMP3, \XMM1
	movdqu	  16(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM2                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM2, 16(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM2
	movdqu	  32(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM3                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM3, 32(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM3
	movdqu	  48(%arg3,%r11,1), \TMP3
	pxor	  \TMP3, \XMM4                 # Ciphertext/Plaintext XOR EK
	movdqu	  \XMM4, 48(%arg2,%r11,1)      # Write to plaintext buffer
	movdqa    \TMP3, \XMM4
1110 1111 1112 1113
	PSHUFB_XMM %xmm15, \XMM1        # perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM2	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM3	# perform a 16 byte swap
	PSHUFB_XMM %xmm15, \XMM4	# perform a 16 byte swap
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	pxor	  \TMP4, \TMP1
	pxor	  \XMM8, \XMM5
	pxor	  \TMP6, \TMP2
	pxor	  \TMP1, \TMP2
	pxor	  \XMM5, \TMP2
	movdqa	  \TMP2, \TMP3
	pslldq	  $8, \TMP3                    # left shift TMP3 2 DWs
	psrldq	  $8, \TMP2                    # right shift TMP2 2 DWs
	pxor	  \TMP3, \XMM5
	pxor	  \TMP2, \TMP1	  # accumulate the results in TMP1:XMM5

        # first phase of reduction

	movdqa    \XMM5, \TMP2
	movdqa    \XMM5, \TMP3
	movdqa    \XMM5, \TMP4
# move XMM5 into TMP2, TMP3, TMP4 in order to perform shifts independently
	pslld     $31, \TMP2                   # packed right shift << 31
	pslld     $30, \TMP3                   # packed right shift << 30
	pslld     $25, \TMP4                   # packed right shift << 25
	pxor      \TMP3, \TMP2	               # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP5
	psrldq    $4, \TMP5                    # right shift T5 1 DW
	pslldq    $12, \TMP2                   # left shift T2 3 DWs
	pxor      \TMP2, \XMM5

        # second phase of reduction

	movdqa    \XMM5,\TMP2 # make 3 copies of XMM5 into TMP2, TMP3, TMP4
	movdqa    \XMM5,\TMP3
	movdqa    \XMM5,\TMP4
	psrld     $1, \TMP2                    # packed left shift >>1
	psrld     $2, \TMP3                    # packed left shift >>2
	psrld     $7, \TMP4                    # packed left shift >>7
	pxor      \TMP3,\TMP2		       # xor the shifted versions
	pxor      \TMP4,\TMP2
	pxor      \TMP5, \TMP2
	pxor      \TMP2, \XMM5
	pxor      \TMP1, \XMM5                 # result is in TMP1

	pxor	  \XMM5, \XMM1
.endm

/* GHASH the last 4 ciphertext blocks. */
.macro	GHASH_LAST_4 TMP1 TMP2 TMP3 TMP4 TMP5 TMP6 \
TMP7 XMM1 XMM2 XMM3 XMM4 XMMDst

        # Multiply TMP6 * HashKey (using Karatsuba)

	movdqa	  \XMM1, \TMP6
	pshufd	  $78, \XMM1, \TMP2
	pxor	  \XMM1, \TMP2
	movdqa	  HashKey_4(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP6       # TMP6 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM1       # XMM1 = a0*b0
	movdqa	  HashKey_4_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	movdqa	  \XMM1, \XMMDst
	movdqa	  \TMP2, \XMM1              # result in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM2, \TMP1
	pshufd	  $78, \XMM2, \TMP2
	pxor	  \XMM2, \TMP2
	movdqa	  HashKey_3(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM2       # XMM2 = a0*b0
	movdqa	  HashKey_3_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM2, \XMMDst
	pxor	  \TMP2, \XMM1
# results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)

	movdqa	  \XMM3, \TMP1
	pshufd	  $78, \XMM3, \TMP2
	pxor	  \XMM3, \TMP2
	movdqa	  HashKey_2(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1       # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM3       # XMM3 = a0*b0
	movdqa	  HashKey_2_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM3, \XMMDst
	pxor	  \TMP2, \XMM1   # results accumulated in TMP6, XMMDst, XMM1

        # Multiply TMP1 * HashKey (using Karatsuba)
	movdqa	  \XMM4, \TMP1
	pshufd	  $78, \XMM4, \TMP2
	pxor	  \XMM4, \TMP2
	movdqa	  HashKey(%rsp), \TMP5
	PCLMULQDQ 0x11, \TMP5, \TMP1	    # TMP1 = a1*b1
	PCLMULQDQ 0x00, \TMP5, \XMM4       # XMM4 = a0*b0
	movdqa	  HashKey_k(%rsp), \TMP4
	PCLMULQDQ 0x00, \TMP4, \TMP2       # TMP2 = (a1+a0)*(b1+b0)
	pxor	  \TMP1, \TMP6
	pxor	  \XMM4, \XMMDst
	pxor	  \XMM1, \TMP2
	pxor	  \TMP6, \TMP2
	pxor	  \XMMDst, \TMP2
	# middle section of the temp results combined as in karatsuba algorithm
	movdqa	  \TMP2, \TMP4
	pslldq	  $8, \TMP4                 # left shift TMP4 2 DWs
	psrldq	  $8, \TMP2                 # right shift TMP2 2 DWs
	pxor	  \TMP4, \XMMDst
	pxor	  \TMP2, \TMP6
# TMP6:XMMDst holds the result of the accumulated carry-less multiplications
	# first phase of the reduction
	movdqa    \XMMDst, \TMP2
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
# move XMMDst into TMP2, TMP3, TMP4 in order to perform 3 shifts independently
	pslld     $31, \TMP2                # packed right shifting << 31
	pslld     $30, \TMP3                # packed right shifting << 30
	pslld     $25, \TMP4                # packed right shifting << 25
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	movdqa    \TMP2, \TMP7
	psrldq    $4, \TMP7                 # right shift TMP7 1 DW
	pslldq    $12, \TMP2                # left shift TMP2 3 DWs
	pxor      \TMP2, \XMMDst

