symbol.c 53.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6
#include <dirent.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
7
#include <linux/capability.h>
8
#include <linux/kernel.h>
9
#include <linux/mman.h>
A
Andi Kleen 已提交
10
#include <linux/time64.h>
11 12 13 14 15
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <fcntl.h>
#include <unistd.h>
16
#include <inttypes.h>
17
#include "annotate.h"
18
#include "build-id.h"
19
#include "cap.h"
20
#include "util.h"
21
#include "debug.h"
22
#include "event.h"
23
#include "machine.h"
24
#include "map.h"
25
#include "symbol.h"
26
#include "strlist.h"
27
#include "intlist.h"
28
#include "namespaces.h"
29
#include "header.h"
30
#include "path.h"
31
#include <linux/ctype.h>
32
#include <linux/zalloc.h>
33 34

#include <elf.h>
35
#include <limits.h>
36
#include <symbol/kallsyms.h>
37
#include <sys/utsname.h>
P
Peter Zijlstra 已提交
38

39 40
static int dso__load_kernel_sym(struct dso *dso, struct map *map);
static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
41 42
static bool symbol__is_idle(const char *name);

43 44
int vmlinux_path__nr_entries;
char **vmlinux_path;
45

46
struct symbol_conf symbol_conf = {
47
	.nanosecs		= false,
48 49 50
	.use_modules		= true,
	.try_vmlinux_path	= true,
	.demangle		= true,
51
	.demangle_kernel	= false,
52
	.cumulate_callchain	= true,
A
Andi Kleen 已提交
53
	.time_quantum		= 100 * NSEC_PER_MSEC, /* 100ms */
54
	.show_hist_headers	= true,
55
	.symfs			= "",
56
	.event_group		= true,
57
	.inline_name		= true,
58
	.res_sample		= 0,
59 60
};

61 62 63 64 65 66
static enum dso_binary_type binary_type_symtab[] = {
	DSO_BINARY_TYPE__KALLSYMS,
	DSO_BINARY_TYPE__GUEST_KALLSYMS,
	DSO_BINARY_TYPE__JAVA_JIT,
	DSO_BINARY_TYPE__DEBUGLINK,
	DSO_BINARY_TYPE__BUILD_ID_CACHE,
67
	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
68 69 70 71 72
	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
	DSO_BINARY_TYPE__GUEST_KMODULE,
73
	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
74
	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
75
	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
76
	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
77 78 79
	DSO_BINARY_TYPE__NOT_FOUND,
};

80
#define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
81

82
static bool symbol_type__filter(char symbol_type)
83
{
84
	symbol_type = toupper(symbol_type);
85
	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
86 87
}

88 89 90 91 92 93 94 95 96 97
static int prefix_underscores_count(const char *str)
{
	const char *tail = str;

	while (*tail == '_')
		tail++;

	return tail - str;
}

98 99 100 101 102
void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c)
{
	p->end = c->start;
}

103 104 105 106 107
const char * __weak arch__normalize_symbol_name(const char *name)
{
	return name;
}

108 109 110 111 112 113 114 115 116 117 118
int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
{
	return strcmp(namea, nameb);
}

int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
					unsigned int n)
{
	return strncmp(namea, nameb, n);
}

119 120 121 122 123 124 125 126 127 128 129
int __weak arch__choose_best_symbol(struct symbol *syma,
				    struct symbol *symb __maybe_unused)
{
	/* Avoid "SyS" kernel syscall aliases */
	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
		return SYMBOL_B;
	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
		return SYMBOL_B;

	return SYMBOL_A;
}
130 131 132 133 134

static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
{
	s64 a;
	s64 b;
135
	size_t na, nb;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

	/* Prefer a symbol with non zero length */
	a = syma->end - syma->start;
	b = symb->end - symb->start;
	if ((b == 0) && (a > 0))
		return SYMBOL_A;
	else if ((a == 0) && (b > 0))
		return SYMBOL_B;

	/* Prefer a non weak symbol over a weak one */
	a = syma->binding == STB_WEAK;
	b = symb->binding == STB_WEAK;
	if (b && !a)
		return SYMBOL_A;
	if (a && !b)
		return SYMBOL_B;

	/* Prefer a global symbol over a non global one */
	a = syma->binding == STB_GLOBAL;
	b = symb->binding == STB_GLOBAL;
	if (a && !b)
		return SYMBOL_A;
	if (b && !a)
		return SYMBOL_B;

	/* Prefer a symbol with less underscores */
	a = prefix_underscores_count(syma->name);
	b = prefix_underscores_count(symb->name);
	if (b > a)
		return SYMBOL_A;
	else if (a > b)
		return SYMBOL_B;

169 170 171 172
	/* Choose the symbol with the longest name */
	na = strlen(syma->name);
	nb = strlen(symb->name);
	if (na > nb)
173
		return SYMBOL_A;
174
	else if (na < nb)
175
		return SYMBOL_B;
176

177
	return arch__choose_best_symbol(syma, symb);
178 179
}

180
void symbols__fixup_duplicate(struct rb_root_cached *symbols)
181 182 183 184
{
	struct rb_node *nd;
	struct symbol *curr, *next;

185 186 187
	if (symbol_conf.allow_aliases)
		return;

188
	nd = rb_first_cached(symbols);
189 190 191 192 193 194 195 196 197 198 199 200 201 202

	while (nd) {
		curr = rb_entry(nd, struct symbol, rb_node);
again:
		nd = rb_next(&curr->rb_node);
		next = rb_entry(nd, struct symbol, rb_node);

		if (!nd)
			break;

		if (curr->start != next->start)
			continue;

		if (choose_best_symbol(curr, next) == SYMBOL_A) {
203
			rb_erase_cached(&next->rb_node, symbols);
204
			symbol__delete(next);
205 206 207
			goto again;
		} else {
			nd = rb_next(&curr->rb_node);
208
			rb_erase_cached(&curr->rb_node, symbols);
209
			symbol__delete(curr);
210 211 212 213
		}
	}
}

214
void symbols__fixup_end(struct rb_root_cached *symbols)
215
{
216
	struct rb_node *nd, *prevnd = rb_first_cached(symbols);
217
	struct symbol *curr, *prev;
218 219 220 221

	if (prevnd == NULL)
		return;

222 223
	curr = rb_entry(prevnd, struct symbol, rb_node);

224
	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
225 226
		prev = curr;
		curr = rb_entry(nd, struct symbol, rb_node);
227

228
		if (prev->end == prev->start && prev->end != curr->start)
229
			arch__symbols__fixup_end(prev, curr);
230
	}
231 232 233

	/* Last entry */
	if (curr->end == curr->start)
234
		curr->end = roundup(curr->start, 4096) + 4096;
235 236
}

237
void map_groups__fixup_end(struct map_groups *mg)
238
{
239
	struct maps *maps = &mg->maps;
240
	struct map *next, *curr;
241

242
	down_write(&maps->lock);
243

244 245
	curr = maps__first(maps);
	if (curr == NULL)
246
		goto out_unlock;
247

248
	for (next = map__next(curr); next; next = map__next(curr)) {
249 250
		if (!curr->end)
			curr->end = next->start;
251
		curr = next;
252
	}
253 254 255 256 257

	/*
	 * We still haven't the actual symbols, so guess the
	 * last map final address.
	 */
258 259
	if (!curr->end)
		curr->end = ~0ULL;
260 261

out_unlock:
262
	up_write(&maps->lock);
263 264
}

265
struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
266
{
267
	size_t namelen = strlen(name) + 1;
268 269 270
	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
					sizeof(*sym) + namelen));
	if (sym == NULL)
271 272
		return NULL;

273 274 275 276 277
	if (symbol_conf.priv_size) {
		if (symbol_conf.init_annotation) {
			struct annotation *notes = (void *)sym;
			pthread_mutex_init(&notes->lock, NULL);
		}
278
		sym = ((void *)sym) + symbol_conf.priv_size;
279
	}
280

281
	sym->start   = start;
282
	sym->end     = len ? start + len : start;
283
	sym->type    = type;
284 285
	sym->binding = binding;
	sym->namelen = namelen - 1;
286

287 288 289
	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
		  __func__, name, start, sym->end);
	memcpy(sym->name, name, namelen);
290

291
	return sym;
292 293
}

294
void symbol__delete(struct symbol *sym)
295
{
296
	free(((void *)sym) - symbol_conf.priv_size);
297 298
}

299
void symbols__delete(struct rb_root_cached *symbols)
300 301
{
	struct symbol *pos;
302
	struct rb_node *next = rb_first_cached(symbols);
303 304 305 306

	while (next) {
		pos = rb_entry(next, struct symbol, rb_node);
		next = rb_next(&pos->rb_node);
307
		rb_erase_cached(&pos->rb_node, symbols);
308
		symbol__delete(pos);
309 310 311
	}
}

312 313
void __symbols__insert(struct rb_root_cached *symbols,
		       struct symbol *sym, bool kernel)
314
{
315
	struct rb_node **p = &symbols->rb_root.rb_node;
316
	struct rb_node *parent = NULL;
317
	const u64 ip = sym->start;
318
	struct symbol *s;
319
	bool leftmost = true;
320

321 322 323 324 325 326 327 328 329 330 331
	if (kernel) {
		const char *name = sym->name;
		/*
		 * ppc64 uses function descriptors and appends a '.' to the
		 * start of every instruction address. Remove it.
		 */
		if (name[0] == '.')
			name++;
		sym->idle = symbol__is_idle(name);
	}

332 333 334 335 336
	while (*p != NULL) {
		parent = *p;
		s = rb_entry(parent, struct symbol, rb_node);
		if (ip < s->start)
			p = &(*p)->rb_left;
337
		else {
338
			p = &(*p)->rb_right;
339 340
			leftmost = false;
		}
341 342
	}
	rb_link_node(&sym->rb_node, parent, p);
343
	rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
344 345
}

346
void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
347 348 349 350
{
	__symbols__insert(symbols, sym, false);
}

351
static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
352 353 354
{
	struct rb_node *n;

355
	if (symbols == NULL)
356 357
		return NULL;

358
	n = symbols->rb_root.rb_node;
359 360 361 362 363 364

	while (n) {
		struct symbol *s = rb_entry(n, struct symbol, rb_node);

		if (ip < s->start)
			n = n->rb_left;
365
		else if (ip > s->end || (ip == s->end && ip != s->start))
366 367 368 369 370 371 372 373
			n = n->rb_right;
		else
			return s;
	}

	return NULL;
}

374
static struct symbol *symbols__first(struct rb_root_cached *symbols)
375
{
376
	struct rb_node *n = rb_first_cached(symbols);
377 378 379 380 381 382 383

	if (n)
		return rb_entry(n, struct symbol, rb_node);

	return NULL;
}

384
static struct symbol *symbols__last(struct rb_root_cached *symbols)
385
{
386
	struct rb_node *n = rb_last(&symbols->rb_root);
387 388 389 390 391 392 393

	if (n)
		return rb_entry(n, struct symbol, rb_node);

	return NULL;
}

394 395 396 397 398 399 400 401 402 403
static struct symbol *symbols__next(struct symbol *sym)
{
	struct rb_node *n = rb_next(&sym->rb_node);

	if (n)
		return rb_entry(n, struct symbol, rb_node);

	return NULL;
}

404
static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym)
405
{
406
	struct rb_node **p = &symbols->rb_root.rb_node;
407
	struct rb_node *parent = NULL;
408
	struct symbol_name_rb_node *symn, *s;
409
	bool leftmost = true;
410 411

	symn = container_of(sym, struct symbol_name_rb_node, sym);
412 413 414 415 416 417

	while (*p != NULL) {
		parent = *p;
		s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
		if (strcmp(sym->name, s->sym.name) < 0)
			p = &(*p)->rb_left;
418
		else {
419
			p = &(*p)->rb_right;
420 421
			leftmost = false;
		}
422 423
	}
	rb_link_node(&symn->rb_node, parent, p);
424
	rb_insert_color_cached(&symn->rb_node, symbols, leftmost);
425 426
}

427 428
static void symbols__sort_by_name(struct rb_root_cached *symbols,
				  struct rb_root_cached *source)
429 430 431
{
	struct rb_node *nd;

432
	for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
433
		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
434
		symbols__insert_by_name(symbols, pos);
435 436 437
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
int symbol__match_symbol_name(const char *name, const char *str,
			      enum symbol_tag_include includes)
{
	const char *versioning;

	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
	    (versioning = strstr(name, "@@"))) {
		int len = strlen(str);

		if (len < versioning - name)
			len = versioning - name;

		return arch__compare_symbol_names_n(name, str, len);
	} else
		return arch__compare_symbol_names(name, str);
}

455
static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols,
456 457
					    const char *name,
					    enum symbol_tag_include includes)
458 459
{
	struct rb_node *n;
460
	struct symbol_name_rb_node *s = NULL;
461

462
	if (symbols == NULL)
463 464
		return NULL;

465
	n = symbols->rb_root.rb_node;
466 467 468 469 470

	while (n) {
		int cmp;

		s = rb_entry(n, struct symbol_name_rb_node, rb_node);
471
		cmp = symbol__match_symbol_name(s->sym.name, name, includes);
472

473
		if (cmp > 0)
474
			n = n->rb_left;
475
		else if (cmp < 0)
476 477
			n = n->rb_right;
		else
478
			break;
479 480
	}

481 482 483
	if (n == NULL)
		return NULL;

484 485 486 487
	if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
		/* return first symbol that has same name (if any) */
		for (n = rb_prev(n); n; n = rb_prev(n)) {
			struct symbol_name_rb_node *tmp;
488

489 490 491
			tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
			if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
				break;
492

493 494
			s = tmp;
		}
495 496

	return &s->sym;
497 498
}

499 500
void dso__reset_find_symbol_cache(struct dso *dso)
{
501 502
	dso->last_find_result.addr   = 0;
	dso->last_find_result.symbol = NULL;
503 504
}

505
void dso__insert_symbol(struct dso *dso, struct symbol *sym)
506
{
507
	__symbols__insert(&dso->symbols, sym, dso->kernel);
508 509

	/* update the symbol cache if necessary */
510 511
	if (dso->last_find_result.addr >= sym->start &&
	    (dso->last_find_result.addr < sym->end ||
512
	    sym->start == sym->end)) {
513
		dso->last_find_result.symbol = sym;
514 515 516
	}
}

517
struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
518
{
519 520 521
	if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
		dso->last_find_result.addr   = addr;
		dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
522 523
	}

524
	return dso->last_find_result.symbol;
525 526
}

527 528
struct symbol *dso__first_symbol(struct dso *dso)
{
529
	return symbols__first(&dso->symbols);
530 531
}

532 533
struct symbol *dso__last_symbol(struct dso *dso)
{
534
	return symbols__last(&dso->symbols);
535 536
}

537 538 539
struct symbol *dso__next_symbol(struct symbol *sym)
{
	return symbols__next(sym);
540 541
}

542 543 544 545 546 547 548 549 550
struct symbol *symbol__next_by_name(struct symbol *sym)
{
	struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
	struct rb_node *n = rb_next(&s->rb_node);

	return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
}

 /*
551
  * Returns first symbol that matched with @name.
552
  */
553
struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
554
{
555
	struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
556 557
						 SYMBOL_TAG_INCLUDE__NONE);
	if (!s)
558
		s = symbols__find_by_name(&dso->symbol_names, name,
559 560
					  SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
	return s;
561 562
}

563
void dso__sort_by_name(struct dso *dso)
564
{
565 566
	dso__set_sorted_by_name(dso);
	return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
567 568
}

569 570
int modules__parse(const char *filename, void *arg,
		   int (*process_module)(void *arg, const char *name,
571
					 u64 start, u64 size))
572 573 574 575 576 577 578 579 580 581 582 583
{
	char *line = NULL;
	size_t n;
	FILE *file;
	int err = 0;

	file = fopen(filename, "r");
	if (file == NULL)
		return -1;

	while (1) {
		char name[PATH_MAX];
584 585
		u64 start, size;
		char *sep, *endptr;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		ssize_t line_len;

		line_len = getline(&line, &n, file);
		if (line_len < 0) {
			if (feof(file))
				break;
			err = -1;
			goto out;
		}

		if (!line) {
			err = -1;
			goto out;
		}

		line[--line_len] = '\0'; /* \n */

		sep = strrchr(line, 'x');
		if (sep == NULL)
			continue;

		hex2u64(sep + 1, &start);

		sep = strchr(line, ' ');
		if (sep == NULL)
			continue;

		*sep = '\0';

		scnprintf(name, sizeof(name), "[%s]", line);