        # second phase of the reduction
	movdqa    \XMMDst, \TMP2
	# make 3 copies of XMMDst for doing 3 shift operations
	movdqa    \XMMDst, \TMP3
	movdqa    \XMMDst, \TMP4
	psrld     $1, \TMP2                 # packed left shift >> 1
	psrld     $2, \TMP3                 # packed left shift >> 2
	psrld     $7, \TMP4                 # packed left shift >> 7
	pxor      \TMP3, \TMP2              # xor the shifted versions
	pxor      \TMP4, \TMP2
	pxor      \TMP7, \TMP2
	pxor      \TMP2, \XMMDst
	pxor      \TMP6, \XMMDst            # reduced result is in XMMDst
.endm


1257 1258 1259
/* Encryption of a single block
* uses eax & r10
*/
1260

1261
.macro ENCRYPT_SINGLE_BLOCK XMM0 TMP1
1262

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	pxor		(%arg1), \XMM0
	mov		keysize,%eax
	shr		$2,%eax			# 128->4, 192->6, 256->8
	add		$5,%eax			# 128->9, 192->11, 256->13
	lea		16(%arg1), %r10	  # get first expanded key address

_esb_loop_\@:
	MOVADQ		(%r10),\TMP1
	AESENC		\TMP1,\XMM0
	add		$16,%r10
	sub		$1,%eax
	jnz		_esb_loop_\@

	MOVADQ		(%r10),\TMP1
	AESENCLAST	\TMP1,\XMM0
.endm
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*****************************************************************************
* void aesni_gcm_dec(void *aes_ctx,    // AES Key schedule. Starts on a 16 byte boundary.
*                   u8 *out,           // Plaintext output. Encrypt in-place is allowed.
*                   const u8 *in,      // Ciphertext input
*                   u64 plaintext_len, // Length of data in bytes for decryption.
*                   u8 *iv,            // Pre-counter block j0: 4 byte salt (from Security Association)
*                                      // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                      // concatenated with 0x00000001. 16-byte aligned pointer.
*                   u8 *hash_subkey,   // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                   const u8 *aad,     // Additional Authentication Data (AAD)
*                   u64 aad_len,       // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                   u8  *auth_tag,     // Authenticated Tag output. The driver will compare this to the
*                                      // given authentication tag and only return the plaintext if they match.
*                   u64 auth_tag_len); // Authenticated Tag Length in bytes. Valid values are 16
*                                      // (most likely), 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the first
*       set of 11 keys in the data structure void *aes_ctx
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                       AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                        AAD Format with 64-bit Extended Sequence Number
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
*
*****************************************************************************/
ENTRY(aesni_gcm_dec)
1358
	FUNC_SAVE
1359

D
Dave Watson 已提交
1360
	GCM_INIT
1361
	GCM_ENC_DEC dec
1362
	GCM_COMPLETE
1363
	FUNC_RESTORE
1364
	ret
1365
ENDPROC(aesni_gcm_dec)
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443


/*****************************************************************************
* void aesni_gcm_enc(void *aes_ctx,      // AES Key schedule. Starts on a 16 byte boundary.
*                    u8 *out,            // Ciphertext output. Encrypt in-place is allowed.
*                    const u8 *in,       // Plaintext input
*                    u64 plaintext_len,  // Length of data in bytes for encryption.
*                    u8 *iv,             // Pre-counter block j0: 4 byte salt (from Security Association)
*                                        // concatenated with 8 byte Initialisation Vector (from IPSec ESP Payload)
*                                        // concatenated with 0x00000001. 16-byte aligned pointer.
*                    u8 *hash_subkey,    // H, the Hash sub key input. Data starts on a 16-byte boundary.
*                    const u8 *aad,      // Additional Authentication Data (AAD)
*                    u64 aad_len,        // Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 bytes
*                    u8 *auth_tag,       // Authenticated Tag output.
*                    u64 auth_tag_len);  // Authenticated Tag Length in bytes. Valid values are 16 (most likely),
*                                        // 12 or 8.
*
* Assumptions:
*
* keys:
*       keys are pre-expanded and aligned to 16 bytes. we are using the
*       first set of 11 keys in the data structure void *aes_ctx
*
*
* iv:
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                             Salt  (From the SA)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     Initialization Vector                     |
*       |         (This is the sequence number from IPSec header)       |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x1                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
*
* AAD:
*       AAD padded to 128 bits with 0
*       for example, assume AAD is a u32 vector
*
*       if AAD is 8 bytes:
*       AAD[3] = {A0, A1};
*       padded AAD in xmm register = {A1 A0 0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A1)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                     32-bit Sequence Number (A0)               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                                 AAD Format with 32-bit Sequence Number
*
*       if AAD is 12 bytes:
*       AAD[3] = {A0, A1, A2};
*       padded AAD in xmm register = {A2 A1 A0 0}
*
*       0                   1                   2                   3
*       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                               SPI (A2)                        |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                 64-bit Extended Sequence Number {A1,A0}       |
*       |                                                               |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*       |                              0x0                              |
*       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*                         AAD Format with 64-bit Extended Sequence Number
*
* poly = x^128 + x^127 + x^126 + x^121 + 1
***************************************************************************/
ENTRY(aesni_gcm_enc)
1444
	FUNC_SAVE
1445