617 618 619 620 621
		size = strtoul(sep + 1, &endptr, 0);
		if (*endptr != ' ' && *endptr != '\t')
			continue;

		err = process_module(arg, name, start, size);
622 623 624 625 626 627 628 629 630
		if (err)
			break;
	}
out:
	free(line);
	fclose(file);
	return err;
}

631 632 633 634
/*
 * These are symbols in the kernel image, so make sure that
 * sym is from a kernel DSO.
 */
635
static bool symbol__is_idle(const char *name)
636 637
{
	const char * const idle_symbols[] = {
638
		"arch_cpu_idle",
639
		"cpu_idle",
640
		"cpu_startup_entry",
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		"intel_idle",
		"default_idle",
		"native_safe_halt",
		"enter_idle",
		"exit_idle",
		"mwait_idle",
		"mwait_idle_with_hints",
		"poll_idle",
		"ppc64_runlatch_off",
		"pseries_dedicated_idle_sleep",
		NULL
	};
	int i;

	for (i = 0; idle_symbols[i]; i++) {
656
		if (!strcmp(idle_symbols[i], name))
657 658 659 660 661 662
			return true;
	}

	return false;
}

663
static int map__process_kallsym_symbol(void *arg, const char *name,
664
				       char type, u64 start)
665 666
{
	struct symbol *sym;
667
	struct dso *dso = arg;
668
	struct rb_root_cached *root = &dso->symbols;
669

670
	if (!symbol_type__filter(type))
671 672
		return 0;

673 674 675 676 677
	/*
	 * module symbols are not sorted so we add all
	 * symbols, setting length to 0, and rely on
	 * symbols__fixup_end() to fix it up.
	 */
678
	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
679 680 681 682 683 684
	if (sym == NULL)
		return -ENOMEM;
	/*
	 * We will pass the symbols to the filter later, in
	 * map__split_kallsyms, when we have split the maps per module
	 */
685
	__symbols__insert(root, sym, !strchr(name, '['));
686

687 688 689 690 691 692 693 694
	return 0;
}

/*
 * Loads the function entries in /proc/kallsyms into kernel_map->dso,
 * so that we can in the next step set the symbol ->end address and then
 * call kernel_maps__split_kallsyms.
 */
695
static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
696
{
697
	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
698 699
}

700
static int map_groups__split_kallsyms_for_kcore(struct map_groups *kmaps, struct dso *dso)
701 702 703
{
	struct map *curr_map;
	struct symbol *pos;
704
	int count = 0;
705 706 707
	struct rb_root_cached old_root = dso->symbols;
	struct rb_root_cached *root = &dso->symbols;
	struct rb_node *next = rb_first_cached(root);
708

709 710 711
	if (!kmaps)
		return -1;

712
	*root = RB_ROOT_CACHED;
713

714 715 716 717 718 719
	while (next) {
		char *module;

		pos = rb_entry(next, struct symbol, rb_node);
		next = rb_next(&pos->rb_node);

720 721
		rb_erase_cached(&pos->rb_node, &old_root);
		RB_CLEAR_NODE(&pos->rb_node);
722 723 724 725
		module = strchr(pos->name, '\t');
		if (module)
			*module = '\0';

726
		curr_map = map_groups__find(kmaps, pos->start);
727

728
		if (!curr_map) {
729
			symbol__delete(pos);
730
			continue;
731
		}
732 733

		pos->start -= curr_map->start - curr_map->pgoff;
734 735
		if (pos->end > curr_map->end)
			pos->end = curr_map->end;
736 737
		if (pos->end)
			pos->end -= curr_map->start - curr_map->pgoff;
738
		symbols__insert(&curr_map->dso->symbols, pos);
739
		++count;
740 741 742 743 744
	}

	/* Symbols have been adjusted */
	dso->adjust_symbols = 1;

745
	return count;
746 747
}

748 749 750 751 752
/*
 * Split the symbols into maps, making sure there are no overlaps, i.e. the
 * kernel range is broken in several maps, named [kernel].N, as we don't have
 * the original ELF section names vmlinux have.
 */
753 754
static int map_groups__split_kallsyms(struct map_groups *kmaps, struct dso *dso, u64 delta,
				      struct map *initial_map)
755
{
756
	struct machine *machine;
757
	struct map *curr_map = initial_map;
758
	struct symbol *pos;
759
	int count = 0, moved = 0;
760 761
	struct rb_root_cached *root = &dso->symbols;
	struct rb_node *next = rb_first_cached(root);
762
	int kernel_range = 0;
763
	bool x86_64;
764

765 766 767 768 769
	if (!kmaps)
		return -1;

	machine = kmaps->machine;

770 771
	x86_64 = machine__is(machine, "x86_64");

772 773 774 775 776 777 778 779
	while (next) {
		char *module;

		pos = rb_entry(next, struct symbol, rb_node);
		next = rb_next(&pos->rb_node);

		module = strchr(pos->name, '\t');
		if (module) {
780
			if (!symbol_conf.use_modules)
781 782
				goto discard_symbol;

783 784
			*module++ = '\0';

785
			if (strcmp(curr_map->dso->short_name, module)) {
786
				if (curr_map != initial_map &&
787
				    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
788
				    machine__is_default_guest(machine)) {
789 790 791 792 793 794 795
					/*
					 * We assume all symbols of a module are
					 * continuous in * kallsyms, so curr_map
					 * points to a module and all its
					 * symbols are in its kmap. Mark it as
					 * loaded.
					 */
796
					dso__set_loaded(curr_map->dso);
797 798
				}

799
				curr_map = map_groups__find_by_name(kmaps, module);
800
				if (curr_map == NULL) {
801
					pr_debug("%s/proc/{kallsyms,modules} "
802
					         "inconsistency while looking "
803
						 "for \"%s\" module!\n",
804
						 machine->root_dir, module);
805
					curr_map = initial_map;
806
					goto discard_symbol;
807
				}
808

809
				if (curr_map->dso->loaded &&
810
				    !machine__is_default_guest(machine))
811
					goto discard_symbol;
812
			}
813 814
			/*
			 * So that we look just like we get from .ko files,
815
			 * i.e. not prelinked, relative to initial_map->start.
816
			 */
817 818
			pos->start = curr_map->map_ip(curr_map, pos->start);
			pos->end   = curr_map->map_ip(curr_map, pos->end);
819 820 821 822 823 824 825 826 827 828
		} else if (x86_64 && is_entry_trampoline(pos->name)) {
			/*
			 * These symbols are not needed anymore since the
			 * trampoline maps refer to the text section and it's
			 * symbols instead. Avoid having to deal with
			 * relocations, and the assumption that the first symbol
			 * is the start of kernel text, by simply removing the
			 * symbols at this point.
			 */
			goto discard_symbol;
829
		} else if (curr_map != initial_map) {
830
			char dso_name[PATH_MAX];
831
			struct dso *ndso;
832

833 834 835 836 837 838
			if (delta) {
				/* Kernel was relocated at boot time */
				pos->start -= delta;
				pos->end -= delta;
			}

839
			if (count == 0) {
840
				curr_map = initial_map;
841
				goto add_symbol;
842 843
			}

844
			if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
845 846 847 848 849 850 851
				snprintf(dso_name, sizeof(dso_name),
					"[guest.kernel].%d",
					kernel_range++);
			else
				snprintf(dso_name, sizeof(dso_name),
					"[kernel].%d",
					kernel_range++);
852

853 854
			ndso = dso__new(dso_name);
			if (ndso == NULL)
855 856
				return -1;

857
			ndso->kernel = dso->kernel;
858

859
			curr_map = map__new2(pos->start, ndso);
860
			if (curr_map == NULL) {
861
				dso__put(ndso);
862 863
				return -1;
			}
864

865
			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
866
			map_groups__insert(kmaps, curr_map);
867
			++kernel_range;
868 869 870 871
		} else if (delta) {
			/* Kernel was relocated at boot time */
			pos->start -= delta;
			pos->end -= delta;
872
		}
873
add_symbol:
874
		if (curr_map != initial_map) {
875
			rb_erase_cached(&pos->rb_node, root);
876
			symbols__insert(&curr_map->dso->symbols, pos);
877 878 879 880 881 882
			++moved;
		} else
			++count;

		continue;
discard_symbol:
883
		rb_erase_cached(&pos->rb_node, root);
884
		symbol__delete(pos);
885 886
	}

887
	if (curr_map != initial_map &&
888
	    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
889
	    machine__is_default_guest(kmaps->machine)) {
890
		dso__set_loaded(curr_map->dso);
891 892
	}

893
	return count + moved;
894
}
895

896 897
bool symbol__restricted_filename(const char *filename,
				 const char *restricted_filename)
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
	bool restricted = false;

	if (symbol_conf.kptr_restrict) {
		char *r = realpath(filename, NULL);

		if (r != NULL) {
			restricted = strcmp(r, restricted_filename) == 0;
			free(r);
			return restricted;
		}
	}

	return restricted;
}

914 915 916 917
struct module_info {
	struct rb_node rb_node;
	char *name;
	u64 start;
918 919
};

920
static void add_module(struct module_info *mi, struct rb_root *modules)
921
{
922 923 924
	struct rb_node **p = &modules->rb_node;
	struct rb_node *parent = NULL;
	struct module_info *m;
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	while (*p != NULL) {
		parent = *p;
		m = rb_entry(parent, struct module_info, rb_node);
		if (strcmp(mi->name, m->name) < 0)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}
	rb_link_node(&mi->rb_node, parent, p);
	rb_insert_color(&mi->rb_node, modules);
}

static void delete_modules(struct rb_root *modules)
{
	struct module_info *mi;
	struct rb_node *next = rb_first(modules);

	while (next) {
		mi = rb_entry(next, struct module_info, rb_node);
		next = rb_next(&mi->rb_node);
		rb_erase(&mi->rb_node, modules);
947
		zfree(&mi->name);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		free(mi);
	}
}

static struct module_info *find_module(const char *name,
				       struct rb_root *modules)
{
	struct rb_node *n = modules->rb_node;

	while (n) {
		struct module_info *m;
		int cmp;

		m = rb_entry(n, struct module_info, rb_node);
		cmp = strcmp(name, m->name);
		if (cmp < 0)
			n = n->rb_left;
		else if (cmp > 0)
			n = n->rb_right;
		else
			return m;
	}

	return NULL;
}

974 975
static int __read_proc_modules(void *arg, const char *name, u64 start,
			       u64 size __maybe_unused)
976 977 978 979 980 981
{
	struct rb_root *modules = arg;
	struct module_info *mi;

	mi = zalloc(sizeof(struct module_info));
	if (!mi)
982 983
		return -ENOMEM;

984 985
	mi->name = strdup(name);
	mi->start = start;
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	if (!mi->name) {
		free(mi);
		return -ENOMEM;
	}

	add_module(mi, modules);

	return 0;
}

static int read_proc_modules(const char *filename, struct rb_root *modules)
{
	if (symbol__restricted_filename(filename, "/proc/modules"))
		return -1;

	if (modules__parse(filename, modules, __read_proc_modules)) {
		delete_modules(modules);
		return -1;
	}
1006 1007 1008 1009

	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
int compare_proc_modules(const char *from, const char *to)
{
	struct rb_root from_modules = RB_ROOT;
	struct rb_root to_modules = RB_ROOT;
	struct rb_node *from_node, *to_node;
	struct module_info *from_m, *to_m;
	int ret = -1;

	if (read_proc_modules(from, &from_modules))
		return -1;

	if (read_proc_modules(to, &to_modules))
		goto out_delete_from;

	from_node = rb_first(&from_modules);
	to_node = rb_first(&to_modules);
	while (from_node) {
		if (!to_node)
			break;

		from_m = rb_entry(from_node, struct module_info, rb_node);
		to_m = rb_entry(to_node, struct module_info, rb_node);

		if (from_m->start != to_m->start ||
		    strcmp(from_m->name, to_m->name))
			break;

		from_node = rb_next(from_node);
		to_node = rb_next(to_node);
	}

	if (!from_node && !to_node)
		ret = 0;

	delete_modules(&to_modules);
out_delete_from:
	delete_modules(&from_modules);

	return ret;
}

1051 1052
struct map *map_groups__first(struct map_groups *mg)
{
1053
	return maps__first(&mg->maps);
1054 1055
}

1056
static int do_validate_kcore_modules(const char *filename,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
				  struct map_groups *kmaps)
{
	struct rb_root modules = RB_ROOT;
	struct map *old_map;
	int err;

	err = read_proc_modules(filename, &modules);
	if (err)
		return err;

1067
	old_map = map_groups__first(kmaps);
1068 1069 1070 1071
	while (old_map) {
		struct map *next = map_groups__next(old_map);
		struct module_info *mi;

1072
		if (!__map__is_kmodule(old_map)) {
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
			old_map = next;
			continue;
		}

		/* Module must be in memory at the same address */
		mi = find_module(old_map->dso->short_name, &modules);
		if (!mi || mi->start != old_map->start) {
			err = -EINVAL;
			goto out;
		}

		old_map = next;
	}
out:
	delete_modules(&modules);
	return err;
}

1091
/*
1092
 * If kallsyms is referenced by name then we look for filename in the same
1093 1094
 * directory.
 */
1095 1096 1097
static bool filename_from_kallsyms_filename(char *filename,
					    const char *base_name,
					    const char *kallsyms_filename)
1098 1099 1100
{
	char *name;

1101 1102
	strcpy(filename, kallsyms_filename);
	name = strrchr(filename, '/');
1103 1104 1105
	if (!name)
		return false;

1106 1107 1108 1109
	name += 1;

	if (!strcmp(name, "kallsyms")) {
		strcpy(name, base_name);
1110 1111 1112 1113 1114 1115
		return true;
	}

	return false;
}

1116 1117 1118
static int validate_kcore_modules(const char *kallsyms_filename,
				  struct map *map)
{
1119
	struct map_groups *kmaps = map__kmaps(map);
1120 1121
	char modules_filename[PATH_MAX];

1122 1123 1124
	if (!kmaps)
		return -EINVAL;

1125 1126 1127 1128
	if (!filename_from_kallsyms_filename(modules_filename, "modules",
					     kallsyms_filename))
		return -EINVAL;

1129
	if (do_validate_kcore_modules(modules_filename, kmaps))
1130 1131 1132 1133 1134
		return -EINVAL;

	return 0;
}

1135 1136 1137 1138 1139
static int validate_kcore_addresses(const char *kallsyms_filename,
				    struct map *map)
{
	struct kmap *kmap = map__kmap(map);

1140 1141 1142
	if (!kmap)
		return -EINVAL;

1143 1144 1145
	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
		u64 start;

1146 1147 1148
		if (kallsyms__get_function_start(kallsyms_filename,
						 kmap->ref_reloc_sym->name, &start))
			return -ENOENT;
1149 1150 1151 1152 1153 1154 1155
		if (start != kmap->ref_reloc_sym->addr)
			return -EINVAL;
	}

	return validate_kcore_modules(kallsyms_filename, map);
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
struct kcore_mapfn_data {
	struct dso *dso;
	struct list_head maps;
};

static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
{
	struct kcore_mapfn_data *md = data;
	struct map *map;

1166
	map = map__new2(start, md->dso);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	if (map == NULL)
		return -ENOMEM;

	map->end = map->start + len;
	map->pgoff = pgoff;

	list_add(&map->node, &md->maps);

	return 0;
}

1178 1179 1180 1181
/*
 * Merges map into map_groups by splitting the new map
 * within the existing map regions.
 */
1182
int map_groups__merge_in(struct map_groups *kmaps, struct map *new_map)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
{
	struct map *old_map;
	LIST_HEAD(merged);

	for (old_map = map_groups__first(kmaps); old_map;
	     old_map = map_groups__next(old_map)) {

		/* no overload with this one */
		if (new_map->end < old_map->start ||
		    new_map->start >= old_map->end)
			continue;

		if (new_map->start < old_map->start) {
			/*
			 * |new......
			 *       |old....
			 */
			if (new_map->end < old_map->end) {
				/*
				 * |new......|     -> |new..|
				 *       |old....| ->       |old....|
				 */
				new_map->end = old_map->start;
			} else {
				/*
				 * |new.............| -> |new..|       |new..|
				 *       |old....|    ->       |old....|
				 */
				struct map *m = map__clone(new_map);

				if (!m)
					return -ENOMEM;

				m->end = old_map->start;
				list_add_tail(&m->node, &merged);
				new_map->start = old_map->end;
			}
		} else {
			/*
			 *      |new......
			 * |old....
			 */
			if (new_map->end < old_map->end) {
				/*
				 *      |new..|   -> x
				 * |old.........| -> |old.........|
				 */
				map__put(new_map);
				new_map = NULL;
				break;
			} else {
				/*
				 *      |new......| ->         |new...|
				 * |old....|        -> |old....|
				 */
				new_map->start = old_map->end;
			}
		}
	}

	while (!list_empty(&merged)) {
		old_map = list_entry(merged.next, struct map, node);
		list_del_init(&old_map->node);
		map_groups__insert(kmaps, old_map);
		map__put(old_map);
	}

	if (new_map) {
		map_groups__insert(kmaps, new_map);
		map__put(new_map);
	}
	return 0;
}