D
Dave Watson 已提交
1446
	GCM_INIT
1447
	GCM_ENC_DEC enc
1448
	GCM_COMPLETE
1449
	FUNC_RESTORE
1450
	ret
1451
ENDPROC(aesni_gcm_enc)
1452

1453
#endif
1454 1455


1456
.align 4
1457 1458 1459 1460 1461 1462 1463 1464
_key_expansion_128:
_key_expansion_256a:
	pshufd $0b11111111, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0
1465 1466
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1467
	ret
1468 1469
ENDPROC(_key_expansion_128)
ENDPROC(_key_expansion_256a)
1470

1471
.align 4
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
_key_expansion_192a:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	movaps %xmm2, %xmm6
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

	movaps %xmm0, %xmm1
	shufps $0b01000100, %xmm0, %xmm6
1489
	movaps %xmm6, (TKEYP)
1490
	shufps $0b01001110, %xmm2, %xmm1
1491 1492
	movaps %xmm1, 0x10(TKEYP)
	add $0x20, TKEYP
1493
	ret
1494
ENDPROC(_key_expansion_192a)
1495

1496
.align 4
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
_key_expansion_192b:
	pshufd $0b01010101, %xmm1, %xmm1
	shufps $0b00010000, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	shufps $0b10001100, %xmm0, %xmm4
	pxor %xmm4, %xmm0
	pxor %xmm1, %xmm0

	movaps %xmm2, %xmm5
	pslldq $4, %xmm5
	pshufd $0b11111111, %xmm0, %xmm3
	pxor %xmm3, %xmm2
	pxor %xmm5, %xmm2

1511 1512
	movaps %xmm0, (TKEYP)
	add $0x10, TKEYP
1513
	ret
1514
ENDPROC(_key_expansion_192b)
1515

1516
.align 4
1517 1518 1519 1520 1521 1522 1523
_key_expansion_256b:
	pshufd $0b10101010, %xmm1, %xmm1
	shufps $0b00010000, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	shufps $0b10001100, %xmm2, %xmm4
	pxor %xmm4, %xmm2
	pxor %xmm1, %xmm2
1524 1525
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1526
	ret
1527
ENDPROC(_key_expansion_256b)
1528 1529 1530 1531 1532 1533