1257 1258 1259
static int dso__load_kcore(struct dso *dso, struct map *map,
			   const char *kallsyms_filename)
{
1260
	struct map_groups *kmaps = map__kmaps(map);
1261 1262
	struct kcore_mapfn_data md;
	struct map *old_map, *new_map, *replacement_map = NULL;
1263
	struct machine *machine;
1264 1265 1266
	bool is_64_bit;
	int err, fd;
	char kcore_filename[PATH_MAX];
1267
	u64 stext;
1268

1269 1270 1271
	if (!kmaps)
		return -EINVAL;

1272 1273
	machine = kmaps->machine;

1274
	/* This function requires that the map is the kernel map */
1275
	if (!__map__is_kernel(map))
1276 1277
		return -EINVAL;

1278 1279 1280 1281
	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
					     kallsyms_filename))
		return -EINVAL;

1282 1283
	/* Modules and kernel must be present at their original addresses */
	if (validate_kcore_addresses(kallsyms_filename, map))
1284 1285 1286 1287 1288 1289
		return -EINVAL;

	md.dso = dso;
	INIT_LIST_HEAD(&md.maps);

	fd = open(kcore_filename, O_RDONLY);
1290
	if (fd < 0) {
1291 1292
		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
			 kcore_filename);
1293
		return -EINVAL;
1294
	}
1295 1296

	/* Read new maps into temporary lists */
1297
	err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1298 1299 1300
			      &is_64_bit);
	if (err)
		goto out_err;
1301
	dso->is_64_bit = is_64_bit;
1302 1303 1304 1305 1306 1307 1308

	if (list_empty(&md.maps)) {
		err = -EINVAL;
		goto out_err;
	}

	/* Remove old maps */
1309
	old_map = map_groups__first(kmaps);
1310 1311 1312
	while (old_map) {
		struct map *next = map_groups__next(old_map);

1313 1314 1315 1316 1317 1318
		/*
		 * We need to preserve eBPF maps even if they are
		 * covered by kcore, because we need to access
		 * eBPF dso for source data.
		 */
		if (old_map != map && !__map__is_bpf_prog(old_map))
1319 1320 1321
			map_groups__remove(kmaps, old_map);
		old_map = next;
	}
1322
	machine->trampolines_mapped = false;
1323

1324 1325 1326 1327 1328 1329 1330
	/* Find the kernel map using the '_stext' symbol */
	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
		list_for_each_entry(new_map, &md.maps, node) {
			if (stext >= new_map->start && stext < new_map->end) {
				replacement_map = new_map;
				break;
			}
1331 1332 1333 1334 1335 1336 1337 1338 1339
		}
	}

	if (!replacement_map)
		replacement_map = list_entry(md.maps.next, struct map, node);

	/* Add new maps */
	while (!list_empty(&md.maps)) {
		new_map = list_entry(md.maps.next, struct map, node);
1340
		list_del_init(&new_map->node);
1341 1342 1343 1344 1345 1346 1347
		if (new_map == replacement_map) {
			map->start	= new_map->start;
			map->end	= new_map->end;
			map->pgoff	= new_map->pgoff;
			map->map_ip	= new_map->map_ip;
			map->unmap_ip	= new_map->unmap_ip;
			/* Ensure maps are correctly ordered */
1348
			map__get(map);
1349 1350
			map_groups__remove(kmaps, map);
			map_groups__insert(kmaps, map);
1351
			map__put(map);
1352
			map__put(new_map);
1353
		} else {
1354 1355 1356 1357 1358 1359 1360
			/*
			 * Merge kcore map into existing maps,
			 * and ensure that current maps (eBPF)
			 * stay intact.
			 */
			if (map_groups__merge_in(kmaps, new_map))
				goto out_err;
1361 1362 1363
		}
	}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	if (machine__is(machine, "x86_64")) {
		u64 addr;

		/*
		 * If one of the corresponding symbols is there, assume the
		 * entry trampoline maps are too.
		 */
		if (!kallsyms__get_function_start(kallsyms_filename,
						  ENTRY_TRAMPOLINE_NAME,
						  &addr))
			machine->trampolines_mapped = true;
	}

1377 1378 1379 1380 1381
	/*
	 * Set the data type and long name so that kcore can be read via
	 * dso__data_read_addr().
	 */
	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1382
		dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1383
	else
1384
		dso->binary_type = DSO_BINARY_TYPE__KCORE;
1385
	dso__set_long_name(dso, strdup(kcore_filename), true);
1386 1387 1388

	close(fd);

1389
	if (map->prot & PROT_EXEC)
1390 1391 1392 1393 1394 1395 1396 1397 1398
		pr_debug("Using %s for kernel object code\n", kcore_filename);
	else
		pr_debug("Using %s for kernel data\n", kcore_filename);

	return 0;

out_err:
	while (!list_empty(&md.maps)) {
		map = list_entry(md.maps.next, struct map, node);
1399
		list_del_init(&map->node);
1400
		map__put(map);
1401 1402 1403 1404 1405
	}
	close(fd);
	return -EINVAL;
}

1406 1407 1408 1409
/*
 * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
 * delta based on the relocation reference symbol.
 */
1410
static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1411 1412 1413 1414 1415 1416
{
	u64 addr;

	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
		return 0;

1417
	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1418 1419 1420 1421 1422 1423
		return -1;

	*delta = addr - kmap->ref_reloc_sym->addr;
	return 0;
}

1424
int __dso__load_kallsyms(struct dso *dso, const char *filename,
1425
			 struct map *map, bool no_kcore)
1426
{
1427
	struct kmap *kmap = map__kmap(map);
1428 1429
	u64 delta = 0;

1430 1431 1432
	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return -1;

1433 1434 1435
	if (!kmap || !kmap->kmaps)
		return -1;

1436
	if (dso__load_all_kallsyms(dso, filename) < 0)
1437 1438
		return -1;

1439
	if (kallsyms__delta(kmap, filename, &delta))
1440 1441
		return -1;

1442 1443
	symbols__fixup_end(&dso->symbols);
	symbols__fixup_duplicate(&dso->symbols);
1444

1445
	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1446
		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1447
	else
1448
		dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1449

1450
	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1451
		return map_groups__split_kallsyms_for_kcore(kmap->kmaps, dso);
1452
	else
1453
		return map_groups__split_kallsyms(kmap->kmaps, dso, delta, map);
1454 1455
}

1456
int dso__load_kallsyms(struct dso *dso, const char *filename,
1457
		       struct map *map)
1458
{
1459
	return __dso__load_kallsyms(dso, filename, map, false);
1460 1461
}

1462
static int dso__load_perf_map(const char *map_path, struct dso *dso)
1463 1464 1465 1466 1467 1468
{
	char *line = NULL;
	size_t n;
	FILE *file;
	int nr_syms = 0;

1469
	file = fopen(map_path, "r");
1470 1471 1472 1473
	if (file == NULL)
		goto out_failure;

	while (!feof(file)) {
1474
		u64 start, size;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		struct symbol *sym;
		int line_len, len;

		line_len = getline(&line, &n, file);
		if (line_len < 0)
			break;

		if (!line)
			goto out_failure;

		line[--line_len] = '\0'; /* \n */

		len = hex2u64(line, &start);

		len++;
		if (len + 2 >= line_len)
			continue;

		len += hex2u64(line + len, &size);

		len++;
		if (len + 2 >= line_len)
			continue;

1499
		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1500 1501 1502 1503

		if (sym == NULL)
			goto out_delete_line;

1504
		symbols__insert(&dso->symbols, sym);
1505
		nr_syms++;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	}

	free(line);
	fclose(file);

	return nr_syms;

out_delete_line:
	free(line);
out_failure:
	return -1;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
					   enum dso_binary_type type)
{
	switch (type) {
	case DSO_BINARY_TYPE__JAVA_JIT:
	case DSO_BINARY_TYPE__DEBUGLINK:
	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
		return !kmod && dso->kernel == DSO_TYPE_USER;

	case DSO_BINARY_TYPE__KALLSYMS:
	case DSO_BINARY_TYPE__VMLINUX:
	case DSO_BINARY_TYPE__KCORE:
		return dso->kernel == DSO_TYPE_KERNEL;

	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
	case DSO_BINARY_TYPE__GUEST_VMLINUX:
	case DSO_BINARY_TYPE__GUEST_KCORE:
		return dso->kernel == DSO_TYPE_GUEST_KERNEL;

	case DSO_BINARY_TYPE__GUEST_KMODULE:
1543
	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1544
	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1545
	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1546 1547
		/*
		 * kernel modules know their symtab type - it's set when
1548
		 * creating a module dso in machine__findnew_module_map().
1549 1550 1551 1552
		 */
		return kmod && dso->symtab_type == type;

	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1553
	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1554 1555
		return true;

1556
	case DSO_BINARY_TYPE__BPF_PROG_INFO:
1557 1558 1559 1560 1561 1562
	case DSO_BINARY_TYPE__NOT_FOUND:
	default:
		return false;
	}
}

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/* Checks for the existence of the perf-<pid>.map file in two different
 * locations.  First, if the process is a separate mount namespace, check in
 * that namespace using the pid of the innermost pid namespace.  If's not in a
 * namespace, or the file can't be found there, try in the mount namespace of
 * the tracing process using our view of its pid.
 */
static int dso__find_perf_map(char *filebuf, size_t bufsz,
			      struct nsinfo **nsip)
{
	struct nscookie nsc;
	struct nsinfo *nsi;
	struct nsinfo *nnsi;
	int rc = -1;

	nsi = *nsip;

	if (nsi->need_setns) {
		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
		nsinfo__mountns_enter(nsi, &nsc);
		rc = access(filebuf, R_OK);
		nsinfo__mountns_exit(&nsc);
		if (rc == 0)
			return rc;
	}

	nnsi = nsinfo__copy(nsi);
	if (nnsi) {
		nsinfo__put(nsi);

		nnsi->need_setns = false;
		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
		*nsip = nnsi;
		rc = 0;
	}

	return rc;
}

1601
int dso__load(struct dso *dso, struct map *map)
1602
{
1603
	char *name;
1604
	int ret = -1;
1605
	u_int i;
1606
	struct machine *machine;
1607
	char *root_dir = (char *) "";
1608 1609 1610
	int ss_pos = 0;
	struct symsrc ss_[2];
	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1611
	bool kmod;
1612
	bool perfmap;
1613
	unsigned char build_id[BUILD_ID_SIZE];
1614
	struct nscookie nsc;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	char newmapname[PATH_MAX];
	const char *map_path = dso->long_name;

	perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
	if (perfmap) {
		if (dso->nsinfo && (dso__find_perf_map(newmapname,
		    sizeof(newmapname), &dso->nsinfo) == 0)) {
			map_path = newmapname;
		}
	}
1625

1626
	nsinfo__mountns_enter(dso->nsinfo, &nsc);
1627 1628 1629
	pthread_mutex_lock(&dso->lock);

	/* check again under the dso->lock */
1630
	if (dso__loaded(dso)) {
1631 1632 1633
		ret = 1;
		goto out;
	}
1634

1635 1636 1637 1638 1639
	if (map->groups && map->groups->machine)
		machine = map->groups->machine;
	else
		machine = NULL;

1640 1641
	if (dso->kernel) {
		if (dso->kernel == DSO_TYPE_KERNEL)
1642
			ret = dso__load_kernel_sym(dso, map);
1643
		else if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1644
			ret = dso__load_guest_kernel_sym(dso, map);
1645

1646 1647
		if (machine__is(machine, "x86_64"))
			machine__map_x86_64_entry_trampolines(machine, dso);
1648 1649
		goto out;
	}
1650

1651
	dso->adjust_symbols = 0;
1652

1653
	if (perfmap) {
1654
		ret = dso__load_perf_map(map_path, dso);
1655 1656
		dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
					     DSO_BINARY_TYPE__NOT_FOUND;
1657
		goto out;
1658 1659
	}

1660 1661 1662
	if (machine)
		root_dir = machine->root_dir;

1663 1664
	name = malloc(PATH_MAX);
	if (!name)
1665
		goto out;
1666

1667
	kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1668 1669 1670
		dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1671

1672 1673 1674 1675 1676

	/*
	 * Read the build id if possible. This is required for
	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
	 */
1677
	if (!dso->has_build_id &&
1678 1679 1680
	    is_regular_file(dso->long_name)) {
	    __symbol__join_symfs(name, PATH_MAX, dso->long_name);
	    if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0)
1681
		dso__set_build_id(dso, build_id);
1682
	}
1683

1684 1685
	/*
	 * Iterate over candidate debug images.
1686 1687
	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
	 * and/or opd section) for processing.
1688
	 */
1689
	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1690 1691
		struct symsrc *ss = &ss_[ss_pos];
		bool next_slot = false;
1692
		bool is_reg;
1693
		bool nsexit;
1694
		int sirc = -1;
1695

1696
		enum dso_binary_type symtab_type = binary_type_symtab[i];
1697

1698 1699 1700
		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);

1701 1702 1703
		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
			continue;

1704 1705
		if (dso__read_binary_type_filename(dso, symtab_type,
						   root_dir, name, PATH_MAX))
1706
			continue;
1707

1708
		if (nsexit)
1709 1710 1711
			nsinfo__mountns_exit(&nsc);

		is_reg = is_regular_file(name);
1712 1713
		if (is_reg)
			sirc = symsrc__init(ss, dso, name, symtab_type);
1714

1715
		if (nsexit)
1716 1717
			nsinfo__mountns_enter(dso->nsinfo, &nsc);

1718
		if (!is_reg || sirc < 0)
1719
			continue;
1720

1721 1722 1723
		if (!syms_ss && symsrc__has_symtab(ss)) {
			syms_ss = ss;
			next_slot = true;
1724 1725
			if (!dso->symsrc_filename)
				dso->symsrc_filename = strdup(name);
1726 1727
		}

1728 1729 1730
		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
			runtime_ss = ss;
			next_slot = true;
1731
		}
1732

1733 1734
		if (next_slot) {
			ss_pos++;
1735

1736 1737
			if (syms_ss && runtime_ss)
				break;
1738 1739
		} else {
			symsrc__destroy(ss);
1740
		}
1741

1742
	}
1743

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	if (!runtime_ss && !syms_ss)
		goto out_free;

	if (runtime_ss && !syms_ss) {
		syms_ss = runtime_ss;
	}

	/* We'll have to hope for the best */
	if (!runtime_ss && syms_ss)
		runtime_ss = syms_ss;

1755
	if (syms_ss)
1756
		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1757
	else
1758 1759
		ret = -1;

1760
	if (ret > 0) {
1761 1762
		int nr_plt;

1763
		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1764 1765
		if (nr_plt > 0)
			ret += nr_plt;
1766 1767
	}

1768 1769 1770
	for (; ss_pos > 0; ss_pos--)
		symsrc__destroy(&ss_[ss_pos - 1]);
out_free:
1771
	free(name);
1772
	if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1773 1774
		ret = 0;
out:
1775
	dso__set_loaded(dso);
1776
	pthread_mutex_unlock(&dso->lock);
1777
	nsinfo__mountns_exit(&nsc);
1778

1779 1780 1781
	return ret;
}

1782
struct map *map_groups__find_by_name(struct map_groups *mg, const char *name)
1783
{
1784
	struct maps *maps = &mg->maps;
1785
	struct map *map;
1786
	struct rb_node *node;
1787

1788
	down_read(&maps->lock);
1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	for (node = maps->names.rb_node; node; ) {
		int rc;

		map = rb_entry(node, struct map, rb_node_name);

		rc = strcmp(map->dso->short_name, name);
		if (rc < 0)
			node = node->rb_left;
		else if (rc > 0)
			node = node->rb_right;
		else

1802
			goto out_unlock;
1803 1804
	}

1805 1806 1807
	map = NULL;

out_unlock:
1808
	up_read(&maps->lock);
1809
	return map;
1810 1811
}

1812
int dso__load_vmlinux(struct dso *dso, struct map *map,
1813
		      const char *vmlinux, bool vmlinux_allocated)
1814
{
1815 1816
	int err = -1;
	struct symsrc ss;
1817
	char symfs_vmlinux[PATH_MAX];
1818
	enum dso_binary_type symtab_type;
1819