/*
 * int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
 *                   unsigned int key_len)
 */
ENTRY(aesni_set_key)
1534
	FRAME_BEGIN
1535 1536
#ifndef __x86_64__
	pushl KEYP
1537 1538 1539
	movl (FRAME_OFFSET+8)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+12)(%esp), UKEYP	# in_key
	movl (FRAME_OFFSET+16)(%esp), %edx	# key_len
1540 1541 1542 1543 1544
#endif
	movups (UKEYP), %xmm0		# user key (first 16 bytes)
	movaps %xmm0, (KEYP)
	lea 0x10(KEYP), TKEYP		# key addr
	movl %edx, 480(KEYP)
1545 1546 1547 1548
	pxor %xmm4, %xmm4		# xmm4 is assumed 0 in _key_expansion_x
	cmp $24, %dl
	jb .Lenc_key128
	je .Lenc_key192
1549 1550 1551
	movups 0x10(UKEYP), %xmm2	# other user key
	movaps %xmm2, (TKEYP)
	add $0x10, TKEYP
1552
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1553
	call _key_expansion_256a
1554
	AESKEYGENASSIST 0x1 %xmm0 %xmm1
1555
	call _key_expansion_256b
1556
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1557
	call _key_expansion_256a
1558
	AESKEYGENASSIST 0x2 %xmm0 %xmm1
1559
	call _key_expansion_256b
1560
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1561
	call _key_expansion_256a
1562
	AESKEYGENASSIST 0x4 %xmm0 %xmm1
1563
	call _key_expansion_256b
1564
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1565
	call _key_expansion_256a
1566
	AESKEYGENASSIST 0x8 %xmm0 %xmm1
1567
	call _key_expansion_256b
1568
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1569
	call _key_expansion_256a
1570
	AESKEYGENASSIST 0x10 %xmm0 %xmm1
1571
	call _key_expansion_256b
1572
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1573
	call _key_expansion_256a
1574
	AESKEYGENASSIST 0x20 %xmm0 %xmm1
1575
	call _key_expansion_256b
1576
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1577 1578 1579
	call _key_expansion_256a
	jmp .Ldec_key
.Lenc_key192:
1580
	movq 0x10(UKEYP), %xmm2		# other user key
1581
	AESKEYGENASSIST 0x1 %xmm2 %xmm1		# round 1
1582
	call _key_expansion_192a
1583
	AESKEYGENASSIST 0x2 %xmm2 %xmm1		# round 2
1584
	call _key_expansion_192b
1585
	AESKEYGENASSIST 0x4 %xmm2 %xmm1		# round 3
1586
	call _key_expansion_192a
1587
	AESKEYGENASSIST 0x8 %xmm2 %xmm1		# round 4
1588
	call _key_expansion_192b
1589
	AESKEYGENASSIST 0x10 %xmm2 %xmm1	# round 5
1590
	call _key_expansion_192a
1591
	AESKEYGENASSIST 0x20 %xmm2 %xmm1	# round 6
1592
	call _key_expansion_192b
1593
	AESKEYGENASSIST 0x40 %xmm2 %xmm1	# round 7
1594
	call _key_expansion_192a
1595
	AESKEYGENASSIST 0x80 %xmm2 %xmm1	# round 8
1596 1597 1598
	call _key_expansion_192b
	jmp .Ldec_key
.Lenc_key128:
1599
	AESKEYGENASSIST 0x1 %xmm0 %xmm1		# round 1
1600
	call _key_expansion_128
1601
	AESKEYGENASSIST 0x2 %xmm0 %xmm1		# round 2
1602
	call _key_expansion_128
1603
	AESKEYGENASSIST 0x4 %xmm0 %xmm1		# round 3
1604
	call _key_expansion_128
1605
	AESKEYGENASSIST 0x8 %xmm0 %xmm1		# round 4
1606
	call _key_expansion_128
1607
	AESKEYGENASSIST 0x10 %xmm0 %xmm1	# round 5
1608
	call _key_expansion_128
1609
	AESKEYGENASSIST 0x20 %xmm0 %xmm1	# round 6
1610
	call _key_expansion_128
1611
	AESKEYGENASSIST 0x40 %xmm0 %xmm1	# round 7
1612
	call _key_expansion_128
1613
	AESKEYGENASSIST 0x80 %xmm0 %xmm1	# round 8
1614
	call _key_expansion_128
1615
	AESKEYGENASSIST 0x1b %xmm0 %xmm1	# round 9
1616
	call _key_expansion_128
1617
	AESKEYGENASSIST 0x36 %xmm0 %xmm1	# round 10
1618 1619
	call _key_expansion_128
.Ldec_key:
1620 1621 1622 1623 1624 1625 1626
	sub $0x10, TKEYP
	movaps (KEYP), %xmm0
	movaps (TKEYP), %xmm1
	movaps %xmm0, 240(TKEYP)
	movaps %xmm1, 240(KEYP)
	add $0x10, KEYP
	lea 240-16(TKEYP), UKEYP
1627 1628
.align 4
.Ldec_key_loop:
1629
	movaps (KEYP), %xmm0
1630
	AESIMC %xmm0 %xmm1
1631 1632 1633 1634
	movaps %xmm1, (UKEYP)
	add $0x10, KEYP
	sub $0x10, UKEYP
	cmp TKEYP, KEYP
1635
	jb .Ldec_key_loop
1636 1637 1638 1639
	xor AREG, AREG
#ifndef __x86_64__
	popl KEYP
#endif
1640
	FRAME_END
1641
	ret
1642
ENDPROC(aesni_set_key)
1643 1644 1645 1646 1647

/*
 * void aesni_enc(struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_enc)
1648
	FRAME_BEGIN
1649 1650 1651
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
1652 1653 1654
	movl (FRAME_OFFSET+12)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+16)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+20)(%esp), INP	# src
1655
#endif
1656 1657 1658 1659
	movl 480(KEYP), KLEN		# key length
	movups (INP), STATE		# input
	call _aesni_enc1
	movups STATE, (OUTP)		# output
1660 1661 1662 1663
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
1664
	FRAME_END
1665
	ret
1666
ENDPROC(aesni_enc)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

/*
 * _aesni_enc1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1680
.align 4
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
_aesni_enc1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Lenc128
	lea 0x20(TKEYP), TKEYP
	je .Lenc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1692
	AESENC KEY STATE
1693
	movaps -0x50(TKEYP), KEY
1694
	AESENC KEY STATE
1695 1696 1697
.align 4
.Lenc192:
	movaps -0x40(TKEYP), KEY
1698
	AESENC KEY STATE
1699
	movaps -0x30(TKEYP), KEY
1700
	AESENC KEY STATE
1701 1702 1703
.align 4
.Lenc128:
	movaps -0x20(TKEYP), KEY
1704
	AESENC KEY STATE
1705
	movaps -0x10(TKEYP), KEY
1706
	AESENC KEY STATE
1707
	movaps (TKEYP), KEY
1708
	AESENC KEY STATE
1709
	movaps 0x10(TKEYP), KEY
1710
	AESENC KEY STATE
1711
	movaps 0x20(TKEYP), KEY
1712
	AESENC KEY STATE
1713
	movaps 0x30(TKEYP), KEY
1714
	AESENC KEY STATE
1715
	movaps 0x40(TKEYP), KEY
1716
	AESENC KEY STATE
1717
	movaps 0x50(TKEYP), KEY
1718
	AESENC KEY STATE
1719
	movaps 0x60(TKEYP), KEY
1720
	AESENC KEY STATE
1721
	movaps 0x70(TKEYP), KEY
1722
	AESENCLAST KEY STATE
1723
	ret
1724
ENDPROC(_aesni_enc1)
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

/*
 * _aesni_enc4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		round count
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1744
.align 4
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
_aesni_enc4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4enc128
	lea 0x20(TKEYP), TKEYP
	je .L4enc192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1759 1760 1761 1762
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1763
	movaps -0x50(TKEYP), KEY
1764 1765 1766 1767
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1768 1769 1770
#.align 4
.L4enc192:
	movaps -0x40(TKEYP), KEY
1771 1772 1773 1774
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1775
	movaps -0x30(TKEYP), KEY
1776 1777 1778 1779
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1780 1781 1782
#.align 4
.L4enc128:
	movaps -0x20(TKEYP), KEY
1783 1784 1785 1786
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1787
	movaps -0x10(TKEYP), KEY
1788 1789 1790 1791
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1792
	movaps (TKEYP), KEY
1793 1794 1795 1796
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1797
	movaps 0x10(TKEYP), KEY
1798 1799 1800 1801
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1802
	movaps 0x20(TKEYP), KEY
1803 1804 1805 1806
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1807
	movaps 0x30(TKEYP), KEY
1808 1809 1810 1811
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1812
	movaps 0x40(TKEYP), KEY
1813 1814 1815 1816
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1817
	movaps 0x50(TKEYP), KEY
1818 1819 1820 1821
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1822
	movaps 0x60(TKEYP), KEY
1823 1824 1825 1826
	AESENC KEY STATE1
	AESENC KEY STATE2
	AESENC KEY STATE3
	AESENC KEY STATE4
1827
	movaps 0x70(TKEYP), KEY
1828 1829 1830 1831
	AESENCLAST KEY STATE1		# last round
	AESENCLAST KEY STATE2
	AESENCLAST KEY STATE3
	AESENCLAST KEY STATE4
1832
	ret
1833
ENDPROC(_aesni_enc4)
1834 1835 1836 1837 1838

/*
 * void aesni_dec (struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src)
 */
ENTRY(aesni_dec)
1839
	FRAME_BEGIN
1840 1841 1842
#ifndef __x86_64__
	pushl KEYP
	pushl KLEN
1843 1844 1845
	movl (FRAME_OFFSET+12)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+16)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+20)(%esp), INP	# src
1846
#endif
1847 1848 1849 1850 1851
	mov 480(KEYP), KLEN		# key length
	add $240, KEYP
	movups (INP), STATE		# input
	call _aesni_dec1
	movups STATE, (OUTP)		#output
1852 1853 1854 1855
#ifndef __x86_64__
	popl KLEN
	popl KEYP
#endif
1856
	FRAME_END
1857
	ret
1858
ENDPROC(aesni_dec)
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

/*
 * _aesni_dec1:		internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE:		initial state (input)
 * output:
 *	STATE:		finial state (output)
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1872
.align 4
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
_aesni_dec1:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE		# round 0
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .Ldec128
	lea 0x20(TKEYP), TKEYP
	je .Ldec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1884
	AESDEC KEY STATE
1885
	movaps -0x50(TKEYP), KEY
1886
	AESDEC KEY STATE
1887 1888 1889
.align 4
.Ldec192:
	movaps -0x40(TKEYP), KEY
1890
	AESDEC KEY STATE
1891
	movaps -0x30(TKEYP), KEY
1892
	AESDEC KEY STATE
1893 1894 1895
.align 4
.Ldec128:
	movaps -0x20(TKEYP), KEY
1896
	AESDEC KEY STATE
1897
	movaps -0x10(TKEYP), KEY
1898
	AESDEC KEY STATE
1899
	movaps (TKEYP), KEY
1900
	AESDEC KEY STATE
1901
	movaps 0x10(TKEYP), KEY
1902
	AESDEC KEY STATE
1903
	movaps 0x20(TKEYP), KEY
1904
	AESDEC KEY STATE
1905
	movaps 0x30(TKEYP), KEY
1906
	AESDEC KEY STATE
1907
	movaps 0x40(TKEYP), KEY
1908
	AESDEC KEY STATE
1909
	movaps 0x50(TKEYP), KEY
1910
	AESDEC KEY STATE
1911
	movaps 0x60(TKEYP), KEY
1912
	AESDEC KEY STATE
1913
	movaps 0x70(TKEYP), KEY
1914
	AESDECLAST KEY STATE
1915
	ret
1916
ENDPROC(_aesni_dec1)
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