1820 1821 1822
	if (vmlinux[0] == '/')
		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
	else
1823
		symbol__join_symfs(symfs_vmlinux, vmlinux);
1824

1825
	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1826
		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1827
	else
1828
		symtab_type = DSO_BINARY_TYPE__VMLINUX;
1829

1830
	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
1831 1832
		return -1;

1833
	err = dso__load_sym(dso, map, &ss, &ss, 0);
1834
	symsrc__destroy(&ss);
1835

1836
	if (err > 0) {
1837
		if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1838
			dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1839
		else
1840
			dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
1841
		dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1842
		dso__set_loaded(dso);
1843
		pr_debug("Using %s for symbols\n", symfs_vmlinux);
1844
	}
1845

1846 1847 1848
	return err;
}

1849
int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1850 1851
{
	int i, err = 0;
1852
	char *filename = NULL;
1853

1854 1855 1856 1857
	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
		 vmlinux_path__nr_entries + 1);

	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1858
		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1859 1860 1861 1862
		if (err > 0)
			goto out;
	}

1863
	if (!symbol_conf.ignore_vmlinux_buildid)
1864
		filename = dso__build_id_filename(dso, NULL, 0, false);
1865
	if (filename != NULL) {
1866
		err = dso__load_vmlinux(dso, map, filename, true);
1867
		if (err > 0)
1868 1869 1870 1871
			goto out;
		free(filename);
	}
out:
1872 1873 1874
	return err;
}

1875 1876 1877 1878 1879 1880 1881
static bool visible_dir_filter(const char *name, struct dirent *d)
{
	if (d->d_type != DT_DIR)
		return false;
	return lsdir_no_dot_filter(name, d);
}

1882 1883 1884 1885
static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
{
	char kallsyms_filename[PATH_MAX];
	int ret = -1;
1886 1887
	struct strlist *dirs;
	struct str_node *nd;
1888

1889 1890
	dirs = lsdir(dir, visible_dir_filter);
	if (!dirs)
1891 1892
		return -1;

1893
	strlist__for_each_entry(nd, dirs) {
1894
		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1895
			  "%s/%s/kallsyms", dir, nd->s);
1896
		if (!validate_kcore_addresses(kallsyms_filename, map)) {
1897 1898 1899 1900 1901 1902
			strlcpy(dir, kallsyms_filename, dir_sz);
			ret = 0;
			break;
		}
	}

1903
	strlist__delete(dirs);
1904 1905 1906 1907

	return ret;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/*
 * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
 * since access(R_OK) only checks with real UID/GID but open() use effective
 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
 */
static bool filename__readable(const char *file)
{
	int fd = open(file, O_RDONLY);
	if (fd < 0)
		return false;
	close(fd);
	return true;
}

1922 1923 1924
static char *dso__find_kallsyms(struct dso *dso, struct map *map)
{
	u8 host_build_id[BUILD_ID_SIZE];
1925
	char sbuild_id[SBUILD_ID_SIZE];
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	bool is_host = false;
	char path[PATH_MAX];

	if (!dso->has_build_id) {
		/*
		 * Last resort, if we don't have a build-id and couldn't find
		 * any vmlinux file, try the running kernel kallsyms table.
		 */
		goto proc_kallsyms;
	}

	if (sysfs__read_build_id("/sys/kernel/notes", host_build_id,
				 sizeof(host_build_id)) == 0)
		is_host = dso__build_id_equal(dso, host_build_id);

1941
	/* Try a fast path for /proc/kallsyms if possible */
1942 1943
	if (is_host) {
		/*
1944 1945 1946 1947 1948
		 * Do not check the build-id cache, unless we know we cannot use
		 * /proc/kcore or module maps don't match to /proc/kallsyms.
		 * To check readability of /proc/kcore, do not use access(R_OK)
		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
		 * can't check it.
1949
		 */
1950 1951 1952
		if (filename__readable("/proc/kcore") &&
		    !validate_kcore_addresses("/proc/kallsyms", map))
			goto proc_kallsyms;
1953 1954
	}

1955 1956
	build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id);

1957
	/* Find kallsyms in build-id cache with kcore */
1958 1959 1960
	scnprintf(path, sizeof(path), "%s/%s/%s",
		  buildid_dir, DSO__NAME_KCORE, sbuild_id);

1961 1962 1963
	if (!find_matching_kcore(map, path, sizeof(path)))
		return strdup(path);

1964 1965 1966 1967 1968 1969 1970
	/* Use current /proc/kallsyms if possible */
	if (is_host) {
proc_kallsyms:
		return strdup("/proc/kallsyms");
	}

	/* Finally, find a cache of kallsyms */
1971
	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
1972 1973 1974 1975 1976 1977 1978 1979
		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
		       sbuild_id);
		return NULL;
	}

	return strdup(path);
}

1980
static int dso__load_kernel_sym(struct dso *dso, struct map *map)
1981
{
1982
	int err;
1983 1984
	const char *kallsyms_filename = NULL;
	char *kallsyms_allocated_filename = NULL;
1985
	/*
1986 1987
	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
	 * it and only it, reporting errors to the user if it cannot be used.
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
	 *
	 * For instance, try to analyse an ARM perf.data file _without_ a
	 * build-id, or if the user specifies the wrong path to the right
	 * vmlinux file, obviously we can't fallback to another vmlinux (a
	 * x86_86 one, on the machine where analysis is being performed, say),
	 * or worse, /proc/kallsyms.
	 *
	 * If the specified file _has_ a build-id and there is a build-id
	 * section in the perf.data file, we will still do the expected
	 * validation in dso__load_vmlinux and will bail out if they don't
	 * match.
	 */
2000 2001 2002 2003 2004
	if (symbol_conf.kallsyms_name != NULL) {
		kallsyms_filename = symbol_conf.kallsyms_name;
		goto do_kallsyms;
	}

2005
	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2006
		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2007
	}
2008

2009
	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2010
		err = dso__load_vmlinux_path(dso, map);
2011
		if (err > 0)
2012
			return err;
2013 2014
	}

2015 2016 2017 2018
	/* do not try local files if a symfs was given */
	if (symbol_conf.symfs[0] != 0)
		return -1;

2019 2020 2021
	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
	if (!kallsyms_allocated_filename)
		return -1;
2022

2023
	kallsyms_filename = kallsyms_allocated_filename;
2024

2025
do_kallsyms:
2026
	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2027 2028
	if (err > 0)
		pr_debug("Using %s for symbols\n", kallsyms_filename);
2029
	free(kallsyms_allocated_filename);
2030

2031
	if (err > 0 && !dso__is_kcore(dso)) {
2032
		dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
2033
		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2034 2035
		map__fixup_start(map);
		map__fixup_end(map);
2036
	}
2037

2038 2039 2040
	return err;
}

2041
static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2042 2043 2044
{
	int err;
	const char *kallsyms_filename = NULL;
2045
	struct machine *machine;
2046 2047 2048 2049 2050 2051
	char path[PATH_MAX];

	if (!map->groups) {
		pr_debug("Guest kernel map hasn't the point to groups\n");
		return -1;
	}
2052
	machine = map->groups->machine;
2053

2054
	if (machine__is_default_guest(machine)) {
2055 2056 2057 2058 2059 2060
		/*
		 * if the user specified a vmlinux filename, use it and only
		 * it, reporting errors to the user if it cannot be used.
		 * Or use file guest_kallsyms inputted by user on commandline
		 */
		if (symbol_conf.default_guest_vmlinux_name != NULL) {
2061
			err = dso__load_vmlinux(dso, map,
2062
						symbol_conf.default_guest_vmlinux_name,
2063
						false);
2064
			return err;
2065 2066 2067 2068 2069 2070
		}

		kallsyms_filename = symbol_conf.default_guest_kallsyms;
		if (!kallsyms_filename)
			return -1;
	} else {
2071
		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2072 2073 2074
		kallsyms_filename = path;
	}

2075
	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2076
	if (err > 0)
2077
		pr_debug("Using %s for symbols\n", kallsyms_filename);
2078
	if (err > 0 && !dso__is_kcore(dso)) {
2079
		dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
2080
		dso__set_long_name(dso, machine->mmap_name, false);
2081 2082 2083 2084 2085 2086
		map__fixup_start(map);
		map__fixup_end(map);
	}

	return err;
}
2087

2088 2089
static void vmlinux_path__exit(void)
{
2090 2091
	while (--vmlinux_path__nr_entries >= 0)
		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2092
	vmlinux_path__nr_entries = 0;
2093