/*
 * _aesni_dec4:	internal ABI
 * input:
 *	KEYP:		key struct pointer
 *	KLEN:		key length
 *	STATE1:		initial state (input)
 *	STATE2
 *	STATE3
 *	STATE4
 * output:
 *	STATE1:		finial state (output)
 *	STATE2
 *	STATE3
 *	STATE4
 * changed:
 *	KEY
 *	TKEYP (T1)
 */
1936
.align 4
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
_aesni_dec4:
	movaps (KEYP), KEY		# key
	mov KEYP, TKEYP
	pxor KEY, STATE1		# round 0
	pxor KEY, STATE2
	pxor KEY, STATE3
	pxor KEY, STATE4
	add $0x30, TKEYP
	cmp $24, KLEN
	jb .L4dec128
	lea 0x20(TKEYP), TKEYP
	je .L4dec192
	add $0x20, TKEYP
	movaps -0x60(TKEYP), KEY
1951 1952 1953 1954
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1955
	movaps -0x50(TKEYP), KEY
1956 1957 1958 1959
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1960 1961 1962
.align 4
.L4dec192:
	movaps -0x40(TKEYP), KEY
1963 1964 1965 1966
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1967
	movaps -0x30(TKEYP), KEY
1968 1969 1970 1971
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1972 1973 1974
.align 4
.L4dec128:
	movaps -0x20(TKEYP), KEY
1975 1976 1977 1978
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1979
	movaps -0x10(TKEYP), KEY
1980 1981 1982 1983
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1984
	movaps (TKEYP), KEY
1985 1986 1987 1988
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1989
	movaps 0x10(TKEYP), KEY
1990 1991 1992 1993
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1994
	movaps 0x20(TKEYP), KEY
1995 1996 1997 1998
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
1999
	movaps 0x30(TKEYP), KEY
2000 2001 2002 2003
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2004
	movaps 0x40(TKEYP), KEY
2005 2006 2007 2008
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2009
	movaps 0x50(TKEYP), KEY
2010 2011 2012 2013
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2014
	movaps 0x60(TKEYP), KEY
2015 2016 2017 2018
	AESDEC KEY STATE1
	AESDEC KEY STATE2
	AESDEC KEY STATE3
	AESDEC KEY STATE4
2019
	movaps 0x70(TKEYP), KEY
2020 2021 2022 2023
	AESDECLAST KEY STATE1		# last round
	AESDECLAST KEY STATE2
	AESDECLAST KEY STATE3
	AESDECLAST KEY STATE4
2024
	ret
2025
ENDPROC(_aesni_dec4)
2026 2027 2028 2029 2030 2031

/*
 * void aesni_ecb_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len)
 */
ENTRY(aesni_ecb_enc)
2032
	FRAME_BEGIN
2033 2034 2035 2036
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
2037 2038 2039 2040
	movl (FRAME_OFFSET+16)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+20)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+24)(%esp), INP	# src
	movl (FRAME_OFFSET+28)(%esp), LEN	# len
2041
#endif
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	test LEN, LEN		# check length
	jz .Lecb_enc_ret
	mov 480(KEYP), KLEN
	cmp $16, LEN
	jb .Lecb_enc_ret
	cmp $64, LEN
	jb .Lecb_enc_loop1
.align 4
.Lecb_enc_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_enc4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_enc_loop4
	cmp $16, LEN
	jb .Lecb_enc_ret
.align 4
.Lecb_enc_loop1:
	movups (INP), STATE1
	call _aesni_enc1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_enc_loop1
.Lecb_enc_ret:
2078 2079 2080 2081 2082
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2083
	FRAME_END
2084
	ret
2085
ENDPROC(aesni_ecb_enc)
2086 2087 2088 2089 2090 2091

/*
 * void aesni_ecb_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len);
 */
ENTRY(aesni_ecb_dec)
2092
	FRAME_BEGIN
2093 2094 2095 2096
#ifndef __x86_64__
	pushl LEN
	pushl KEYP
	pushl KLEN
2097 2098 2099 2100
	movl (FRAME_OFFSET+16)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+20)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+24)(%esp), INP	# src
	movl (FRAME_OFFSET+28)(%esp), LEN	# len
2101
#endif
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	test LEN, LEN
	jz .Lecb_dec_ret
	mov 480(KEYP), KLEN
	add $240, KEYP
	cmp $16, LEN
	jb .Lecb_dec_ret
	cmp $64, LEN
	jb .Lecb_dec_loop1
.align 4
.Lecb_dec_loop4:
	movups (INP), STATE1
	movups 0x10(INP), STATE2
	movups 0x20(INP), STATE3
	movups 0x30(INP), STATE4
	call _aesni_dec4
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lecb_dec_loop4
	cmp $16, LEN
	jb .Lecb_dec_ret
.align 4
.Lecb_dec_loop1:
	movups (INP), STATE1
	call _aesni_dec1
	movups STATE1, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lecb_dec_loop1
.Lecb_dec_ret:
2139 2140 2141 2142 2143
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
#endif
2144
	FRAME_END
2145
	ret
2146
ENDPROC(aesni_ecb_dec)
2147 2148 2149 2150 2151 2152

/*
 * void aesni_cbc_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_enc)
2153
	FRAME_BEGIN
2154 2155 2156 2157 2158
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
2159 2160 2161 2162 2163
	movl (FRAME_OFFSET+20)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+24)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+28)(%esp), INP	# src
	movl (FRAME_OFFSET+32)(%esp), LEN	# len
	movl (FRAME_OFFSET+36)(%esp), IVP	# iv
2164
#endif
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	cmp $16, LEN
	jb .Lcbc_enc_ret
	mov 480(KEYP), KLEN
	movups (IVP), STATE	# load iv as initial state
.align 4
.Lcbc_enc_loop:
	movups (INP), IN	# load input
	pxor IN, STATE
	call _aesni_enc1
	movups STATE, (OUTP)	# store output
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_enc_loop
	movups STATE, (IVP)
.Lcbc_enc_ret:
2182 2183 2184 2185 2186 2187
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2188
	FRAME_END
2189
	ret
2190
ENDPROC(aesni_cbc_enc)
2191 2192 2193 2194 2195 2196

/*
 * void aesni_cbc_dec(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_cbc_dec)
2197
	FRAME_BEGIN
2198 2199 2200 2201 2202
#ifndef __x86_64__
	pushl IVP
	pushl LEN
	pushl KEYP
	pushl KLEN
2203 2204 2205 2206 2207
	movl (FRAME_OFFSET+20)(%esp), KEYP	# ctx
	movl (FRAME_OFFSET+24)(%esp), OUTP	# dst
	movl (FRAME_OFFSET+28)(%esp), INP	# src
	movl (FRAME_OFFSET+32)(%esp), LEN	# len
	movl (FRAME_OFFSET+36)(%esp), IVP	# iv
2208
#endif
2209
	cmp $16, LEN
2210
	jb .Lcbc_dec_just_ret
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	mov 480(KEYP), KLEN
	add $240, KEYP
	movups (IVP), IV
	cmp $64, LEN
	jb .Lcbc_dec_loop1
.align 4
.Lcbc_dec_loop4:
	movups (INP), IN1
	movaps IN1, STATE1
	movups 0x10(INP), IN2
	movaps IN2, STATE2
2222
#ifdef __x86_64__
2223 2224 2225 2226
	movups 0x20(INP), IN3
	movaps IN3, STATE3
	movups 0x30(INP), IN4
	movaps IN4, STATE4
2227 2228 2229 2230 2231 2232
#else
	movups 0x20(INP), IN1
	movaps IN1, STATE3
	movups 0x30(INP), IN2
	movaps IN2, STATE4
#endif
2233 2234
	call _aesni_dec4
	pxor IV, STATE1
2235
#ifdef __x86_64__
2236 2237 2238 2239
	pxor IN1, STATE2
	pxor IN2, STATE3
	pxor IN3, STATE4
	movaps IN4, IV
2240 2241 2242
#else
	pxor IN1, STATE4
	movaps IN2, IV
2243 2244 2245 2246
	movups (INP), IN1
	pxor IN1, STATE2
	movups 0x10(INP), IN2
	pxor IN2, STATE3
2247
#endif
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	movups STATE1, (OUTP)
	movups STATE2, 0x10(OUTP)
	movups STATE3, 0x20(OUTP)
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lcbc_dec_loop4
	cmp $16, LEN
	jb .Lcbc_dec_ret
.align 4
.Lcbc_dec_loop1:
	movups (INP), IN
	movaps IN, STATE
	call _aesni_dec1
	pxor IV, STATE
	movups STATE, (OUTP)
	movaps IN, IV
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lcbc_dec_loop1
.Lcbc_dec_ret:
2273 2274
	movups IV, (IVP)
.Lcbc_dec_just_ret:
2275 2276 2277 2278 2279 2280
#ifndef __x86_64__
	popl KLEN
	popl KEYP
	popl LEN
	popl IVP
#endif
2281
	FRAME_END
2282
	ret
2283
ENDPROC(aesni_cbc_dec)
2284

2285
#ifdef __x86_64__
2286
.pushsection .rodata
2287 2288 2289
.align 16
.Lbswap_mask:
	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
2290
.popsection
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

/*
 * _aesni_inc_init:	internal ABI
 *	setup registers used by _aesni_inc
 * input:
 *	IV
 * output:
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 */
2303
.align 4
2304 2305 2306 2307 2308
_aesni_inc_init:
	movaps .Lbswap_mask, BSWAP_MASK
	movaps IV, CTR
	PSHUFB_XMM BSWAP_MASK CTR
	mov $1, TCTR_LOW
2309 2310
	MOVQ_R64_XMM TCTR_LOW INC
	MOVQ_R64_XMM CTR TCTR_LOW
2311
	ret
2312
ENDPROC(_aesni_inc_init)
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

/*
 * _aesni_inc:		internal ABI
 *	Increase IV by 1, IV is in big endian
 * input:
 *	IV
 *	CTR:	== IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 *	INC:	== 1, in little endian
 *	BSWAP_MASK == endian swapping mask
 * output:
 *	IV:	Increase by 1
 * changed:
 *	CTR:	== output IV, in little endian
 *	TCTR_LOW: == lower qword of CTR
 */
2329
.align 4
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
_aesni_inc:
	paddq INC, CTR
	add $1, TCTR_LOW
	jnc .Linc_low
	pslldq $8, INC
	paddq INC, CTR
	psrldq $8, INC
.Linc_low:
	movaps CTR, IV
	PSHUFB_XMM BSWAP_MASK IV
	ret
2341
ENDPROC(_aesni_inc)
2342 2343 2344 2345 2346 2347