2094
	zfree(&vmlinux_path);
2095 2096
}

2097 2098 2099 2100 2101 2102 2103 2104 2105
static const char * const vmlinux_paths[] = {
	"vmlinux",
	"/boot/vmlinux"
};

static const char * const vmlinux_paths_upd[] = {
	"/boot/vmlinux-%s",
	"/usr/lib/debug/boot/vmlinux-%s",
	"/lib/modules/%s/build/vmlinux",
2106 2107
	"/usr/lib/debug/lib/modules/%s/vmlinux",
	"/usr/lib/debug/boot/vmlinux-%s.debug"
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
};

static int vmlinux_path__add(const char *new_entry)
{
	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
		return -1;
	++vmlinux_path__nr_entries;

	return 0;
}

2120
static int vmlinux_path__init(struct perf_env *env)
2121 2122 2123
{
	struct utsname uts;
	char bf[PATH_MAX];
2124
	char *kernel_version;
2125
	unsigned int i;
2126

2127 2128
	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
			      ARRAY_SIZE(vmlinux_paths_upd)));
2129 2130 2131
	if (vmlinux_path == NULL)
		return -1;

2132 2133 2134
	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
			goto out_fail;
2135

2136
	/* only try kernel version if no symfs was given */
2137 2138 2139
	if (symbol_conf.symfs[0] != 0)
		return 0;

2140 2141 2142 2143 2144 2145 2146 2147
	if (env) {
		kernel_version = env->os_release;
	} else {
		if (uname(&uts) < 0)
			goto out_fail;

		kernel_version = uts.release;
	}
2148

2149 2150 2151 2152 2153
	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
		if (vmlinux_path__add(bf) < 0)
			goto out_fail;
	}
2154 2155 2156 2157 2158 2159 2160 2161

	return 0;

out_fail:
	vmlinux_path__exit();
	return -1;
}

D
David Ahern 已提交
2162
int setup_list(struct strlist **list, const char *list_str,
2163 2164 2165 2166 2167
		      const char *list_name)
{
	if (list_str == NULL)
		return 0;

2168
	*list = strlist__new(list_str, NULL);
2169 2170 2171 2172
	if (!*list) {
		pr_err("problems parsing %s list\n", list_name);
		return -1;
	}
2173 2174

	symbol_conf.has_filter = true;
2175 2176 2177
	return 0;
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
int setup_intlist(struct intlist **list, const char *list_str,
		  const char *list_name)
{
	if (list_str == NULL)
		return 0;

	*list = intlist__new(list_str);
	if (!*list) {
		pr_err("problems parsing %s list\n", list_name);
		return -1;
	}
	return 0;
}

2192 2193 2194
static bool symbol__read_kptr_restrict(void)
{
	bool value = false;
2195
	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2196

2197 2198
	if (fp != NULL) {
		char line[8];
2199

2200
		if (fgets(line, sizeof(line), fp) != NULL)
2201 2202 2203
			value = perf_cap__capable(CAP_SYSLOG) ?
					(atoi(line) >= 2) :
					(atoi(line) != 0);
2204

2205
		fclose(fp);
2206 2207
	}

2208 2209 2210 2211 2212 2213
	/* Per kernel/kallsyms.c:
	 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
	 */
	if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG))
		value = true;

2214 2215 2216
	return value;
}

2217 2218
int symbol__annotation_init(void)
{
2219 2220 2221
	if (symbol_conf.init_annotation)
		return 0;

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	if (symbol_conf.initialized) {
		pr_err("Annotation needs to be init before symbol__init()\n");
		return -1;
	}

	symbol_conf.priv_size += sizeof(struct annotation);
	symbol_conf.init_annotation = true;
	return 0;
}

2232
int symbol__init(struct perf_env *env)
2233
{
2234 2235
	const char *symfs;

2236 2237 2238
	if (symbol_conf.initialized)
		return 0;

2239
	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2240

2241 2242
	symbol__elf_init();

2243 2244 2245
	if (symbol_conf.sort_by_name)
		symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
					  sizeof(struct symbol));
2246

2247
	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2248 2249
		return -1;

2250 2251 2252 2253 2254
	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
		pr_err("'.' is the only non valid --field-separator argument\n");
		return -1;
	}

2255 2256 2257 2258 2259 2260 2261 2262
	if (setup_list(&symbol_conf.dso_list,
		       symbol_conf.dso_list_str, "dso") < 0)
		return -1;

	if (setup_list(&symbol_conf.comm_list,
		       symbol_conf.comm_list_str, "comm") < 0)
		goto out_free_dso_list;

2263 2264 2265 2266 2267 2268 2269 2270
	if (setup_intlist(&symbol_conf.pid_list,
		       symbol_conf.pid_list_str, "pid") < 0)
		goto out_free_comm_list;

	if (setup_intlist(&symbol_conf.tid_list,
		       symbol_conf.tid_list_str, "tid") < 0)
		goto out_free_pid_list;

2271 2272
	if (setup_list(&symbol_conf.sym_list,
		       symbol_conf.sym_list_str, "symbol") < 0)
2273
		goto out_free_tid_list;
2274

2275 2276 2277 2278
	if (setup_list(&symbol_conf.bt_stop_list,
		       symbol_conf.bt_stop_list_str, "symbol") < 0)
		goto out_free_sym_list;

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * A path to symbols of "/" is identical to ""
	 * reset here for simplicity.
	 */
	symfs = realpath(symbol_conf.symfs, NULL);
	if (symfs == NULL)
		symfs = symbol_conf.symfs;
	if (strcmp(symfs, "/") == 0)
		symbol_conf.symfs = "";
	if (symfs != symbol_conf.symfs)
		free((void *)symfs);

2291 2292
	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();

2293
	symbol_conf.initialized = true;
2294
	return 0;
2295

2296 2297
out_free_sym_list:
	strlist__delete(symbol_conf.sym_list);
2298 2299 2300 2301
out_free_tid_list:
	intlist__delete(symbol_conf.tid_list);
out_free_pid_list:
	intlist__delete(symbol_conf.pid_list);
2302 2303
out_free_comm_list:
	strlist__delete(symbol_conf.comm_list);
2304 2305
out_free_dso_list:
	strlist__delete(symbol_conf.dso_list);
2306
	return -1;
2307 2308
}

2309 2310
void symbol__exit(void)
{
2311 2312
	if (!symbol_conf.initialized)
		return;
2313
	strlist__delete(symbol_conf.bt_stop_list);
2314 2315 2316
	strlist__delete(symbol_conf.sym_list);
	strlist__delete(symbol_conf.dso_list);
	strlist__delete(symbol_conf.comm_list);
2317 2318
	intlist__delete(symbol_conf.tid_list);
	intlist__delete(symbol_conf.pid_list);
2319 2320
	vmlinux_path__exit();
	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2321
	symbol_conf.bt_stop_list = NULL;
2322
	symbol_conf.initialized = false;
2323
}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

int symbol__config_symfs(const struct option *opt __maybe_unused,
			 const char *dir, int unset __maybe_unused)
{
	char *bf = NULL;
	int ret;

	symbol_conf.symfs = strdup(dir);
	if (symbol_conf.symfs == NULL)
		return -ENOMEM;

	/* skip the locally configured cache if a symfs is given, and
	 * config buildid dir to symfs/.debug
	 */
	ret = asprintf(&bf, "%s/%s", dir, ".debug");
	if (ret < 0)
		return -ENOMEM;

	set_buildid_dir(bf);

	free(bf);
	return 0;
}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

struct mem_info *mem_info__get(struct mem_info *mi)
{
	if (mi)
		refcount_inc(&mi->refcnt);
	return mi;
}

void mem_info__put(struct mem_info *mi)
{
	if (mi && refcount_dec_and_test(&mi->refcnt))
		free(mi);
}

struct mem_info *mem_info__new(void)
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (mi)
		refcount_set(&mi->refcnt, 1);
	return mi;
}
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

struct block_info *block_info__get(struct block_info *bi)
{
	if (bi)
		refcount_inc(&bi->refcnt);
	return bi;
}

void block_info__put(struct block_info *bi)
{
	if (bi && refcount_dec_and_test(&bi->refcnt))
		free(bi);
}

struct block_info *block_info__new(void)
{
	struct block_info *bi = zalloc(sizeof(*bi));

	if (bi)
		refcount_set(&bi->refcnt, 1);
	return bi;
}