/*
 * void aesni_ctr_enc(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *		      size_t len, u8 *iv)
 */
ENTRY(aesni_ctr_enc)
2348
	FRAME_BEGIN
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	cmp $16, LEN
	jb .Lctr_enc_just_ret
	mov 480(KEYP), KLEN
	movups (IVP), IV
	call _aesni_inc_init
	cmp $64, LEN
	jb .Lctr_enc_loop1
.align 4
.Lctr_enc_loop4:
	movaps IV, STATE1
	call _aesni_inc
	movups (INP), IN1
	movaps IV, STATE2
	call _aesni_inc
	movups 0x10(INP), IN2
	movaps IV, STATE3
	call _aesni_inc
	movups 0x20(INP), IN3
	movaps IV, STATE4
	call _aesni_inc
	movups 0x30(INP), IN4
	call _aesni_enc4
	pxor IN1, STATE1
	movups STATE1, (OUTP)
	pxor IN2, STATE2
	movups STATE2, 0x10(OUTP)
	pxor IN3, STATE3
	movups STATE3, 0x20(OUTP)
	pxor IN4, STATE4
	movups STATE4, 0x30(OUTP)
	sub $64, LEN
	add $64, INP
	add $64, OUTP
	cmp $64, LEN
	jge .Lctr_enc_loop4
	cmp $16, LEN
	jb .Lctr_enc_ret
.align 4
.Lctr_enc_loop1:
	movaps IV, STATE
	call _aesni_inc
	movups (INP), IN
	call _aesni_enc1
	pxor IN, STATE
	movups STATE, (OUTP)
	sub $16, LEN
	add $16, INP
	add $16, OUTP
	cmp $16, LEN
	jge .Lctr_enc_loop1
.Lctr_enc_ret:
	movups IV, (IVP)
.Lctr_enc_just_ret:
2402
	FRAME_END
2403
	ret
2404
ENDPROC(aesni_ctr_enc)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

/*
 * _aesni_gf128mul_x_ble:		internal ABI
 *	Multiply in GF(2^128) for XTS IVs
 * input:
 *	IV:	current IV
 *	GF128MUL_MASK == mask with 0x87 and 0x01
 * output:
 *	IV:	next IV
 * changed:
 *	CTR:	== temporary value
 */
#define _aesni_gf128mul_x_ble() \
	pshufd $0x13, IV, CTR; \
	paddq IV, IV; \
	psrad $31, CTR; \
	pand GF128MUL_MASK, CTR; \
	pxor CTR, IV;

/*
 * void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, const u8 *dst, u8 *src,
 *			 bool enc, u8 *iv)
 */
ENTRY(aesni_xts_crypt8)
2429
	FRAME_BEGIN
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	cmpb $0, %cl
	movl $0, %ecx
	movl $240, %r10d
	leaq _aesni_enc4, %r11
	leaq _aesni_dec4, %rax
	cmovel %r10d, %ecx
	cmoveq %rax, %r11

	movdqa .Lgf128mul_x_ble_mask, GF128MUL_MASK
	movups (IVP), IV

	mov 480(KEYP), KLEN
	addq %rcx, KEYP

	movdqa IV, STATE1
2445 2446
	movdqu 0x00(INP), INC
	pxor INC, STATE1
2447 2448 2449 2450
	movdqu IV, 0x00(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE2
2451 2452
	movdqu 0x10(INP), INC
	pxor INC, STATE2
2453 2454 2455 2456
	movdqu IV, 0x10(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE3
2457 2458
	movdqu 0x20(INP), INC
	pxor INC, STATE3
2459 2460 2461 2462
	movdqu IV, 0x20(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE4
2463 2464
	movdqu 0x30(INP), INC
	pxor INC, STATE4
2465 2466
	movdqu IV, 0x30(OUTP)

2467
	CALL_NOSPEC %r11
2468

2469 2470
	movdqu 0x00(OUTP), INC
	pxor INC, STATE1
2471 2472 2473 2474
	movdqu STATE1, 0x00(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE1
2475 2476
	movdqu 0x40(INP), INC
	pxor INC, STATE1
2477 2478
	movdqu IV, 0x40(OUTP)

2479 2480
	movdqu 0x10(OUTP), INC
	pxor INC, STATE2
2481 2482 2483 2484
	movdqu STATE2, 0x10(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE2
2485 2486
	movdqu 0x50(INP), INC
	pxor INC, STATE2
2487 2488
	movdqu IV, 0x50(OUTP)

2489 2490
	movdqu 0x20(OUTP), INC
	pxor INC, STATE3
2491 2492 2493 2494
	movdqu STATE3, 0x20(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE3
2495 2496
	movdqu 0x60(INP), INC
	pxor INC, STATE3
2497 2498
	movdqu IV, 0x60(OUTP)

2499 2500
	movdqu 0x30(OUTP), INC
	pxor INC, STATE4
2501 2502 2503 2504
	movdqu STATE4, 0x30(OUTP)

	_aesni_gf128mul_x_ble()
	movdqa IV, STATE4
2505 2506
	movdqu 0x70(INP), INC
	pxor INC, STATE4
2507 2508 2509 2510 2511
	movdqu IV, 0x70(OUTP)

	_aesni_gf128mul_x_ble()
	movups IV, (IVP)

2512
	CALL_NOSPEC %r11
2513

2514 2515
	movdqu 0x40(OUTP), INC
	pxor INC, STATE1
2516 2517
	movdqu STATE1, 0x40(OUTP)

2518 2519
	movdqu 0x50(OUTP), INC
	pxor INC, STATE2
2520 2521
	movdqu STATE2, 0x50(OUTP)

2522 2523
	movdqu 0x60(OUTP), INC
	pxor INC, STATE3
2524 2525
	movdqu STATE3, 0x60(OUTP)

2526 2527
	movdqu 0x70(OUTP), INC
	pxor INC, STATE4
2528 2529
	movdqu STATE4, 0x70(OUTP)

2530
	FRAME_END
2531 2532 2533
	ret
ENDPROC(aesni_xts_crypt8)

2534
#endif